JPS59138990A - Loss-of-coolant accident detecting logic - Google Patents

Loss-of-coolant accident detecting logic

Info

Publication number
JPS59138990A
JPS59138990A JP58012808A JP1280883A JPS59138990A JP S59138990 A JPS59138990 A JP S59138990A JP 58012808 A JP58012808 A JP 58012808A JP 1280883 A JP1280883 A JP 1280883A JP S59138990 A JPS59138990 A JP S59138990A
Authority
JP
Japan
Prior art keywords
loss
coolant
accident
dry well
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58012808A
Other languages
Japanese (ja)
Inventor
山成 省三
享 高橋
公三明 守屋
久保田 龍治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP58012808A priority Critical patent/JPS59138990A/en
Publication of JPS59138990A publication Critical patent/JPS59138990A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子炉の冷却材喪失事故検出方法に係り、特
に原子炉の異常時においてLOCAであるか否かをドラ
イウェル圧力、及び温度により判断しf、OCA以外で
はアラーム信号、LOCA時にはスクラム信号を出すも
のである。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a method for detecting a loss of coolant accident in a nuclear reactor, and in particular, a method for detecting a loss of coolant accident in a nuclear reactor, using dry well pressure and temperature to determine whether or not a LOCA is occurring at the time of an abnormality in a nuclear reactor. It makes a judgment and issues an alarm signal if it is not OCA, and a scram signal if it is LOCA.

〔従来技術〕[Prior art]

従来の沸騰水型原子炉の冷却材喪失事故検出方法を第1
図に示す。
The first method for detecting loss of coolant accidents in conventional boiling water reactors
As shown in the figure.

沸騰水型原子炉において冷却材喪失事故を想定すると破
断口から放出される冷却材によ多原子炉水位は低下(、
ドライウェル圧力・温度は上昇する。
Assuming a loss of coolant accident in a boiling water reactor, the water level in multiple reactors will drop due to the coolant released from the fracture.
Drywell pressure and temperature rise.

かかる事象において公知例では原子炉水位低またはドラ
イウェル圧力高によシ冷却材喪失事故を検出して原子炉
スクラム、原子炉隔離、及びECC8のスタンバイをさ
せ不よりになっている。
In such an event, a known example detects a loss of coolant accident due to low reactor water level or high dry well pressure, and causes reactor scram, reactor isolation, and standby of ECC 8 to be disabled.

公知例では原子炉水位低とドライウェル圧力高のOR回
路でスクラム信号が出されるため冷却材喪失事故以外の
ドライウェル圧力上昇、例えばN2注大系の誤作動、エ
アオペからの非凝縮性ガスの漏洩によるドライウェル圧
力上昇などによっても原子炉スクラム、原子炉隔離+’
ECC5スタンバイがなされる。
In the known example, a scram signal is issued by the OR circuit of low reactor water level and high dry well pressure, so dry well pressure increases other than coolant loss accidents, such as malfunction of N2 injection system, non-condensable gas from air operation, etc. Reactor scram and reactor isolation +' caused by increased dry well pressure due to leakage, etc.
ECC5 standby is performed.

これによりECC8によって炉心内にプール水が注入さ
れてしまり可能性が大きく、運転員も冷却材喪失事故時
の非常時運転操作に−入り、単なるN。
As a result, there is a high possibility that pool water will be injected into the core by ECC8, and the operators will also enter into emergency operation in the event of a loss of coolant accident, resulting in a simple N.

注入系の故障と判断されるまで不用意な操作を強いられ
る。
They are forced to perform careless operations until it is determined that the injection system has malfunctioned.

さらに、不必要な操作のために単なる原子炉停止冷却を
変な方向に進ませてしまり恐れもある。
Furthermore, there is a risk that unnecessary operations may cause simple reactor shutdown cooling to proceed in the wrong direction.

〔発明の目的〕[Purpose of the invention]

本発明の目的はドライウェル圧力高の原因が非凝縮性ガ
ス(N、)の漏洩等によるものか、冷却材喪失事故によ
るものかを安易に判断して不必要なスクラム信号を回避
し、これによりECC8作動による炉心内へのプール水
注入を回避し、また、オペレータに不用意な混乱を与え
ない冷却材喪失事故検出法を提供することにある。
The purpose of the present invention is to easily determine whether the cause of high dry well pressure is due to a leak of non-condensable gas (N,) or a coolant loss accident, and to avoid unnecessary scram signals. The object of the present invention is to provide a method for detecting a loss of coolant accident that avoids injection of pool water into the reactor core due to ECC8 operation and does not cause unnecessary confusion to operators.

〔発明の概要〕[Summary of the invention]

本発明は冷却材喪失事故時のドライウェル圧力高とドラ
イウェル温度高をAND回路としてスクラム信号が出る
ようにし、冷却材喪失事故以外のドライウェル圧力高に
よる原子炉スクラムを回避し、オペレータに不用意な混
乱を与えないLうにしたものである。
The present invention generates a scram signal by using an AND circuit with the high dry well pressure and high dry well temperature at the time of a loss of coolant accident, thereby avoiding a reactor scram due to high dry well pressure other than a loss of coolant accident, and causing no inconvenience to the operator. It was designed to avoid unnecessary confusion.

〔発明の実施例〕 以下、本発明の一実施例を第2図によシ説明する。[Embodiments of the invention] An embodiment of the present invention will be described below with reference to FIG.

本実施例では、ドライウェル内に冷却材喪失事故検出用
圧力センサとAND回路で組へ合わされた冷却材喪失事
故検出用温度センサーを設置する。
In this embodiment, a pressure sensor for detecting a coolant loss accident and a temperature sensor for detecting a coolant loss accident combined with an AND circuit are installed in the dry well.

冷却材喪失事故時には高温高圧の原子炉−次系がドライ
ウェル内にブローダウンするのでドライウェル内の圧力
、及び温度示上昇し、圧力及び温度高によって冷却材喪
失事故を検出する。(原子炉水位の低下によって検出さ
れる。) 冷却材喪失事故以外のドライウェル圧力高ではドライウ
ェル温度の上昇、yX子炉水位の低下はないので冷却材
喪失事故は検出されず、ドライウェル圧力高のアラーム
信号が出される。
In the event of a loss of coolant accident, the high-temperature, high-pressure reactor-subsystem blows down into the dry well, resulting in a rise in pressure and temperature within the dry well, and the loss of coolant accident is detected based on the high pressure and temperature. (It is detected by a drop in the reactor water level.) If the dry well pressure is high other than a loss of coolant accident, there is no rise in the dry well temperature or a drop in the yX sub-reactor water level, so a loss of coolant accident is not detected and the dry well pressure A high alarm signal is issued.

ドライウェル圧力高の原因が非凝縮性カス(Ntンの漏
洩等によるものか、冷却材喪失事故によるものかを安易
に判断して不必要なスクラム信号、これによるECC8
作動による炉心内へのプール水注入、7jベレータへの
不用意な混乱を回避できる。
It is easy to judge whether the cause of high dry well pressure is due to non-condensable gas (Nt leakage, etc.) or a loss of coolant accident, resulting in unnecessary scram signals and ECC8.
Injection of pool water into the reactor core due to activation and inadvertent disruption to the 7J Bellator can be avoided.

〔発明の効果〕〔Effect of the invention〕

本発明に工れば、ドライウェル圧力高の原因が非凝縮性
カス(N、)の漏洩等によるものか、冷却材喪失事故に
よるものかを安易に判断して不必要なスクラム信号、こ
れによるECC8作動による炉心内へのブール水注入、
オペレータへの不用意な混乱を回避する効果がある。
With the present invention, it is possible to easily determine whether the cause of high dry well pressure is due to leakage of non-condensable gas (N,) or due to a coolant loss accident, and eliminate unnecessary scram signals. Boule water injection into the core by ECC8 activation,
This has the effect of avoiding unnecessary confusion for operators.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の原子炉水位低及びドライウェル圧力高に
よる冷却材喪失事故検出法の説明図、第2図は本発明の
一実施例の原子炉水位低及びト°ジイクエル圧力高にド
ライウェル温度高をAND回路で組み合わせた冷却材喪
失事故検出法の説明図である。 −55(
Fig. 1 is an explanatory diagram of the conventional coolant loss accident detection method due to low reactor water level and high dry well pressure, and Fig. 2 is an explanatory diagram of the conventional coolant loss accident detection method due to low reactor water level and high dry well pressure. FIG. 3 is an explanatory diagram of a method for detecting a coolant loss accident by combining high temperatures with an AND circuit. -55(

Claims (1)

【特許請求の範囲】[Claims] 1、原子炉発電設備の1’、OCA (冷却材喪失事故
)信号検出ロジックにおいて圧力高信号と温度高信号を
AND回路で組み合わせLOCA時の圧力高信号とLO
CA以外の圧力高信号を区別できる事を特徴とする冷却
材喪失事故検出ロジック。
1. In the OCA (loss of coolant accident) signal detection logic of the reactor power generation equipment, the high pressure signal and the high temperature signal are combined with an AND circuit, and the high pressure signal and LO during LOCA are combined.
Coolant loss accident detection logic that is characterized by being able to distinguish high pressure signals other than CA.
JP58012808A 1983-01-31 1983-01-31 Loss-of-coolant accident detecting logic Pending JPS59138990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58012808A JPS59138990A (en) 1983-01-31 1983-01-31 Loss-of-coolant accident detecting logic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58012808A JPS59138990A (en) 1983-01-31 1983-01-31 Loss-of-coolant accident detecting logic

Publications (1)

Publication Number Publication Date
JPS59138990A true JPS59138990A (en) 1984-08-09

Family

ID=11815684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58012808A Pending JPS59138990A (en) 1983-01-31 1983-01-31 Loss-of-coolant accident detecting logic

Country Status (1)

Country Link
JP (1) JPS59138990A (en)

Similar Documents

Publication Publication Date Title
US4584165A (en) Redundant reactivity control system
KR910007050B1 (en) Pulsed multichannel protection system with saturable core magnetic logic units
CN105469840B (en) Cooling means, device and the system of one loop of nuclear power station coolant loss accident
JPS59138990A (en) Loss-of-coolant accident detecting logic
Li et al. One implementation of vented low pressure containment for HTR
Cummings Operator/instrumentation interactions during the Three Mile Island incident
JP2927629B2 (en) Nuclear power plant accident management support system
JPH05256978A (en) Nuclear reactor protection device
JPS61170696A (en) Nuclear-reactor feedwater pump trip device
RU2017242C1 (en) Nuclear reactor
JPH02176597A (en) Fast breeder neutron flux detecting device
JPS60152989A (en) Nuclear instrumentation device for nuclear reactor
JPS59107294A (en) Reactor monitoring device
JPH0715514B2 (en) Reactor emergency stop device
US20120263266A1 (en) Method and device for detecting the drop of a cluster in a nuclear reactor
JPS61191995A (en) Containment facility for nuclear reactor
GB917937A (en) Improvements in or relating to methods of testing applicable to the control of nuclear reactors
Phung et al. Severity, causes and frequencies of pressure vessel thermal shock at US pressurized water reactors (1963–1981)
Xiaochuan et al. The research of startup signal design and operating characteristic for passive containment heat removal system
de Lima et al. Block Diagram Proposal of Protection System for a PWR Nuclear Power Plant
JPS63196897A (en) Nuclear-reactor protective device for boiling water type reactor
JPH0498190A (en) Neutron measuring device
JPS6076690A (en) Detector for fixing of opening of relief valve
JPS6252496A (en) Method and device for measuring neutron in nuclear reactor
JPS62266498A (en) Nuclear-reactor erroneous scram avoidance system