JPS5913903A - Position detecting method by image pickup element - Google Patents

Position detecting method by image pickup element

Info

Publication number
JPS5913903A
JPS5913903A JP12381182A JP12381182A JPS5913903A JP S5913903 A JPS5913903 A JP S5913903A JP 12381182 A JP12381182 A JP 12381182A JP 12381182 A JP12381182 A JP 12381182A JP S5913903 A JPS5913903 A JP S5913903A
Authority
JP
Japan
Prior art keywords
binary
signal
resolution
measured
coded signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12381182A
Other languages
Japanese (ja)
Inventor
Shigeru Kondo
茂 近藤
Isamu Inoue
勇 井上
Taketoshi Yonezawa
米澤 武敏
Makoto Kosugi
誠 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12381182A priority Critical patent/JPS5913903A/en
Publication of JPS5913903A publication Critical patent/JPS5913903A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To detect an image formation position with precision more than the resolution of an element, by moving a body to be measured until the logical level of a binary-coded signal is inverted, and measuring the moved distance with resolution more than the detection resolution of the element. CONSTITUTION:The output signal (video signal) of a photodiode linear array 1 is coded by a binary coding circuit 27 into a binary signal and the binary- coded signal of the display of a specific element is read by a signal reading circuit 28 and stored in a storage circuit 29. A driving circuit 30 indicates the moved direction and extent of a driving table 26, which is moved through a pulse motor driver 31. The signal reading circuit 28 reads the binary-coded signal of the specific element display again after specific-extent driving (e.g. 0.5mum). A binary-coded signal read by a CPU32 previously and the binary-coded signal read after the driving are compared with each other to decide on a position where the logical level of the binary-coded signal is inverted. Simultaneously, the movement extent required for the inversion is counted to calculate an error value to find a real position. This method improves the detection resolution which is limited by element pitch.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光電応用計測分野における撮像索子を用いTコ
位置検出の分解能向上方法に関する。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION The present invention relates to a method for improving the resolution of T-piece position detection using an imaging probe in the field of photoelectric measurement.

従来例の構成とその問題点 光電応用計測は近年各分野において広範囲に利用されて
いる。その代表的なものに撮錬素子を用い、物体表面の
反射率の差異から位置(寸法)を計測するものがある。
Conventional configuration and its problems Photoelectric measurement has been widely used in various fields in recent years. A typical example is one that uses a photographic element to measure the position (dimensions) of an object based on the difference in reflectance on its surface.

撮像素子は光電効果を利用し、入射し1こ光の明暗に応
じて荷重し、電気量として検出するセンサーである。
The image sensor is a sensor that uses the photoelectric effect to apply a load according to the brightness of incident light and detect it as an amount of electricity.

との撮像素子を応用しfコ例として、直線的に撮像素子
を複数個配置しTこフォトダイオードリニアアレイがあ
る。第1図(a)に示すように、フォトダイオードリニ
アアレイ(1)は素子(フォトダイオード5(2)間隔
28μm、素子数512個のものが、現在実用化されて
いる。被測定物の反射率の差異によって生じる明暗の像
(明部(3)、暗部(4)〕を光学レンズを用い、フォ
トダイオードリニアアレイ(1)に結像゛すれば、個々
の素子(2)は第1図(b)のような入射した光の光量
に応じ1こ出力信号(δ)(映像信号)を発生する。こ
の出力信号(5)を所定のしきい値(6)にて2値化し
、第1図(c)のような2値化信@−(7)を得る。こ
の2値化信号(7)にて、たとえば被測定物の暗部(4
)の位置、幅を計測することができる。詳しくは、2値
化信号(7)の論理反転位置(8)を示す素子(Tこと
えばb LOWレベルを示す素子(9))にて知ること
ができる。ま1こ幅は同論理を示す素子数によって計測
することができる。
An example of an application of the image pickup device is a photodiode linear array in which a plurality of image pickup devices are arranged in a straight line. As shown in Fig. 1(a), a photodiode linear array (1) with 512 elements (photodiodes 5 (2) spaced at intervals of 28 μm and 512 elements) is currently in practical use. If the bright and dark images (bright area (3), dark area (4)) caused by the difference in ratio are focused on the photodiode linear array (1) using an optical lens, the individual elements (2) will be as shown in Figure 1. One output signal (δ) (video signal) is generated according to the amount of incident light as shown in (b).This output signal (5) is binarized using a predetermined threshold value (6), and the A binary signal @-(7) as shown in Figure 1(c) is obtained.In this binary signal (7), for example, the dark part (4) of the object to be measured is detected.
) position and width can be measured. The details can be known from the element (T, for example, the element (9) indicating the b LOW level) indicating the logical inversion position (8) of the binary signal (7). The width can be measured by the number of elements that exhibit the same logic.

第2図はフォトダイオードリニアアレイを用い1こ従来
の実施例を示す。フォトダイオードリニアアレイ(1)
と被測定物0qとの間に光学レンズαめを位置させ、被
測定物OQの像をフォトダイオードリニアアレイ(1)
に結像させている。フォトダイオードリニアアレイ(1
)に結像された像は先に述べた手順にて所定の計測がな
される。03は2値化変換回路、@は信号読み出し回路
、α→はCPU%(へ)は表示部である。
FIG. 2 shows one conventional embodiment using a photodiode linear array. Photodiode linear array (1)
An optical lens α is positioned between the object to be measured OQ and the image of the object to be measured OQ to the photodiode linear array (1).
It forms an image. Photodiode linear array (1
) is subjected to predetermined measurements using the procedure described above. 03 is a binarization conversion circuit, @ is a signal readout circuit, α→ is a CPU% (to) is a display section.

この場合の被測定物Q1は、光学的にほぼ透過な基板上
に所定の反射率を有しTコ薄膜を形成したものである。
The object to be measured Q1 in this case is a thin film having a predetermined reflectance formed on a substantially optically transparent substrate.

具体的には、フォトマスク、色フィルタ等のパターンエ
ッヂ位置、パターン幅の計測である。現在実用化されて
いる製画の検出分解能は、先に述べ1こ素子間隔28μ
m5素子数512個のフォトダイオードリニアアレイと
光学レンズを組み合わせた結果、約5μmである。
Specifically, it measures the pattern edge position and pattern width of a photomask, color filter, etc. As mentioned earlier, the detection resolution of the currently put into practical use is 28μ per element spacing.
The result of combining a photodiode linear array with 512 m5 elements and an optical lens is about 5 μm.

この検出分解能は素子l!l隔によって決定される。This detection resolution is the element l! determined by the l interval.

これを第8図を用いて説明する。被測定物録の明部(3
)と暗部(4)の境界部が一素子内に製置し1こ場合、
その素子よシ得られる出力信号a・は明部(3)を示す
白レベルと暗部(4)を示す黒レベルの中間レベルに生
じる。このTこめ白レベルと黒レベル間のどのレベルに
しきい値αカを設定しても得られる2値化信号(至)は
素子間隔単位でしか検出できない。つまシ明暗の境界が
一素子内に存在した場合、素子間隔以内の誤差がかなら
ず生じる。
This will be explained using FIG. Bright part of the record of objects to be measured (3
) and the dark area (4) are placed in one element,
The output signal a obtained by the element is generated at an intermediate level between the white level indicating the bright area (3) and the black level indicating the dark area (4). No matter which level the threshold value α is set between the white level and the black level, the resulting binary signal (total) can only be detected in units of element intervals. If a boundary between bright and dark edges exists within one element, an error within the element interval will inevitably occur.

通常のフォトマスク、色フィルタ等の計測において、検
出分解能が5μmでは問題を生じる。これは、現在、検
出分解能として0,6μnl  もしくは1μm程度が
要求されているからである。この分解能向上対策として
、まず考えられるのは、光学倍率を高くすることである
。光学倍率を拡大するにはおのずと限界があり、作業性
の点でも問題を生じる。
In the measurement of ordinary photomasks, color filters, etc., problems arise when the detection resolution is 5 μm. This is because a detection resolution of about 0.6 .mu.nl or 1 .mu.m is currently required. The first possible measure to improve this resolution is to increase the optical magnification. There is a natural limit to increasing optical magnification, which also poses problems in terms of workability.

つまり、作動距離(W、D)、焦点深度が浅くなり、実
用面で問題が多い。従ってフォトダイオードリニアアレ
イの長所である長作動距離、深い焦に 点深度をそこなわす、検出分解能を向上させることが望
まれている。
In other words, the working distance (W, D) and depth of focus become shallow, which causes many practical problems. Therefore, it is desired to improve the detection resolution by reducing the depth of focus due to the long working distance and deep focus, which are the advantages of the photodiode linear array.

そこで、光学レンズ倍率によって制限される条件を現実
的で実用的なものとしr、=場合、検出分解能を向上さ
せる方法としてフォトダイオードリニアアレイの素子間
隔を小さくすることが考えられる。ま1こ、素子間隔が
小さいことがフォトダイオードリニアアレイの特徴とな
っている。しかし、現状の素子間隔は28声 であシ、
それ以下のものを安定に製作することは現状の半導体技
術ではむずかしい。
Therefore, if the conditions limited by the optical lens magnification are realistic and practical, and r = , then one possible way to improve the detection resolution is to reduce the element spacing of the photodiode linear array. First, a feature of the photodiode linear array is that the element spacing is small. However, the current element spacing is 28 voices.
It is difficult to stably manufacture anything smaller than this with current semiconductor technology.

発明の目的 本発明は、撮像素子を用いた位[1(寸法)検出におい
て、素子間隔によって制限される検出分解能以上の分解
能を得ることのできる検出方法を目的とするものである
OBJECTS OF THE INVENTION The object of the present invention is to provide a detection method that can obtain a resolution higher than the detection resolution limited by the element spacing in 1 (dimension) detection using an image sensor.

発明の構成 上記目的を達成する1こめに、本発明は、光電効果によ
り出力信号に差異を生じる複数の受光素子から成る撮像
素子集合体に被測定物の像を結像させ、前記撮像素子集
合体を構成する各素子の出力信号を2(Ill化信号に
変換し、 High  レベルとLowレベルの境界位
置を検出する方法において、前記2値化信号の境界を構
成する2個の素子のいずれか一方が、2値化信号の論理
が反転するまで被測定物を前記撮像素子集合体の走査方
向に対して正もしくは負の方向に移動させ、その移動距
離を一素子の検出分解能以上の分解能で測長し、反転ま
で装した移動距離から、被測定物の素子上の結像位置を
検出するものであシ、これによシ結像位置を素子の分解
能以上の精度で検出できるに至っ1こものである。
Structure of the Invention In order to achieve the above-mentioned objects, the present invention forms an image of an object to be measured on an image sensor assembly made up of a plurality of light receiving elements that produce differences in output signals due to the photoelectric effect. In a method of converting an output signal of each element constituting a binary signal into a 2 (Ill) signal and detecting a boundary position between a High level and a Low level, either of the two elements constituting the boundary of the binary signal On one side, the object to be measured is moved in the positive or negative direction with respect to the scanning direction of the image sensor assembly until the logic of the binary signal is reversed, and the moving distance is set at a resolution higher than the detection resolution of one element. It measures the length and detects the image formation position on the element of the object to be measured from the moving distance until reversal.This has made it possible to detect the image formation position with an accuracy higher than the resolution of the element. It's a small thing.

実施例の説明 以下本発明の実施例を図面に基づいて説明する。Description of examples Embodiments of the present invention will be described below based on the drawings.

先づ第4図によシその原理を説明する。第4図G)のよ
うに、被測定物の明部(3)と暗部(4)の境界部が−
素子内に位置し1こ場合、第4図tb)のようにその素
子よV得られる出カ信ぢαりは白レベルと黒レベルのm
lに生じる。この出力信号を第4図(C)のように黒レ
ベルに近いレベルのしきい仙(ホ)にて2 値化し、2
値化信号■υを得る。ここで黒レベル側にて2値化しT
コのは、黒レベルの方が安定しているからであシ、白レ
ベルは照明の状態被測定物表面状態の差異による変動を
生じゃ寸いγこめである。
First, the principle will be explained with reference to FIG. As shown in Figure 4G), the boundary between the bright part (3) and dark part (4) of the object to be measured is -
In this case, as shown in Figure 4tb), the output signal V obtained from that element is determined by m of the white level and black level.
occurs in l. This output signal is binarized at a threshold (E) at a level close to the black level as shown in Fig. 4 (C), and
Obtain the valued signal ■υ. Here, binarize on the black level side and T
This is because the black level is more stable, and the white level must be adjusted to avoid fluctuations due to differences in illumination and surface conditions of the object to be measured.

2値化信号Qυの境界部を構成する2個の素子(イ)(
イ)のいずれか一方、Tコとえば素子(イ)に注目する
Two elements (a) that constitute the boundary of the binarized signal Qυ (
Focus on one of (a), such as the element (a).

累子銑によって検出され1こ位置は、真の境界部(ハ)
に対してXの誤差をもって表示される。この状態にて素
子に)の2値化信号をメモリしておく。つまり従来と同
様の計測を行い、2(liiI化信月がHighレベル
なのかり、owレベルなのかをメモリする。ここで素子
に)の選定しTこ理由は、黒レベル側にて2値化すれば
誤差を有し1こ素子はかならずHigh  レベルを示
すTこめである。このことにより黒レベル側で2値化し
tコ場合、High  レベルを示す素子に注目する。
The first position detected by the cylindrical iron is the true boundary (c)
is displayed with an error of X. In this state, the binary signal of ) is stored in memory in the element. In other words, perform the same measurement as before, and select 2 (memorize whether the III conversion signal is High level or OW level.Here, it is the element).The reason for this is that the black level side is binarized. Then, there is an error and one element always shows a high level. As a result, when the black level side is binarized, attention is paid to the element showing the High level.

さらにメモリする2値化信号もかならずHlgh  レ
ベルとなる。白レベル側にて2値化し舎 t、:場iよこの逆である。
Furthermore, the binary signal to be stored is always at the Hlgh level. It is binarized on the white level side, and the opposite is true.

次に、被測定物を第4図(a)に示すようにA方向に所
定ピッチ(1ことえば0.5μm )移動させる。被測
定物の移動方向は、しきい値翰を黒レベル側か白レベル
側のいずれかに設定しTコか、2値化信号がHigh 
 からLow % LowからHigh  に便化して
いるかによってフォトダイオードリニアアレイ(1)の
走査方向に対して正もしくは負の方向のいずれかを与え
ることができる。移動手段としては公知のパルスモータ
駆動を用いる。現状のパルスモータ駆動では05− の
送りは容易に実現できる。副長手段としては、発生パル
ス数をカウントすることでよい。ま1こ、リニアスケー
ルを併用して連続移動させてもよい。
Next, the object to be measured is moved in the A direction by a predetermined pitch (for example, 0.5 μm) as shown in FIG. 4(a). The direction of movement of the object to be measured is determined by setting the threshold value to either the black level side or the white level side, or by setting the binarized signal to High.
It is possible to give either a positive or negative direction to the scanning direction of the photodiode linear array (1) depending on whether it is converted from Low to High. A known pulse motor drive is used as the moving means. With the current pulse motor drive, 05- feed can be easily achieved. As the sub-length means, it is sufficient to count the number of generated pulses. Alternatively, a linear scale may be used in combination for continuous movement.

その状態にて素子(イ)の2値化信号レベルを観察し、
先にメモリしtこ2値化信号レベルと比較する。
In that state, observe the binary signal level of the element (a),
First, it is stored in memory and compared with the binary signal level.

この移動と比較を繰シ返し、初期の2値化信号の論理と
異なる2値化信号を得る。第4図では、Hlgh  レ
ベルからLowレベルに反転する。2値化信号の論理が
反転しTコ位置にて被測定物の移動を停止し、移動量の
和をカウントする。つま)、被測定物像の明暗の境界が
素子に)と素子(ハ)の中立位置に移動しTこことを示
す。
This movement and comparison is repeated to obtain a binary signal that differs in logic from the initial binary signal. In FIG. 4, the high level is inverted to the low level. The logic of the binary signal is reversed, the movement of the object to be measured is stopped at the T position, and the sum of the movement amounts is counted. (T), the boundary between brightness and darkness of the image of the object to be measured moves to the neutral position of the element (C) and (C), as shown here.

これにより2値化信号の論理反転まで要しTコ移動My
と一素子検出分解能2が明確であれば、被測定物の明暗
の境界は算出することができる。この場合、移動方向が
負である1こめ誤差値XはX−ろ z−y  によって得られる。正の方向に移動5条件で
あれば、誤差値Xはx=yとなる。従って先に述べTコ
2値化信号境界部を示す素子に)によって計測されfコ
値より誤差値を除いてやれば真の境界位置(ハ)が求め
られる。
As a result, it is necessary to invert the logic of the binary signal, and the T movement My
If the one-element detection resolution 2 is clear, the boundary between brightness and darkness of the object to be measured can be calculated. In this case, the one-shot error value X whose movement direction is negative is obtained by X-roz-y. If there are 5 conditions for movement in the positive direction, the error value X will be x=y. Therefore, by subtracting the error value from the f value measured by the element indicating the boundary of the binary signal (T) described above, the true boundary position (c) can be found.

1こだし、先に設ボしr、=しきい値(ホ)とこの場合
の黒レベルのレベル差による誤差は生じる。この1こめ
、しきい値(イ)はできるだけ黒レベルに近づけておく
必要がある。
1, an error occurs due to the level difference between the previously set threshold value (e) and the black level in this case. In this first step, the threshold value (A) must be kept as close to the black level as possible.

以上の結果、素子間隔の影普を受けることなく、高精度
の位置、寸法の計測が可能になっ1こ。
As a result of the above, it is now possible to measure positions and dimensions with high precision without being affected by the element spacing.

本発明による一実施例を第6図に示す。被測定物θQは
駆動テーブル(ハ)上に保持されている。被測定物OQ
とフ第1・ダイオードリニアアレイ(1)との間に光学
レンズ(+])が位置し、被測定物00の像をフォトダ
イオードリニアアレイ(1)に結像させている。
An embodiment according to the present invention is shown in FIG. The object to be measured θQ is held on a drive table (c). Measured object OQ
An optical lens (+) is located between the photodiode linear array (1) and the first diode linear array (1), and forms an image of the object to be measured 00 on the photodiode linear array (1).

フォトタイオードリニアアレイ(1)から得られfこの
2値化信号が読み取られ、記憶回路に)にその信号がメ
モリされる。駆動回路(至)は駆動テーブルに)の移動
方向と移動量を指示し、パルスモータドライバー0υを
介して駆動テーブルに)を移動させる。
This binary signal obtained from the photodiode linear array (1) is read and stored in a storage circuit. The drive circuit (to) instructs the drive table to move in the direction and amount of movement, and causes the drive table to move via the pulse motor driver 0υ.

一定量(たとえば0.5μm )駆動後、信号読み取9
回路(ハ)にて再び所定素子表示の2値化信号を読み取
る。そしてCPU 働にて先に読み取っtこ2値化信号
と脈動後読み取った2値化信号を比較し、2値化信号の
論理が反転しr、=位置を判定する。同時に反転に要し
た移動量をカウントし、誤差値を算出し真の位置を求め
る。(至)は表示部を示す。
After driving by a certain amount (for example, 0.5 μm), read the signal 9
The circuit (c) reads the binary signal of the predetermined element display again. Then, the CPU compares the previously read binary signal with the binary signal read after pulsation, and the logic of the binary signal is inverted to determine the position. At the same time, the amount of movement required for reversal is counted, the error value is calculated, and the true position is determined. (to) indicates the display section.

発明の効果 以上本発明によれば、容易に索子ピッチによって制限さ
れる検出分解能を向上させることができる。従って光学
レンズ倍率によって制限される条件(作動距除、黒点保
圧)を現実的で天川的なもの のとし、検出力解能を所望バのとすることができる大き
な効果を得ることができる。
Effects of the Invention According to the present invention, it is possible to easily improve the detection resolution which is limited by the strand pitch. Therefore, the conditions limited by the optical lens magnification (working distance exclusion, sunspot holding pressure) can be made realistic, and the great effect of making the detection power and resolution as desired can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のフォトタイオードリニアアレイの計測J
IJ、理を示す図、第2図は従来の一実施例を示す構成
図、第8図は従来のフォトタイオードリニアアレイによ
る計測の間顕点を説明する図、第4図は本発明による計
測の原理を示す図、第5図は本発明によるフォトダイオ
ードリニアアレイへの応用例を示す構成図である。 (])・・・フォトダイオードリニアアレイ、(3)・
・・明部、(4)・・・11d部、01・・・明部と暗
部の境界部が一素子内に位lit L f:ときの該素
子により得られる出力信号、(ホ)・・・しきい値、Q
])・・・2値化信号、@(ホ)(ハ)・・・受光索子
、@・・・境界部、■・・・被測定物を所定ピッチで移
動させる方向 代理人 森本義弘 第1図 − 第2図 第3図 第4図 ″・勺− 第5図
Figure 1 shows conventional photodiode linear array measurement.
FIG. 2 is a configuration diagram showing a conventional example; FIG. 8 is a diagram illustrating the focal point during measurement using a conventional photodiode linear array; FIG. 4 is a diagram showing the present invention FIG. 5, which is a diagram showing the principle of measurement, is a configuration diagram showing an example of application to a photodiode linear array according to the present invention. (])...Photodiode linear array, (3)...
...Bright part, (4)...11d part, 01...Boundary part between bright part and dark part is located within one element lit L f: Output signal obtained by the element when, (e)...・Threshold value, Q
])...Binarized signal, @(E)(C)...Light receiving probe, @...Boundary part, ■...Direction agent for moving the object to be measured at a predetermined pitch Yoshihiro Morimoto Figure 1 - Figure 2 Figure 3 Figure 4''・Figure 5

Claims (1)

【特許請求の範囲】 1、 光電効果により出力は号に差異を生じる複数の受
光素子から成る撮像素子集合体に被測定物の像を結像さ
せ、前記撮像素子集合体を構成する各素子の出力信号を
2値化信号に変換し、Hi gh  レベルとLowレ
ベルの境界位置を検出する方法において、前記2値化信
号の境界を構成する2個の素子のいずれか一方が、2値
化信号の論理が反転するまで被測定物を前記撮像素子集
合体の走査方向に対して正もしくは負の方向に移動させ
その移動距離を一素子の検出分解能以上の分解能で測長
し、反転まで要した移動距離から、被測定物の素子上の
結像位置を素子のと 分解能以上の精度で検出するこ似特徴とする撮像素子に
よる位置検出方法。
[Claims] 1. An image of an object to be measured is formed on an image sensor assembly consisting of a plurality of light receiving elements whose outputs differ depending on the number due to the photoelectric effect, and the image of each element constituting the image sensor assembly is In a method of converting an output signal into a binary signal and detecting a boundary position between a high level and a low level, either one of two elements constituting the boundary of the binary signal converts the output signal into a binary signal. The object to be measured is moved in the positive or negative direction with respect to the scanning direction of the image sensor assembly until the logic is reversed, and the distance of movement is measured with a resolution higher than the detection resolution of one element, and the time required until the logic is reversed. A position detection method using an image sensor having a similar feature, which detects the imaging position on the element of the object to be measured from the moving distance with an accuracy higher than the resolution of the element.
JP12381182A 1982-07-15 1982-07-15 Position detecting method by image pickup element Pending JPS5913903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12381182A JPS5913903A (en) 1982-07-15 1982-07-15 Position detecting method by image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12381182A JPS5913903A (en) 1982-07-15 1982-07-15 Position detecting method by image pickup element

Publications (1)

Publication Number Publication Date
JPS5913903A true JPS5913903A (en) 1984-01-24

Family

ID=14869917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12381182A Pending JPS5913903A (en) 1982-07-15 1982-07-15 Position detecting method by image pickup element

Country Status (1)

Country Link
JP (1) JPS5913903A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028040A (en) * 1988-03-22 1990-01-11 Agfa Gevaert Nv Sheet or web carrying antistatic layer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53109658A (en) * 1977-03-07 1978-09-25 Toshiba Corp Measuring method of objects

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53109658A (en) * 1977-03-07 1978-09-25 Toshiba Corp Measuring method of objects

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028040A (en) * 1988-03-22 1990-01-11 Agfa Gevaert Nv Sheet or web carrying antistatic layer

Similar Documents

Publication Publication Date Title
US20060293865A1 (en) Method and apparatus for direct image pick-up of granular speck pattern generated by reflecting light of laser beam
Hamilton et al. Surface profile measurement using the confocal microscope
CN101629803A (en) Automatic counting system and counting method of interference ring
US5003615A (en) Optoelectronic system for determining surface irregularities of a workpiece having a nominally plane reflective surface
US4641964A (en) Apparatus for measuring optical characteristics of optical systems
US4586786A (en) Area beam type splitter
JPS5913903A (en) Position detecting method by image pickup element
US6321604B1 (en) Electro-optical float position indicator
CN2398613Y (en) Photoelectric auto-collimation instrument
JPH0973506A (en) Bar code reader and image sensor used for the same
JPS57184918A (en) Measurement of fine displacement
US5706081A (en) Apparatus for inspecting surface defects with regularly reflected light and peripherally scattered light
CN2279604Y (en) Photoelectric on-line detecting sensor for strength of fluid
CN108317961A (en) Electronic fine-grained technology high-precision optical micrometer based on equivalent area method
SU1054680A1 (en) Method of gauging linear dimensions of opaque objects
Alsayed et al. Development of a hybrid ultrasonic and optical sensing for precision linear displacement measurement
JPS59109813A (en) Measuring device of optical displacement
JPS62291511A (en) Distance measuring apparatus
JP2765285B2 (en) Displacement gauge
Stayte Inspection using a line-scanning camera
JPS5620386A (en) Magnification detecting system of optical reader
Yoshizawa et al. Displacement measurement by the detection of contrast variation of a projected pattern
Wang et al. Real-time signal processing system for noncontact measurement of liquid-level position
CN102022981A (en) Peak-valley motion detection method and device for measuring sub-pixel displacement
JPS59184310A (en) Focusing method of lens