JPS59139404A - Pid control method - Google Patents
Pid control methodInfo
- Publication number
- JPS59139404A JPS59139404A JP1154983A JP1154983A JPS59139404A JP S59139404 A JPS59139404 A JP S59139404A JP 1154983 A JP1154983 A JP 1154983A JP 1154983 A JP1154983 A JP 1154983A JP S59139404 A JPS59139404 A JP S59139404A
- Authority
- JP
- Japan
- Prior art keywords
- pid
- control
- identification
- forgetting factor
- control method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、マイクロコンピュータ(以下、単にマイ°コ
ンと呼ぶ)によるD D C(Direct])igi
tal Control )システムにおいて、制
御に必要なPID制御パラメータをチューニングする機
能を有するPID制御方法に関する。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a DDC (Direct) igi using a microcomputer (hereinafter simply referred to as a microcomputer).
The present invention relates to a PID control method having a function of tuning PID control parameters necessary for control in a PID control system.
従来のPIDパラメータチューニングを有する制御方法
として、例えば、サンプル値PID制御装置(特開昭5
7−23108号公報を参照のこと)に用いられている
方法では、三次方程式の根を解くなど繁雑な計算が必要
でありさらに大きな計算速度、計算回数が必要とされ、
小さいマイコン上で稼動できないという欠点があった。As a control method using conventional PID parameter tuning, for example, a sample value PID control device (Japanese Patent Laid-open No. 5
The method used in Japanese Patent No. 7-23108 requires complicated calculations such as solving the roots of cubic equations, and also requires greater calculation speed and number of calculations.
The drawback was that it could not be run on a small microcontroller.
また、ステップ状信号応答に基づく同定法と閉ループ指
定PIDパラメータの設計法の組み合せ(電気学会研究
会資料’ 82.6月システム・制御研究会編を参照の
こと)もフーリエ変換などの計算が繁雑なため前記と同
様の欠点があった。In addition, the combination of the identification method based on step-like signal responses and the design method of closed-loop specified PID parameters (see the Institute of Electrical Engineers of Japan Study Group Materials '82. System and Control Study Group edition) requires complicated calculations such as Fourier transform. Therefore, it had the same drawbacks as above.
本発明の目的は、上述した従来方法の欠点を解決し、小
型マイコンでも実用可能なように、(1)計算容量、演
算回数が少量で済む。(2)目標設定値の変化や外乱変
化が急激でも緩やかでも柔軟に対応できる。の2要件を
満たすPIDオートチューニング機能を有するPID制
御方法を提供することにある。An object of the present invention is to solve the above-mentioned drawbacks of the conventional method, and to make it practical even with a small microcomputer, (1) the calculation capacity and number of operations can be reduced. (2) It can flexibly respond to changes in target set values and disturbances, whether sudden or gradual. An object of the present invention is to provide a PID control method having a PID auto-tuning function that satisfies the following two requirements.
上記目的を実現するために、本発明では操作信号と制御
信号の各時系列データよりプロセスを逐次同定する同定
部に、通常の同定法を用い同定誤差の大きさを基に過去
の情報を忘れる係数(以下、忘れ係又と呼ぶ)を自動的
に算出することにより上記(2)の要件を可能にすると
ともに、上記忘れ係数を有する同定法と、制御パラメー
タ演算部に離散型PIDパラメータを算出できる])e
ad −beat型PIDパラメータ演算法(Auto
matica1980、Vol 16 PP117〜
133 を参照ノコと)を用いることにより計算の簡
易化を図り上記(1)の要件を可能にする点に特徴があ
る。In order to achieve the above object, the present invention uses a normal identification method in the identification section that sequentially identifies processes from each time series data of operation signals and control signals, and forgets past information based on the size of identification error. By automatically calculating the coefficient (hereinafter referred to as forgetting factor), the above requirement (2) is made possible, and the identification method having the above forgetting factor and the calculation of discrete PID parameters in the control parameter calculation section are used. possible])e
ad-beat type PID parameter calculation method (Auto
matica1980, Vol 16 PP117~
133) is used to simplify calculations and enable requirement (1) above.
以下、本発明の一実施例について図面を用いて説明する
。第1図は本発明を適用するPID制御装置のブロック
構成図である。制御対象は例えば鉄鋼、化学工業プラン
ト内の温度、圧力、流量などを自動制御されるように構
成されたプロセス1とする。An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of a PID control device to which the present invention is applied. The object to be controlled is, for example, a process 1 in which temperature, pressure, flow rate, etc. in a steel or chemical industrial plant are automatically controlled.
PID制御装置は第1図の6の部分であシ、次のような
構成である。制御目標γ(1)とプロセス1から出力さ
れた制御信号y(t)との偏差e(t) (e(t)=
γ(t)−y(t))を演算する演算部5と、偏差e
(t)からPID制御パラメータに従ってプロセス1に
操作信号13 (t)を発生する操作量演算部2と、制
御信号y(t)と操作信号喧1)の各時系列データよシ
プロセス1のパルス伝達関数の係数を同定する同定部3
と、同定した係数9<、>から操作量演算部2の制御パ
ラメータであるPID制御定数K c 、 ’l’ I
。The PID control device is part 6 in FIG. 1 and has the following configuration. Deviation e(t) between control target γ(1) and control signal y(t) output from process 1 (e(t)=
γ(t)−y(t)) and the deviation e
(t) to generate the operation signal 13 (t) to the process 1 according to the PID control parameters, and each time series data of the control signal y (t) and the operation signal 1) and the pulse of the process 1. Identification unit 3 that identifies coefficients of transfer function
From the identified coefficients 9<,>, the PID control constant K c , 'l' I which is the control parameter of the manipulated variable calculation unit 2
.
Tdを演算する制御パラメータ演算部4によりPID制
御装置6が構成されている。すなわちこの構成は、基本
的なフィードバック制御と、プロセスの変動に追従して
PIDパラメータを調整する要素とより成る。A PID control device 6 is configured by a control parameter calculation unit 4 that calculates Td. That is, this configuration consists of basic feedback control and elements that adjust PID parameters in accordance with process variations.
次に、上記PID制御装置6の各構成部分および動作に
ついてさらに詳細に説明する。プロセス1の制御を行う
操作量演算部2は、後述のPID制御定数Kc、 Tt
、Tdを用いて、時系列データe (t)から次のアル
ゴリズムを演算処理し、操作信号u(1)をプロセスへ
入力する。Next, each component and operation of the PID control device 6 will be explained in more detail. The manipulated variable calculation unit 2 that controls the process 1 uses PID control constants Kc and Tt, which will be described later.
, Td, the following algorithm is processed from the time series data e (t), and the operation signal u(1) is input to the process.
・・・・・・・・・(1)
u(t)=u(t−τ)+Δu(t) ・
・・・・・・・・(2)式(1)9式(2)は、周知の
速度型PIDアルゴリズムであり、KCは比例ゲイン、
TIは積分時定数、Tdは微分時定数、τはサンプル制
御周期である。・・・・・・・・・(1) u(t)=u(t-τ)+Δu(t)・
・・・・・・・・・(2) Equations (1) and 9 Equations (2) are well-known speed-type PID algorithms, where KC is a proportional gain,
TI is an integral time constant, Td is a differential time constant, and τ is a sample control period.
この操作量演算部2の動作を第2図に示す。次に、プロ
セスへの操作信号U(ト))を入力した後に得られるプ
ロセス1の出力y (k)からプロセスのパラメータを
推定する同定部3について示すが、その前に同定部がも
つプロセスのモデルについて説明する。The operation of this manipulated variable calculating section 2 is shown in FIG. Next, we will explain the identification unit 3 that estimates process parameters from the output y (k) of process 1 obtained after inputting the operation signal U (g) to the process. Explain the model.
操作信号u (t)と制御信号y (t)からプロセス
の等価モデル(パルス伝達関数)は次のようにおける。An equivalent model (pulse transfer function) of the process is obtained from the operation signal u (t) and the control signal y (t) as follows.
ここで、1次遅れ要素z−iと同等の遅れ時間はサンプ
ル制御周期τとし、dはプロセスの遅れ時間である。ま
た、同定すべき未知パラメータal。Here, the delay time equivalent to the first-order delay element zi is the sample control period τ, and d is the process delay time. Also, the unknown parameter al to be identified.
金“=〔香・、◇・、・・・、全・、を・、令・、・・
・、全・〕・・・・・・・・・(4)
同定部3の演算手順を第3図に示す。同定部3のアルゴ
リズムは通常、最小自乗法にもとづく演算と再帰演算を
おこなうもので、次のように表わすことができる。Gold “=〔Incense・、◇・、・・・、zen・、wo、、rei・、・・・
. . all .] . . . (4) The calculation procedure of the identification section 3 is shown in FIG. The algorithm of the identification unit 3 usually performs calculations based on the method of least squares and recursive calculations, and can be expressed as follows.
令(1+て)−企t)十F(t)Z(t−モτ)Cy(
t+τ)−z”(を十て)企f)]・・・・・・・・・
(5)
・・・・・・・・・(6)
ここで、F (t +r )は(n+m)x (n+m
)の適応ゲイン行列であり、Zは次式で表わされる観測
ベクトルである。Rei(1+te)-Tai t) 10F(t)Z(t-Moτ)Cy(
t + τ) - z" (plan f)]...
(5) ・・・・・・・・・(6) Here, F (t + r ) is (n+m)x (n+m
), and Z is an observation vector expressed by the following equation.
Z (t+r)=C−y(t)、−y(t−r)、・、
−y(t−nr)。Z (t+r)=C-y(t),-y(t-r),...
-y(t-nr).
u (t −d r)、 u (t−r−d r)、
・−・、 u (t−mτ−d r) )・・・・・・
・・・(7)
また、ρ(t+r)は、忘れ係数(f orgetti
ngfactor )であり、従来例では、などのよう
に選ばれている。各種の同定問題の有効性を決める重要
な因子である忘れ係数を上記のように決めては、各種プ
ロセスの動特性に十分対応できない。例えば、αが1に
近く選ばれたときに、プロセス特性が急激に変化するよ
うな場合に追従が遅れたり、逆に、αを小さい値に選ん
だとき、外乱などにより同定値のバラツキが大きくなシ
良好な同定ができないという問題があった。そこで、同
定の良し悪しに関する情報を含んでいる同定誤差ε(t
) = y(t) −Z(t)分(を−τ)に着目して
、次のように忘れ係数を自動的に調整する。その方法を
次式に示す。u (t-d r), u (t-r-d r),
・-・, u (t-mτ-d r) )...
...(7) Also, ρ(t+r) is the forgetting coefficient (forgetti
ngfactor ), and in the conventional example, it is selected as follows. If the forgetting coefficient, which is an important factor determining the effectiveness of various identification problems, is determined as described above, it cannot adequately cope with the dynamic characteristics of various processes. For example, if α is chosen close to 1, tracking may be delayed if the process characteristics change rapidly, or conversely, if α is chosen to be a small value, the variation in identified values may be large due to external disturbances, etc. However, there was a problem in that it was not possible to perform a good identification. Therefore, the identification error ε(t
)=y(t) −Z(t) (−τ), the forgetting coefficient is automatically adjusted as follows. The method is shown in the following equation.
[y(t+τ)−zT(を十τ浴(t):]20≦ρ(
t+τ)≦1 ・・・・・・・・・(8)ここで
、Σ、=(同定誤差分散の期待値)×(回帰をとる期間
の期待値)
(8)式の右辺第二項の意味は、(1+τ)時刻におい
て得られた情報量の割合を示すものであシ、従ってρ(
t+τ)は、過去の情報量をどの程度忘れずに保持する
かという割合を示している。例えば、
g(t+ τ )=[y (t + r)−ZT
(t+r)’2ゝ(重)〕が大きくなれば、(を十て)
時刻に得られた情報量は大きく、過去の情報もそれにと
もなって多く忘れる。このように忘れ係数を逐次決めれ
ば、現在得られた情報が過去の情報に比してどの程度信
頼度があるかがわかるので、柔軟性のある適応動作を実
施することが可能となる。同定されたパラメータを用い
てプロセスのパルス伝達関数を表わせば、
となる。[y(t+τ)−zT(10τ bath(t):]20≦ρ(
t+τ)≦1 (8) Here, Σ, = (expected value of identification error variance) × (expected value of regression period) The second term on the right side of equation (8) The meaning is that it indicates the ratio of the amount of information obtained at time (1+τ), so ρ(
t+τ) indicates the rate at which the amount of past information is retained without being forgotten. For example, g(t+τ)=[y(t+r)−ZT
If (t+r)'2ゝ(heavy)] becomes larger, (ten)
The amount of information obtained at any given time is large, and a large amount of past information is also forgotten. By sequentially determining the forgetting coefficient in this way, it is possible to know how reliable the currently obtained information is compared to past information, making it possible to perform flexible adaptive operations. If we express the pulse transfer function of the process using the identified parameters, we get:
次に同定した係数G(t)からPIDパラメータKe、
TI、Tdを決定する制御パラメータ演算部4について
アルゴリズムの手順を示す。Next, from the identified coefficient G(t), the PID parameter Ke,
The algorithm procedure for the control parameter calculation unit 4 that determines TI and Td will be described.
ここで 0〈r1≦1
・・・・・・・・・(12)
・・・・・・・・・(13)
qz =q6 (u”(t)−δ−) ・・・・・
・・・・(14)τ
Q+=δ−qOQ2 卯・・・・・(15)
Ke=q。Here 0〈r1≦1 ・・・・・・・・・(12) ・・・・・・・・・(13) qz = q6 (u”(t)−δ−) ・・・・・・
...(14) τ Q+=δ-qOQ2 Rabbit...(15)
Ke=q.
Td=− q。Td=- q.
以上のアルゴリズムをフローチャートにまとめて第4図
に示す。The above algorithm is summarized in a flowchart and shown in FIG.
以上説明したごとく本発明によれば、プロセスを同定す
る同定部に各種同定問題の有効性を決める重要なパラメ
ータである忘れ係数を、同定誤差を基に算出する方法を
用いることにより目標設定値の変化や外乱が急激でも緩
やかでも柔軟性のある適応動作を実施することが可能に
なるという効果がある。また、上記効果をもたらす同定
方法、およびPIDパラメータ演算部に計算の簡単な離
散型PIDパラメータを算出する方法との組み合せによ
って、ディジタルコントローラのメモリ容量や演算回数
を抑えることができるので、システム全体として、構成
の簡素化、およびそれに伴う計算機コストの低減を図る
ことが可能になるという効果がある。As explained above, according to the present invention, the forgetting coefficient, which is an important parameter that determines the effectiveness of various identification problems, is calculated in the identification unit that identifies the process based on the identification error, so that the target setting value can be adjusted. This has the effect of making it possible to perform flexible adaptive operations regardless of whether changes or disturbances are sudden or gradual. In addition, by combining the identification method that produces the above effects and the method of calculating easily-calculated discrete PID parameters in the PID parameter calculation section, it is possible to reduce the memory capacity of the digital controller and the number of calculations, so the system as a whole , it is possible to simplify the configuration and reduce the computer cost associated with it.
第1図は、本発明を適用するPID制御装置のブロック
構成図であり、第2図は、操作量演算部のフローチャー
ト、第3図は、同定部のフローチャート、第4図が制御
パラメータ演算部のフローチャートである。
1・・・プロセス、2・・・操作量演算部、3・・・同
定部、χ 1 図
Y 2 図
χ 3 図FIG. 1 is a block configuration diagram of a PID control device to which the present invention is applied, FIG. 2 is a flowchart of the manipulated variable calculation section, FIG. 3 is a flowchart of the identification section, and FIG. 4 is a control parameter calculation section. This is a flowchart. 1... Process, 2... Manipulated amount calculation section, 3... Identification section, χ 1 Figure Y 2 Figure χ 3 Figure
Claims (1)
y(1)と該プロセスの目標値信号γ(1)との偏差量
e(1)を演算する偏差量演算部と、該e (t)を演
算して上記操作量演算部に入力する制御パラメータ演算
部とを備えたPID制御装置において、上記忘れ係数は
サンプル制御周期τ毎に調整することを特徴とするPI
D制御方法。 2、時刻(t+τ)における忘れ係数ρ(を十で)は時
刻(t+τ)における同定誤差の大きさを表わす量に、
時刻tにおける忘れ係数ρ0)を含む量の重みづけをお
こなって得られた情報量によシ決定することを特徴とす
る特許請求の範囲第1項のPID制御方法。 3、忘れ係数ρ(を十τ)は(8)式により決定するこ
とを特徴とする特許請求の範囲第1項のPID制御方法
。[Claims] 1. A deviation amount calculation unit that calculates the deviation amount e(1) between the control signal y(1) output from a PID-controlled process and the target value signal γ(1) of the process; , and a control parameter calculation unit that calculates the e(t) and inputs it to the manipulated variable calculation unit, wherein the forgetting coefficient is adjusted every sample control period τ.
D control method. 2. The forgetting coefficient ρ (in 10) at time (t + τ) is a quantity representing the size of the identification error at time (t + τ),
2. The PID control method according to claim 1, wherein the PID control method is determined based on the amount of information obtained by weighting the amount including the forgetting coefficient ρ0 at time t. 3. The PID control method according to claim 1, wherein the forgetting coefficient ρ (10τ) is determined by equation (8).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1154983A JPS59139404A (en) | 1983-01-28 | 1983-01-28 | Pid control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1154983A JPS59139404A (en) | 1983-01-28 | 1983-01-28 | Pid control method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59139404A true JPS59139404A (en) | 1984-08-10 |
Family
ID=11781032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1154983A Pending JPS59139404A (en) | 1983-01-28 | 1983-01-28 | Pid control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59139404A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6280704A (en) * | 1985-10-04 | 1987-04-14 | Toshiba Corp | Adaptive control system |
JPS62143106A (en) * | 1985-12-17 | 1987-06-26 | Nishi Nippon Plant Kogyo Kk | Process control system based on computer |
JPS62210503A (en) * | 1986-03-11 | 1987-09-16 | Yamatake Honeywell Co Ltd | Unstableness and discrimination tuning system for process control |
JPS63116205A (en) * | 1986-11-05 | 1988-05-20 | Toshiba Corp | Adaptive controller |
JPS63201801A (en) * | 1987-02-18 | 1988-08-19 | Hitachi Ltd | Process identifying system |
WO1989002617A1 (en) * | 1987-09-11 | 1989-03-23 | Kabushiki Kaisha Yaskawa Denki Seisakusho | Control system that best follows periodical setpoint value |
CN104950948A (en) * | 2015-05-21 | 2015-09-30 | 淮阴工学院 | Intelligent cowshed temperature control system |
-
1983
- 1983-01-28 JP JP1154983A patent/JPS59139404A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6280704A (en) * | 1985-10-04 | 1987-04-14 | Toshiba Corp | Adaptive control system |
JPS62143106A (en) * | 1985-12-17 | 1987-06-26 | Nishi Nippon Plant Kogyo Kk | Process control system based on computer |
JPS62210503A (en) * | 1986-03-11 | 1987-09-16 | Yamatake Honeywell Co Ltd | Unstableness and discrimination tuning system for process control |
JPS63116205A (en) * | 1986-11-05 | 1988-05-20 | Toshiba Corp | Adaptive controller |
JPS63201801A (en) * | 1987-02-18 | 1988-08-19 | Hitachi Ltd | Process identifying system |
WO1989002617A1 (en) * | 1987-09-11 | 1989-03-23 | Kabushiki Kaisha Yaskawa Denki Seisakusho | Control system that best follows periodical setpoint value |
CN104950948A (en) * | 2015-05-21 | 2015-09-30 | 淮阴工学院 | Intelligent cowshed temperature control system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4641235A (en) | Process control apparatus with process dependent switching between process control modes | |
US8095227B2 (en) | Apparatuses, systems, and methods utilizing adaptive control | |
US5043863A (en) | Multivariable adaptive feedforward controller | |
EP0377678B1 (en) | Industrial control systems | |
US5153807A (en) | Self-tuning controller apparatus and process control system | |
US5057992A (en) | Method and apparatus for controlling or processing operations of varying characteristics | |
US7035695B2 (en) | Method and apparatus for tuning a PID controller | |
MXPA97008318A (en) | Feedback method for controlling non-linear processes | |
EP0845118A2 (en) | Field based process control system with auto-tuning | |
JPH0298701A (en) | Controller | |
JPH01239603A (en) | Process controller | |
KR970003872B1 (en) | Advanced pid controller | |
JPS59139404A (en) | Pid control method | |
JPH0454243B2 (en) | ||
JPH0434766B2 (en) | ||
US6959218B2 (en) | Partitioned control system and method | |
JPS62241002A (en) | Auto-tuning controller | |
JPH0250701A (en) | Adaptive control method | |
JPS60173603A (en) | Controller of servomotor | |
Nowak et al. | Practical verification of active disturbance rejection controller for the pneumatic setup | |
US6847851B1 (en) | Apparatus for improved general-purpose PID and non-PID controllers | |
JPS629405A (en) | Process controller | |
JPS62241006A (en) | Auto-tuning controller | |
Astuti et al. | Mp Tuning for Internal Model Control 2x2 Multi Input Multi Output (MIMO) System | |
JPH02273804A (en) | Parameter control method for pid controller |