JPS5913897A - Heat exchanger - Google Patents
Heat exchangerInfo
- Publication number
- JPS5913897A JPS5913897A JP12205282A JP12205282A JPS5913897A JP S5913897 A JPS5913897 A JP S5913897A JP 12205282 A JP12205282 A JP 12205282A JP 12205282 A JP12205282 A JP 12205282A JP S5913897 A JPS5913897 A JP S5913897A
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- heat exchanger
- heat
- liquid film
- inclined plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28B—STEAM OR VAPOUR CONDENSERS
- F28B9/00—Auxiliary systems, arrangements, or devices
- F28B9/08—Auxiliary systems, arrangements, or devices for collecting and removing condensate
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は熱交換器に係り、特に−次媒体が凝縮性ガスで
あり、かつ、伝熱表面でガスが凝縮し熱交換するに好適
な凝縮式熱交換器に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat exchanger, and more particularly to a condensing type heat exchanger in which the secondary medium is a condensable gas and which is suitable for condensing gas on a heat transfer surface and exchanging heat.
凝縮式熱交換器においては、その熱交換効率が主として
一次媒体であるガスの凝縮によって形成される伝熱面上
の液膜厚さに依存するため、従来の熱交換器は伝熱面上
の液膜厚さを薄くし熱交換効率を向上するためにその多
くが伝熱管を水平設置している。伝熱管を水平設置する
と設置面積が大きくなるため設置1面積上の制約、及び
−次媒体である凝縮ガス供給源の制約がある場合、イバ
熱管を垂直もしくは傾斜して設置する必要が生じる。In a condensing heat exchanger, the heat exchange efficiency mainly depends on the thickness of the liquid film on the heat transfer surface formed by condensation of gas, which is the primary medium. In order to reduce the thickness of the liquid film and improve heat exchange efficiency, most heat transfer tubes are installed horizontally. If the heat exchanger tubes are installed horizontally, the installation area becomes large, so if there are restrictions on the installation area and restrictions on the condensed gas supply source, which is the secondary medium, it is necessary to install the heat exchanger tubes vertically or at an angle.
しかし、この場合、伝熱面上の液膜厚さが厚くなり熱交
換効率が低下するため伝All向積を広くする必要があ
り熱交換器が大型化する欠点があった。However, in this case, the thickness of the liquid film on the heat transfer surface becomes thick and the heat exchange efficiency decreases, so it is necessary to increase the cross-sectional area of all the heat transfer surfaces, which has the disadvantage of increasing the size of the heat exchanger.
本発明の目的は、伝熱管を垂直もしくti餉斜して設置
した熱又換器におい1、熱交換効率を向上し、伝熱面積
が小さく小型で従来と同等の熱交換器を有する熱交換器
を提供することにある。The purpose of the present invention is to improve heat exchange efficiency in a heat exchanger in which heat exchanger tubes are installed vertically or at an angle, and to provide a heat exchanger with a small heat transfer area, small size, and the same size as conventional heat exchangers. The purpose is to provide an exchanger.
本発明では、上記の目的を連成するために、熱交換効率
が主として一次媒体であるガスの凝縮によって形成され
る伝熱面上の液膜厚さに9に存することにM目し、伝熱
管外面に水平向に対し傾斜した傾斜板金間隔pで配置し
この傾斜板面において前斜方向にSを設け、伝熱面上の
凝縮液を傾斜板で捕果しILj4斜板面の溝を通して一
定方向に排出することにより伝熱面上の液膜を分にIL
シ、平均液膜厚さを薄くする。In the present invention, in order to couple the above objects, the heat exchange efficiency mainly depends on the thickness of the liquid film on the heat transfer surface formed by the condensation of gas as the primary medium. Arranged on the outer surface of the heat tube at an interval p of inclined sheet metals inclined with respect to the horizontal direction, S is provided in the front oblique direction on this inclined plate surface, and the condensed liquid on the heat transfer surface is collected by the inclined plate and passes through the groove of the inclined plate surface ILj4. By discharging in a fixed direction, the liquid film on the heat transfer surface can be reduced in minutes.
B. Decrease the average liquid film thickness.
以下、本発明の原理を第1図及び第2図により説明する
。、第1図は伝熱管11での伝熱機構を/J’4したも
のである。凝縮性ガスである一次媒体21は伝熱管11
表面で凝縮し、液膜22となって伝熱管11表iMi
を落下する。低温側の二次媒体24は伝熱′#11内を
υたれる。この時、全伝熱!Q。The principle of the present invention will be explained below with reference to FIGS. 1 and 2. , FIG. 1 shows the heat transfer mechanism in the heat transfer tube 11 in /J'4. The primary medium 21 which is a condensable gas is the heat exchanger tube 11
It condenses on the surface, becomes a liquid film 22, and the surface of the heat exchanger tube 11 iMi
to fall. The secondary medium 24 on the low temperature side is passed through the heat transfer '#11. At this time, total heat transfer! Q.
は次式で表わせる。can be expressed by the following formula.
QT=に−At ・(Tl ’I’2 )
−・−・・(1)ここに、lぐ:熱員fM、率
へr;伝熱管11の全表面積(全伝熱面積)T1 ニー
次媒体21の温度
T2 :二次媒体24のi晶夏
hla:伝熱管11内面での伝熱達率
h6...:伝熱管11外面での熱伝達率tD:伝熱青
11の肉厚
λD;伝熱・【°第11の熱伝導率
なお、式(2)の各項は熱抵抗でろり、(l/1()は
全熱抵抗、(1/h+fi)は伝熱v11内面での熱抵
抗、(1D/λp)は伝熱管11の熱抵抗、(1/ ”
eat )は伝熱dll外面での熱抵抗を示す。式
(1)において、−に左(丁IT2>クユー殻に二次妹
体24の圓用目的Vしよって定lるため、開式より明ら
;り・・ヱL9に宝諷熱Q丁をは下させることlく熱交
換器を亭主化゛3″0(宝云品面5+fiAT金小さく
すめ)ためを′Cは熱貞冗卆辻て入きくする心安がり0
゜とこつで、A:(2)に2いて、45N−111外m
tD W抵抗(1/ h−1) l’L−tkQc垢
熱′Ill内聞の熱抵抗(1/11量、)の約io。QT=−At・(Tl'I'2)
-... (1) Here, lg: heat member fM, rate r; total surface area (total heat transfer area) of heat transfer tube 11 T1 temperature of secondary medium 21 T2: i crystal of secondary medium 24 Summer hla: Heat transfer rate h6 on the inner surface of the heat exchanger tube 11. .. .. : Heat transfer coefficient on the outer surface of the heat transfer tube 11 tD: Thickness of the heat transfer blue 11 λD; Heat transfer [°11th thermal conductivity 1() is the total thermal resistance, (1/h+fi) is the thermal resistance on the inner surface of heat transfer v11, (1D/λp) is the thermal resistance of heat transfer tube 11, (1/''
eat) indicates the thermal resistance at the outer surface of the heat transfer dll. In formula (1), it is clear from the opening formula that the purpose of use of the secondary sister body 24 is V on the left (Ding IT2> Kuyu shell); To make the heat exchanger the host without letting it go down (preferably 5 + fiat gold), 'C' is a peace of mind that goes into the heat exchanger 0.
゜By the way, A: 2 at (2), 45N-111 outside m
tD W resistance (1/h-1) l'L-tkQc slag heat 'Ill inner thermal resistance (1/11 quantity,) approximately io.
倍、伝熱管11の熱は仇(tD/λD)の910倍と人
さいため、生熱気抗(1/K)k小さくす/) VCV
i m A’l 哲11外囲の熱抵抗(1/h−at)
k小石くするのが寂も幼未的でらる。すなわら、熱交換
器の小型化のためには伝熱管11外面での熱伝達率Ω。Since the heat of the heat exchanger tube 11 is 910 times smaller than the enemy (tD/λD), the raw heat resistance (1/K)k is reduced/) VCV
i m A'l Tetsu 11 Thermal resistance of the surrounding area (1/h-at)
It's so sad and childish to make pebbles. In other words, in order to downsize the heat exchanger, the heat transfer coefficient Ω on the outer surface of the heat exchanger tube 11 is required.
、1を大さくすればよい。この熱以達牟h−otic、
伝pp、−t t ’10I]上oOy 22 ノ厚す
ti tに依存し、1頃材骨での嵯紬熱汰遜計1曲かう
、仄り↓うに衣Vせるこ°とが知う7している。, 1 can be increased. This heat is h-otic,
Transmission pp, -t t '10I] 上 oOy 22 It depends on the thickness of the t, and it is known that the total of 1 song in the material bone is 1 song, and the ↓ sea urchin clothes V can be made. 7.
+A
δ+ 、:c(L o /sin Q )
−・= −(4)ここに、λf :凝縮液の熱伝導率
δf :伝熱管11下端での液膜22の厚さ
LD :伝熱管11の長さ
0:伝熱管11の傾斜角
式(3)及び(4)よυ熱伝達率h ant を増、ク
ロするには伝熱管11の長さLDを短かくシ、液膜22
の厚さδfを薄くすればよい。+A δ+ , :c(L o /sin Q)
-・= -(4) Here, λf: Thermal conductivity of the condensate δf: Thickness of the liquid film 22 at the lower end of the heat exchanger tube 11 LD: Length of the heat exchanger tube 11 0: Inclination angle formula of the heat exchanger tube 11 ( 3) and (4) To increase and increase the heat transfer coefficient h ant , shorten the length LD of the heat transfer tube 11 and reduce the liquid film 22.
What is necessary is to reduce the thickness δf.
第2図は本発明の原理を示すものである。本発明では、
伝熱R11の外部に傾きψの傾斜板12を間隔pで設置
することにより、伝熱管11外面の液膜22を分断し、
熱伝達率を向上する。この時の熱伝達率b 、 fよ、
傾斜板12のない伝熱管11での熱伝達率f h。とす
ると式(3)及び(4)より次のようになる。FIG. 2 illustrates the principle of the invention. In the present invention,
The liquid film 22 on the outer surface of the heat transfer tube 11 is separated by installing inclined plates 12 having an inclination ψ at a distance p outside the heat transfer tube 11.
Improve heat transfer coefficient. The heat transfer coefficients b and f at this time,
The heat transfer coefficient f h in the heat exchanger tube 11 without the inclined plate 12. Then, from equations (3) and (4), we get the following.
第3図は本発明の原理による効果の一例を示したもので
あり、伝熱管11の長さL p = 2 m、外径D=
12mm、肉厚ja=1mm、材質をステンレス鋼とし
、−次媒体21を280Cの蒸気として試作し、傾斜板
12がない場゛合の熱貫流率をK。FIG. 3 shows an example of the effect of the principle of the present invention, in which the length of the heat exchanger tube 11 L p = 2 m, the outer diameter D =
12 mm, wall thickness ja = 1 mm, the material is stainless steel, the secondary medium 21 is steam at 280C, and the heat transfer coefficient without the inclined plate 12 is K.
とじて、本発明による熱X流率に、を示したものである
。傾斜板120間隔pを小さくすると熱貫流率I(、が
低下するのは傾斜板12の相互干渉による。第3図に示
すととく、本発明の原理によれば、熱貫流率を1.2〜
2.0倍に向上でき、全伝熱面積を85〜50%に低減
できる。Finally, the heat X flow rate according to the present invention is shown. When the interval p between the inclined plates 120 is reduced, the thermal conductivity I(,) decreases due to the mutual interference of the inclined plates 12.As shown in FIG. ~
It can be improved by 2.0 times, and the total heat transfer area can be reduced to 85 to 50%.
以丁、本発明の実施例を第4図、第5図及び第6図によ
り説明する。第2図に示した本発明の原理を、一般的な
熱変換器に適用したのが第4図に示す実施例であり、原
子炉の熱交換器に適用したのが第5図に示す実施例であ
り、第6図は熱交換部の詳細図である。Embodiments of the present invention will now be described with reference to FIGS. 4, 5, and 6. The embodiment shown in Fig. 4 is an application of the principle of the present invention shown in Fig. 2 to a general heat converter, and the embodiment shown in Fig. 5 is an application of the principle of the present invention to a heat exchanger for a nuclear reactor. As an example, FIG. 6 is a detailed view of the heat exchange section.
第4図に示す実施例では、凝縮性ガスである一次媒体2
1は一次媒体人口15から熱交換器本体容器l内に流入
し、伝熱管11表面で凝縮し、伝熱管11及び傾斜板1
2にそって落下し、−次媒体出口16から流出する。二
次媒体は二次媒体人口13から流入し伝熱管11内部で
通って加熱され二次媒体出口14より流出する。本実施
例による熱交換器は縦型であるため設置面積が小さい場
ひに有効である。In the embodiment shown in FIG. 4, the primary medium 2 is a condensable gas.
1 flows into the heat exchanger main body container l from the primary medium population 15, condenses on the surface of the heat exchanger tubes 11, and causes the heat exchanger tubes 11 and the inclined plate 1
2 and flows out from the secondary medium outlet 16. The secondary medium flows in from the secondary medium port 13, passes inside the heat transfer tube 11, is heated, and flows out from the secondary medium outlet 14. Since the heat exchanger according to this embodiment is vertical, it is effective in cases where the installation area is small.
第5図に示す実施例では、原子炉の炉心4で発性した蒸
気(即ち、−次媒体)はシュラウド3内部を上昇し、蒸
気ドーム6にたまる。蒸気ドーム6Vcfc、まった−
次媒体21は伝熱管11表面で凝縮し、伝熱管11及び
傾斜板12にそって落下し、シュラウド3外部を下降し
炉心4にもどる。二次媒体は二次媒体人口14から下部
へラダ17を通って伝熱管11に流入し、加熱され、上
部ヘッダ18を通って二次媒体出口18から流出する。In the embodiment shown in FIG. 5, steam (i.e., secondary medium) generated in the core 4 of the nuclear reactor rises inside the shroud 3 and accumulates in the steam dome 6. Steam Dome 6Vcfc, Wait-
The secondary medium 21 condenses on the surface of the heat exchanger tube 11, falls along the heat exchanger tube 11 and the inclined plate 12, descends outside the shroud 3, and returns to the core 4. The secondary medium flows from the secondary medium port 14 downwardly through the ladder 17 into the heat transfer tubes 11, is heated and exits through the upper header 18 through the secondary medium outlet 18.
この場合、原子炉容器2は熱交換器本体容器を兼用して
いる。原子炉では原子炉容器2が縦型であるため、伝熱
管11を水平設置するより本発明のように伝熱管11が
垂直もしくは傾斜して設置する方が有利でちる。In this case, the reactor vessel 2 also serves as a heat exchanger main body vessel. In a nuclear reactor, the reactor vessel 2 is vertical, so it is more advantageous to install the heat exchanger tubes 11 vertically or inclined, as in the present invention, than to install the heat exchanger tubes 11 horizontally.
第6図は第4図及び第5図に示した実施例において、熱
交換部を拡大した詳細図である。伝熱管11の外面に凝
縮した一次媒体は、伝熱管11の外面全液膜22となっ
て降下し、間隔pで配置された傾斜板12の上面を流れ
傾斜板12の下端より落下する。傾斜板12VC類似す
るものとして、従来、伝熱管11の防振板があるが、防
振板は水平設置されてdす、この場合、研縮した一次媒
体は防振板の両端から落下しガス状の一次媒体が伝熱管
11の表面に到達するのを防害し熱交換効率が劣化する
。、従って、伝熱管11外面の液膜22を分離し液膜2
2の厚さを薄くする場合、傾斜板12而上の液膜23が
一定方向に流れ、傾斜板12の下端からのみ落下するよ
うに傾斜板12の頌き角ψを選定しなければならない、
、傾斜板12の下端からのみ落下する傾き角ψの下限値
ψ、は、傾斜板面上の液膜降下速度から次式のようにな
る。FIG. 6 is an enlarged detailed view of the heat exchange section in the embodiment shown in FIGS. 4 and 5. FIG. The primary medium condensed on the outer surface of the heat exchanger tube 11 descends as a full liquid film 22 on the outer surface of the heat exchanger tube 11, flows on the upper surface of the inclined plate 12 arranged at the interval p, and falls from the lower end of the inclined plate 12. Similar to the inclined plate 12VC, there is a conventional vibration isolation plate for the heat transfer tube 11, but the vibration isolation plate is installed horizontally.In this case, the ground primary medium falls from both ends of the vibration isolation plate and gas This prevents the primary medium from reaching the surface of the heat exchanger tube 11, thereby deteriorating the heat exchange efficiency. Therefore, the liquid film 22 on the outer surface of the heat transfer tube 11 is separated and the liquid film 2
2, the angle ψ of the inclined plate 12 must be selected so that the liquid film 23 on the inclined plate 12 flows in a fixed direction and falls only from the lower end of the inclined plate 12.
, the lower limit value ψ of the inclination angle ψ for dropping only from the lower end of the inclined plate 12 is given by the following equation based on the rate of descent of the liquid film on the inclined plate surface.
・・・・・・・・・(6)
ここに、WI :傾斜板12間での一次媒体の凝縮量
Ap:傾斜板12の面積
り、:傾斜板12の傾斜方向長さ
pr、:伝熱管11の配列ピッチ
D :伝熱管11の外径
νf :凝縮した一次媒体の動粘性係数ρf =凝縮し
た一次媒体の密噴
すなわち、傾斜板12の傾き角ψは次式を満す盛装があ
る。・・・・・・・・・(6) Here, WI: Amount of condensation of the primary medium between the inclined plates 12 Ap: Area of the inclined plate 12, : Length in the inclined direction pr of the inclined plate 12, : Transmission Arrangement pitch D of heat tubes 11 : Outer diameter νf of heat transfer tubes 11 : Kinematic viscosity coefficient ρf of condensed primary medium = Close injection of condensed primary medium, that is, there is a configuration in which the inclination angle ψ of the inclined plate 12 satisfies the following formula. .
、〉ψ、 ・・・
・・・・・・(力例えば、伝熱1tiをステンレス製、
長さLD=2m、外径p=12mm、肉厚t、=1m+
xとし、1000本の伝熱管をピッチpD=20mmで
配置し、傾斜方向長さり、=0.2mの傾斜板12を間
隔p= 0.25 mで設置し、−次媒体温度280
C%二次媒体の平均温度260Cとすると、式(1)よ
り全熱交換量はQ丁= 1.3 X 10” Kcal
/8となり、凝縮量はwt =0.84Kp/ 8と
なる。また、ピッチpD=20mmの伝熱管配置及び傾
斜板長さ■、、= 0.2 mより傾斜板面積は人、=
0.4iとすればよく、式(6)及び(7)より傾き角
ψは1、2 X 10−’ ra’d (0,7度)以
上にすればよい。,〉ψ, ・・・
(For example, if heat transfer 1ti is made of stainless steel,
Length LD = 2m, outer diameter p = 12mm, wall thickness t, = 1m+
Assuming
C% If the average temperature of the secondary medium is 260C, the total heat exchange amount is Q = 1.3 x 10" Kcal from equation (1)
/8, and the amount of condensation is wt = 0.84Kp/8. In addition, from the heat exchanger tube arrangement with pitch pD = 20 mm and the slope plate length ■,, = 0.2 m, the slope plate area is 1 person, =
0.4i, and from equations (6) and (7), the inclination angle ψ may be set to 1.2 x 10-'ra'd (0.7 degrees) or more.
また、全熱交換量1.3 X 103Kcal / S
は傾斜板12がない場合の全熱交換Ji0.93XlO
’Kcal/Sの1.4倍となっている。すなわら、本
発明によれば、同一熱交換、縫を得るのに、全伝熱面積
は式(1)より従来の70%ですみ熱交換器を小型化す
ることが可能である。Also, total heat exchange amount 1.3 x 103Kcal/S
is the total heat exchange Ji0.93XlO when there is no inclined plate 12
'Kcal/S is 1.4 times. That is, according to the present invention, in order to obtain the same heat exchange and stitching, the total heat transfer area can be reduced to 70% of the conventional heat exchanger according to equation (1), making it possible to downsize the heat exchanger.
第7図は本発明の他の実施例を示す部分拡大図である。FIG. 7 is a partially enlarged view showing another embodiment of the present invention.
本実施例では第4図及び第5図に示す各伝熱管11に傾
斜板12をら線状に設け、傾斜板12が溝を形成する形
状となっていることを特徴とし、伝熱管11外面に凝縮
し液膜22となった一次媒体を傾斜板12に捕集し、そ
の辱を降ドさせるものである。本実施例と類似したもの
に、第8図に示す高速増殖炉の燃料スペーサ及び第9図
に示す冷却器などのフィンがある。第8図に示す燃料ス
ペーサ6は隣接する燃料1115の間隔を一定に保持す
るだめのものであり、この燃料スペーサ6を第7図に示
す傾斜板12に適用した場合、液膜22は燃料スペーサ
をう回し、液膜を分断することができない、、また、第
9図に示すフィン7は一般に一次媒体が非凝縮性ガスの
場合に使用し伝熱面積を広くするだめのものである。こ
のフィン7を一次媒体が凝縮性ガスである場合に適用し
たJJA会、液膜22を分断することは可能であるが、
液滴が各所から落下し一次媒体である凝縮性ガスが伝熱
管11の表面に到達するのを防害する。従って、−次媒
体が凝縮性ガスである場合、第7図に示す本発明の実施
例のように傾斜板12に溝を形成し、捕集しだ凝縮液を
所定の位置に排出する必要がある。捕集した凝縮液を伝
熱管11の下端に排出するための条件は、傾斜板12で
形成される溝の幅をdとして高さHが次式を満足するよ
うにすればよい。This embodiment is characterized in that an inclined plate 12 is provided in a spiral shape on each heat exchanger tube 11 shown in FIGS. The primary medium that has condensed into a liquid film 22 is collected on the inclined plate 12, and its waste is discharged. Similar to this embodiment, there are fins such as a fuel spacer of a fast breeder reactor shown in FIG. 8 and a cooler shown in FIG. 9. The fuel spacer 6 shown in FIG. 8 is for maintaining a constant distance between adjacent fuels 1115, and when this fuel spacer 6 is applied to the inclined plate 12 shown in FIG. The fins 7 shown in FIG. 9 are generally used when the primary medium is a non-condensable gas and are intended to widen the heat transfer area. Although it is possible to divide the liquid film 22 in the JJA meeting where this fin 7 is applied when the primary medium is a condensable gas,
This prevents droplets from falling from various places and condensable gas, which is a primary medium, from reaching the surface of the heat transfer tube 11. Therefore, when the secondary medium is a condensable gas, it is necessary to form a groove in the inclined plate 12 to collect and discharge the condensate to a predetermined position, as in the embodiment of the present invention shown in FIG. be. The condition for discharging the collected condensate to the lower end of the heat transfer tube 11 is such that the width of the groove formed by the inclined plate 12 is d and the height H satisfies the following formula.
ここに、WD:伝熱−g1本での一次媒体の凝縮量他は
式(6)と同じである。Here, WD: heat transfer - g, the amount of condensation of the primary medium in one bottle, and other conditions are the same as in equation (6).
例えば、伝熱′#11をステンレス製、長さり。For example, heat transfer '#11 is made of stainless steel and is long.
22m1外径D=12調、肉厚tn”=11n!Rとし
、傾斜板のピッチp=’0.25FFI(傾斜角ψ=t
an−’(p/π0)キ1.42 rad (81[)
となる)、婢の幅b=3間、−次媒体温度280C,二
次媒体平均温度260Cとすると、式(8)より高さH
は0.4 mrR以上とすればよい。この場合において
も、熱貫流率は第3図と同様に増加し、伝熱面積を減少
することができる。22m1 outer diameter D = 12mm, wall thickness tn'' = 11n!R, pitch of inclined plate p = '0.25FFI (angle of inclination ψ = t
an-'(p/π0)ki1.42 rad (81[)
), width b = 3, negative medium temperature 280C, secondary medium average temperature 260C, then from equation (8) the height H
may be 0.4 mrR or more. In this case as well, the heat transfer coefficient increases as in FIG. 3, and the heat transfer area can be reduced.
本発明によれば、伝熱管外面に形成された凝縮液膜を傾
斜板によって分割でき、かつ、傾斜板面上に捕集された
凝縮液を所定の位置に排出できるので、熱貫流率全従来
の1.2〜2,0倍に増加でき全伝熱面積の85〜50
%に低減できる効果がある。According to the present invention, the condensate film formed on the outer surface of the heat transfer tube can be divided by the inclined plate, and the condensed liquid collected on the inclined plate surface can be discharged to a predetermined position. 85 to 50 of the total heat transfer area can be increased by 1.2 to 2.0 times
%.
第1図は凝縮伝熱の機構金示す部分断面図、第2図は本
発明の原理を示す原理図、第3図は本発明の効果を示す
図、第4図及び第5図は本発明の一実施例を示す断面図
、第6図は第4図及び第5図の実施列における部分詳細
図、第7図は本発明の他の実施(+IJを示す部分詳細
図、第8図及び第9図は第7図の実施例に類似した従来
技術を示す部分詳細図である。
・19火l工Figure 1 is a partial sectional view showing the mechanism of condensation heat transfer, Figure 2 is a principle diagram showing the principle of the present invention, Figure 3 is a diagram showing the effects of the present invention, and Figures 4 and 5 are the invention of the present invention. 6 is a partially detailed view of the implementation row of FIGS. 4 and 5; FIG. 7 is a partially detailed view of another embodiment of the present invention (+IJ); FIG. Fig. 9 is a partially detailed diagram showing a conventional technique similar to the embodiment shown in Fig. 7.
Claims (1)
部に一次媒体である凝縮性ガスを供給する手段と前記伝
熱管内部に二次媒体を供給する手段を有する熱交換器に
おいて、前記伝熱管外面に水平向に対し傾斜した傾斜板
を設けたことを特徴とする熱交換器。1. A heat exchanger having vertical or inclined heat exchanger tubes, and having means for supplying a condensable gas as a primary medium to the outside of the heat exchanger tubes and means for supplying a secondary medium to the inside of the heat exchanger tubes. A heat exchanger characterized by having an inclined plate inclined with respect to the horizontal direction on the outer surface of the heat tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12205282A JPS5913897A (en) | 1982-07-15 | 1982-07-15 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12205282A JPS5913897A (en) | 1982-07-15 | 1982-07-15 | Heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5913897A true JPS5913897A (en) | 1984-01-24 |
Family
ID=14826419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12205282A Pending JPS5913897A (en) | 1982-07-15 | 1982-07-15 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5913897A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5075568A (en) * | 1973-11-09 | 1975-06-20 | ||
JPS5396558A (en) * | 1977-02-02 | 1978-08-23 | Hisaka Works Ltd | Vertical type multitubular heat exchanger |
-
1982
- 1982-07-15 JP JP12205282A patent/JPS5913897A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5075568A (en) * | 1973-11-09 | 1975-06-20 | ||
JPS5396558A (en) * | 1977-02-02 | 1978-08-23 | Hisaka Works Ltd | Vertical type multitubular heat exchanger |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4621686A (en) | Water vapor-condensing secondary heat exchanger | |
US20070289559A1 (en) | Heat exchanger, water heater and water tube | |
EP0181661A1 (en) | Absorption heat pump comprising an integrated generator and rectifier | |
US4567736A (en) | Absorption heat pump | |
JP4877703B2 (en) | Condenser | |
US4461346A (en) | Feedwater heater | |
JPS5913897A (en) | Heat exchanger | |
GB2097524A (en) | Dry cooling tower | |
JPS58131755A (en) | Cooling device | |
US4313490A (en) | Heat exchanger | |
JPS6310359B2 (en) | ||
JPS6159103A (en) | Cracked gas cooler | |
SU1035398A1 (en) | Plate-type heat exchanger | |
JPS6314293Y2 (en) | ||
JPS5937585Y2 (en) | Thermosiphon type heat exchanger for waste heat recovery | |
CN217358119U (en) | High-efficient handy condenser pipe | |
SU800585A1 (en) | Heat exchange plant | |
JPS62288446A (en) | Forced combustion type water heater not using heat absorbing fins | |
JPS60188795A (en) | Heat exchanger | |
CN207894262U (en) | A kind of mini type high temperature gas condenser | |
JPS5816103A (en) | Fire tube for vertical type fire tube boiler | |
JPS60164192A (en) | Heat exchanger for waste heat recovery | |
JPH0512636Y2 (en) | ||
SU1740948A1 (en) | Heat exchanger | |
SU401883A1 (en) | VPTB |