JPS59138960A - Voltage divider - Google Patents

Voltage divider

Info

Publication number
JPS59138960A
JPS59138960A JP58013975A JP1397583A JPS59138960A JP S59138960 A JPS59138960 A JP S59138960A JP 58013975 A JP58013975 A JP 58013975A JP 1397583 A JP1397583 A JP 1397583A JP S59138960 A JPS59138960 A JP S59138960A
Authority
JP
Japan
Prior art keywords
terminal
voltage
voltage side
resistance
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58013975A
Other languages
Japanese (ja)
Inventor
Iwao Oshima
大島 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58013975A priority Critical patent/JPS59138960A/en
Publication of JPS59138960A publication Critical patent/JPS59138960A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To improve the response characteristics of DC transmit voltage measurement by installing a resistance which constitutes a voltage dividing circuit in an enclosed type pressure container and arranging an electrode which forms capacitance parallel to the resistance at specific distance from a lead-out terminal on a high voltage side. CONSTITUTION:A line terminal 3 and a conductor 4 for connection are fixed to the upper part of the enclosed type pressure container 1 with an insulating spacer 2 between, and the upper terminal of a resistor R1 is connected thereto through a high-voltage shield 5. The lower terminal of the resistance R1 is connected to the lead-out terminal 8 fixed to the lower part of the container 1 by an insulating plate 6 and a cover plate 7. The insulating spacer 2 is provided with a shield ring 11 concentric with a line terminal 3, forming capacitance C1 between the ring 11 and terminal 3. The ring 11 and lead-out terminal 8 are connected to one terminal of the parallel circuit of a resistance R2 and capacitance C2, and the resistors R1 and capacitors C1 and C2 constitute a resistance capacity voltage divider for DC transmit voltage measurement.

Description

【発明の詳細な説明】 本発明は、直流送電系統の直流電圧を測定するに用いる
分圧器の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a voltage divider used to measure DC voltage in a DC power transmission system.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

高電圧の測定に用いる分圧器には、第1図(a)に示す
ように直流電圧、インパルス電圧の測定用として抵抗R
1pR2の直列回路からなる抵抗分圧器、第1図(b)
に示すように交流電圧、インパルス電圧の測定用として
抵抗R1tR2 と容量c+pczの直列回路からなる
容量分圧器、第1図(c)に示すように直流電圧、直流
イン・ぐルス電圧の測定用として訴抗R1〜R4及び容
量C8の並列回路からなる抵抗容量形分圧器等が知られ
ている。
As shown in Figure 1(a), the voltage divider used to measure high voltage includes a resistor R for measuring DC voltage and impulse voltage.
A resistive voltage divider consisting of a series circuit of 1pR2, Fig. 1(b)
As shown in Fig. 1(c), a capacitor voltage divider consisting of a series circuit of a resistor R1tR2 and a capacitor c+pcz is used for measuring AC voltage and impulse voltage, and as shown in Fig. 1(c), for measuring DC voltage and DC impulse voltage. 2. Description of the Related Art A resistor-capacitive voltage divider and the like are known, which are composed of a parallel circuit of resistors R1 to R4 and a capacitor C8.

上述した分圧器は、屋内使用に基づいた構成がなされ、
通常、高電圧側口出等にて屋内設置される。一方近時、
直流送電の実用化に当シ、直流送電系統の制御、保護を
行なうために屋外にて直流送電電圧を測定する必要があ
る。このような場合、上記分圧器として例えば抵抗容量
形分圧器を屋外にて使用することを考えると、碍管の汚
損、或いは降雨によって碍管表面に沿って流れる漏れ電
流によシ、高圧側(被測定系統)からみだ等価インピー
ダンスが変化し、分圧器としての分圧比に変化が生じる
ことになり、電圧測定は不正確となυ実用には適さない
The voltage divider described above is configured for indoor use,
It is usually installed indoors with a high-voltage side outlet. On the other hand, recently
In order to put DC power transmission into practical use, it is necessary to measure the DC transmission voltage outdoors in order to control and protect the DC power transmission system. In such a case, considering that a resistive capacitive voltage divider is used outdoors as the above voltage divider, it is possible that the high voltage side (under test The equivalent impedance changes from the system) and the voltage division ratio as a voltage divider changes, making voltage measurement inaccurate and unsuitable for practical use.

また直流送電電圧を測定するに用いる分圧器は、従来の
分圧器と較べて、高圧側からみた等価インピーダンスを
下げて電気容量(VA)をより犬きくする必要がある。
Furthermore, compared to conventional voltage dividers, the voltage divider used to measure the DC transmission voltage needs to lower the equivalent impedance seen from the high voltage side and increase the capacitance (VA).

等価インピーダンスを下げることは、抵抗容量形分圧器
においては、抵抗値を下げ、容量値を大きくして、検出
電流値を大きくすることにより実現される。ところが検
出電流値が大きいと抵抗における電力損失は増大し、こ
の電力損失を吸収する有効な手段が必要となってくる。
In a resistor-capacitive voltage divider, lowering the equivalent impedance is achieved by lowering the resistance value, increasing the capacitance value, and increasing the detected current value. However, when the detected current value is large, the power loss in the resistor increases, and an effective means to absorb this power loss becomes necessary.

更に、上述した分圧器による検出電流により、直流送電
系統の制御、保穫を行なおうとする場合、応答特性が問
題となる。このことを以下第2図を参照して説明する。
Furthermore, when attempting to control and maintain a DC power transmission system using the current detected by the voltage divider described above, response characteristics become a problem. This will be explained below with reference to FIG.

第2図は抵抗分圧器を例にとシ、抵抗値と応答特性、電
力損失の関係を示した特性図である。第2図においてA
は1 応答特性を示し、理論式Tn  s・R−C,に基づい
ている。ただしTD=応答時間、Rは抵抗分圧器の抵抗
値、Cは抵抗分圧器の抵抗がタンクに対して有する標遊
容量である。
FIG. 2 is a characteristic diagram showing the relationship between resistance value, response characteristics, and power loss, taking a resistive voltage divider as an example. In Figure 2, A
indicates a response characteristic of 1 and is based on the theoretical formula Tns·RC. where TD=response time, R is the resistance value of the resistive voltage divider, and C is the stray capacitance that the resistance of the resistive voltage divider has with respect to the tank.

第2図においてBは、抵抗分圧器に500 kVが印加
された時の電力損失W(ワット)を示している。第2図
に示すように抵抗値RM(MΩ)を増大させると、電力
損失は減少し、熱的な製作条件は緩和されるが、応答時
間は長くなり、直流送電系統の高速制御には対応できな
くなる。
In FIG. 2, B indicates the power loss W (watts) when 500 kV is applied to the resistive voltage divider. As shown in Figure 2, increasing the resistance value RM (MΩ) reduces power loss and eases thermal manufacturing conditions, but increases response time and is not suitable for high-speed control of DC transmission systems. become unable.

一方、通常の制御、保膿を目的とした応答時間は少々ぐ
とも5[m5ec]以下が袂求され、この条件を満たす
だめには、抵抗値Rいは800 MΩ必要となる。通常
使用される分圧器の容器は100 W/m2の熱放失が
可能であるが、上記抵抗I′ilIRMが800 MΩ
の場合は、その電力損失が3()OWとなるため、上記
特性を満足せんがためには、容器等に構造の制約が伴っ
てしまう。
On the other hand, the response time for normal control and purulent preservation is required to be at most 5 [m5ec] or less, and in order to satisfy this condition, a resistance value R or 800 MΩ is required. A commonly used voltage divider vessel is capable of dissipating heat of 100 W/m2, but the resistance I'ilIRM is 800 MΩ.
In this case, the power loss is 3()OW, and in order to satisfy the above characteristics, the structure of the container etc. must be restricted.

〔発明の目的〕[Purpose of the invention]

本発明は、上記事情に基づいてなされたもので、その目
的とするところは直流送電電圧を測定する際に用いる高
速応答特性を有し、且つ屋外での使用が可能な分圧器を
提供することにある。
The present invention was made based on the above circumstances, and its purpose is to provide a voltage divider that has high-speed response characteristics and can be used outdoors when measuring DC transmission voltage. It is in.

〔発明の概要〕[Summary of the invention]

本発明による分圧器は、密閉形圧力容器から絶縁部材を
介して高電圧側及び低電圧側口出し端子を導出し、前記
密閉形圧力容器内に、前記高電圧側及び低電圧側口出し
端子に電気的に接続した第1の抵抗要素を収納し、この
第1の抵抗要素と共に高電圧側並列回路をなす第1の容
量要素を形成する 電極を前記高電圧側口出し端子に所
定の距離をおいて設置し、第2の抵抗要素及び第2の各
量要素からなる低電圧側並列回路の一端を接地すると共
に、他端を前記低電圧側口出し端子に接続することによ
シ上記目的を達成するものである。
In the voltage divider according to the present invention, high-voltage side and low-voltage side outlet terminals are led out from a closed pressure vessel through an insulating member, and electricity is supplied to the high-voltage side and low-voltage side outlet terminals in the sealed pressure vessel. and a first capacitive element forming a parallel circuit on the high voltage side together with the first resistive element connected to the high voltage side. The above object is achieved by grounding one end of the low-voltage side parallel circuit consisting of the second resistance element and the second quantity elements, and connecting the other end to the low-voltage side outlet terminal. It is something.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面を参照して説′明する第3
図は本発明による分圧器の一実施例を示す構成図である
。第3図において、1は密閉形圧力容器(以下容器と称
す)である。この容器1の上部には絶縁スペーサ2によ
り、容器1との絶縁を図って線路端子3、接続用導体4
、高圧シールド5を介して、抵抗体R1の上端が電気的
に接続され、抵抗体R1の下端は、容器1の下部に、絶
縁板6、蓋板7により容器lとの絶縁及び密閉を施こし
て口出し端子8を導出している。図中9は抵抗体R1を
支持する抵抗体支持用絶縁筒であり、1oは容器1内に
充填されたS[i’6ガス等の絶縁性ガスである。上記
において容器1内に収納された線路端子3は絶縁スペー
サ2により容器1に固着され、−万延抗体支持用絶縁筒
9の下部は容器1の下部における蓋板7に固着されてい
る。
Hereinafter, one embodiment of the present invention will be explained with reference to the drawings.
The figure is a configuration diagram showing one embodiment of a voltage divider according to the present invention. In FIG. 3, 1 is a closed pressure vessel (hereinafter referred to as a vessel). An insulating spacer 2 is placed on the top of this container 1 to insulate it from the container 1, and a line terminal 3 and a connecting conductor 4 are provided.
, the upper end of the resistor R1 is electrically connected via the high voltage shield 5, and the lower end of the resistor R1 is insulated and sealed from the container 1 by an insulating plate 6 and a lid plate 7 to the lower part of the container 1. The lead terminal 8 is drawn out by straining. In the figure, 9 is an insulating tube for supporting the resistor R1, and 1o is an insulating gas such as S[i'6 gas filled in the container 1. In the above, the line terminal 3 housed in the container 1 is fixed to the container 1 by the insulating spacer 2, and the lower part of the insulating cylinder 9 for supporting the Mannobe antibody is fixed to the lid plate 7 at the lower part of the container 1.

また上記絶縁スベー1 td 、線路端子3と同心円状
に、電界緩和用のシールドリング1)が設置され、この
電界緩和用シールド9リング1ノと線路端子3との間に
は第1の静電容量c1が形成されている。更に上記シー
ルド、リング11と、口出し端子8とは、金属容器12
に収納された第2の抵抗体R2と第2の容量C2との並
列回路の一端が電気的に接地され、他端は接地されてい
る。上記構成の分圧器は電気回路的には第4図のように
示される。即ち第4図において、第1の抵抗体R1、第
1の容量C1との高圧側並列回路と、第2の抵抗体R2
、第2の容t CZとの低圧側並列回路とが直列接続さ
れた回路構成である。上記において第1、第2の抵抗体
R1,R2及び第1、第2の容量CI 。
Further, a shield ring 1) for mitigating the electric field is installed concentrically with the insulating base 1 td and the line terminal 3, and a first electrostatic A capacitor c1 is formed. Furthermore, the shield, the ring 11, and the lead terminal 8 are connected to the metal container 12.
One end of a parallel circuit consisting of a second resistor R2 and a second capacitor C2 housed in is electrically grounded, and the other end is grounded. The voltage divider having the above structure is shown in terms of an electric circuit as shown in FIG. That is, in FIG. 4, a high voltage side parallel circuit with a first resistor R1 and a first capacitor C1, and a second resistor R2
, the second capacitor tCZ and the low voltage side parallel circuit are connected in series. In the above, the first and second resistors R1 and R2 and the first and second capacitors CI.

C2には、C,R1=C2R2の関係が満たされる値設
定がなされている。そして分圧器としての分圧比は、約
17500である。
C2 is set to a value that satisfies the relationship C, R1=C2R2. The voltage division ratio as a voltage divider is approximately 17,500.

次に上記のように構成された本実施例の作用について説
明する。本実施例は、第4図の等価回路に示す如く、第
1図に示した分圧器の分類によれば抵抗容量分圧器に概
当し、大地静電容量全考慮すると第5図のような等価回
路となる。
Next, the operation of this embodiment configured as described above will be explained. As shown in the equivalent circuit of FIG. 4, this embodiment generally corresponds to a resistor-capacitance voltage divider according to the classification of voltage dividers shown in FIG. This becomes an equivalent circuit.

第5図に示すように高圧側並列回路の抵抗体R1K &
−1、大地静電容量Cg(Cg=Cg1+Cg2+・−
・+Cgn)が存在することになる。この大地静電容量
Cさ本実施例により形成された容9.C2によυ補償す
る。
As shown in Figure 5, the resistor R1K &
-1, ground capacitance Cg (Cg=Cg1+Cg2+・-
・+Cgn) exists. This ground capacitance C is the capacitance formed by this embodiment 9. Compensate for υ by C2.

次に本実施例における抵抗体R15R2+容量CI#C
2の設定値について述べる。第6図は、本実施例におけ
る周波数(Hz)と分圧比(係)との関係を示しだ特性
図である。図に示すように高圧側並列回路の時定数01
Jが大きく力るにつれて、(曲線a r 1) + C
+ dの順に従って時定数CI R1O値が大きくなっ
ている。)特にI Hz近傍で分圧比の落ち込みが発生
する。こ0易合、抵抗体R1O値を一定値とすると容量
ciO値が小さい程、分圧比の落ち込みの度合が大きく
なることがわかる。従って実用に際しては、例えば50
0 kV用としては、上記特性を考慮して、抵抗体R1
は2000MΩ、抵抗体R2は400にΩ、容量C1は
20 pF 、容量C2は100 nFとする。このよ
うに諸定数を設置することにより、分圧比の変動は±1
襲以下に抑制することが可能となる。また、容器(密閉
形圧力容器)1内に、主砲な分圧槻能吸素を収納してい
るので、屋外で使用しても風雨に対して機能劣化を起こ
すことがない。
Next, in this example, resistor R15R2 + capacitor CI#C
The setting value of 2 will be described. FIG. 6 is a characteristic diagram showing the relationship between frequency (Hz) and voltage division ratio (correspondence) in this embodiment. As shown in the figure, the time constant of the high voltage side parallel circuit is 01
As J applies more force, (curve a r 1) + C
The time constant CI R1O value increases in the order of +d. ) A drop in the partial pressure ratio occurs especially near I Hz. In this case, it can be seen that if the resistor R1O value is a constant value, the smaller the capacitance ciO value, the greater the degree of fall in the voltage division ratio. Therefore, in practical use, for example, 50
For 0 kV, considering the above characteristics, resistor R1
is 2000MΩ, resistor R2 is 400Ω, capacitance C1 is 20 pF, and capacitance C2 is 100 nF. By setting various constants in this way, the fluctuation of the partial pressure ratio can be reduced by ±1
This makes it possible to suppress the damage to less than the attack level. In addition, since the main partial pressure absorption absorber is housed in the container (closed pressure vessel) 1, the function will not deteriorate due to wind and rain even if used outdoors.

本発明は上記実施例に限定するものではない。The present invention is not limited to the above embodiments.

例えば第3図に示す実施例における絶縁スペーサ3と、
電界緩和用シールド1ノとの間に形成される容量C1が
不足する場合は、第7図に示すように、容器1の上部に
金属円筒12を設置し、更にこの金属円筒12と同心状
に設置されるように寸法の長い線路端子13を使用する
とともに、上記金属円筒12内に電極14を設置する。
For example, the insulating spacer 3 in the embodiment shown in FIG.
If the capacitance C1 formed between the shield 1 and the electric field mitigation shield 1 is insufficient, as shown in FIG. A line terminal 13 with a long dimension is used so as to be installed, and an electrode 14 is installed inside the metal cylinder 12.

上記のように構成すれば、容量C1は、大きな値を得る
ことができ、第6図で説明したように分圧比の比率の向
上を図ることができる。
With the above configuration, the capacitance C1 can have a large value, and the voltage division ratio can be improved as explained in FIG. 6.

なお本発明は上記実施例に限定されるものではなく、本
発明の要旨を変更しない範囲で種々変形して実施できる
Note that the present invention is not limited to the above-mentioned embodiments, and can be implemented with various modifications without changing the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、密閉形圧力容器から
絶縁部材を介して高電圧側及び低電圧側口出し端子を導
出し、前記密閉形圧力容器内に、前記高電圧側及び低電
圧側口出し端子に電気的に接続した第1の抵抗要素を収
納し、この第1の抵抗要素と共に高電圧側並列回路をな
す第1の容量要素を形成する電極を前記高電圧側口出し
端子に所定の距離をおいて設置し、第2の抵抗要素及び
第2の容量要素からなる低電圧側並列回路の一端を接地
すると共に、他端を前記低電圧側口出し端子に接続した
構成としたので、屋外での使用が可能であり、且つ高速
応答特性を有した分圧器が提供できる。
As described above, according to the present invention, the high voltage side and low voltage side lead terminals are led out from the closed pressure vessel via the insulating member, and the high voltage side and low voltage side A first resistance element electrically connected to the output terminal is housed, and an electrode forming a first capacitance element forming a high voltage side parallel circuit together with the first resistance element is connected to the high voltage side output terminal at a predetermined position. The configuration is such that one end of the low-voltage side parallel circuit consisting of the second resistance element and the second capacitance element is grounded, and the other end is connected to the low-voltage side outlet terminal, so that it can be used outdoors. It is possible to provide a voltage divider that can be used in

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b) l (e)は分圧器の分類
を示す回路図、第2図は、抵抗分圧器の特性を示す特性
図、第3図は1本発明による分圧器の一実施例を示す構
成図、第4図及び第5図は第3図に示す分圧器の電気的
な等価回路を示す回路図、第6図は本発明の詳細な説明
するための特性図、第7図は本発明の他の実施例を示す
作′1成図である。 1・・・密閉形圧力容器、2・・・絶縁スペーサ、3・
・・線路端子、4・・・接続用導体、5・・・高圧シー
ルド、6・・・絶縁板、7・・・蓋体、8・・・口出し
端子、9・・・抵抗体支持用絶縁筒、10・・・絶縁性
ガス、11・・・シールドリング、12・・・金属円筒
、13・・・線路端子、14・・・電極、R,・・・第
1の抵抗体、R2・・・第2の抵抗体、C1・・・第1
の容量、C2・・・第2の容量。 出願人代理人  弁理士 鈴 江 武 彦第1図 (a)   (b)   (c) I(PA) 第3図
Figure 1 (a), (b) l (e) is a circuit diagram showing the classification of voltage dividers, Figure 2 is a characteristic diagram showing the characteristics of a resistive voltage divider, and Figure 3 is a diagram showing the characteristics of a voltage divider according to the present invention. 4 and 5 are circuit diagrams showing electrical equivalent circuits of the voltage divider shown in FIG. 3; FIG. 6 is a characteristic diagram for explaining the present invention in detail; FIG. 7 is a first diagram showing another embodiment of the present invention. 1... Sealed pressure vessel, 2... Insulating spacer, 3...
...Line terminal, 4...Connecting conductor, 5...High voltage shield, 6...Insulating plate, 7...Lid, 8...Output terminal, 9...Insulation for supporting resistor Cylinder, 10... Insulating gas, 11... Shield ring, 12... Metal cylinder, 13... Line terminal, 14... Electrode, R,... First resistor, R2. ...Second resistor, C1...first
capacity, C2... second capacity. Applicant's representative Patent attorney Takehiko Suzue Figure 1 (a) (b) (c) I (PA) Figure 3

Claims (1)

【特許請求の範囲】 密閉形圧力容器と、この密閉形圧力容器から絶縁部材を
介して導出されだ高′亀圧側及び低電圧側口出し端子と
、前記密閉形圧力容器に収納され且つ前記高電圧側及び
低電圧側口出し端子に電気的に接続された第1の抵抗要
素と、この桑 第1の抵抗要素と共に高電側並列回路をなす第1の容量
要素を形成する前記高電圧側口出し端子に所定距離にお
いて設置した電極と、第2の抵抗要素及び第2の容量要
素からなり、一端が接地されると共に他端が前記低電圧
側口出し端子に電気的に接続された低電圧側並列回路と
から構成される分圧器。
[Scope of Claims] A closed pressure vessel, a high voltage side and a low voltage side outlet terminal led out from the closed pressure vessel via an insulating member, and a high voltage terminal housed in the closed pressure vessel and connected to the high voltage side. a first resistance element electrically connected to the high voltage side and the low voltage side output terminal; and the high voltage side output terminal forming a first capacitance element forming a high voltage side parallel circuit together with the first resistance element. a low-voltage side parallel circuit consisting of an electrode installed at a predetermined distance from the terminal, a second resistance element, and a second capacitance element, one end of which is grounded, and the other end of which is electrically connected to the low-voltage side output terminal. A voltage divider consisting of.
JP58013975A 1983-01-31 1983-01-31 Voltage divider Pending JPS59138960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58013975A JPS59138960A (en) 1983-01-31 1983-01-31 Voltage divider

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58013975A JPS59138960A (en) 1983-01-31 1983-01-31 Voltage divider

Publications (1)

Publication Number Publication Date
JPS59138960A true JPS59138960A (en) 1984-08-09

Family

ID=11848222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58013975A Pending JPS59138960A (en) 1983-01-31 1983-01-31 Voltage divider

Country Status (1)

Country Link
JP (1) JPS59138960A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181764A (en) * 1988-01-14 1989-07-19 Q P Corp Liquid seasoning
WO2006015966A1 (en) * 2004-08-06 2006-02-16 Siemens Aktiengesellschaft Hv-circuit arrangement having a high electric strength of at least 10 kv and use of said arrangement
CN103245821A (en) * 2013-05-27 2013-08-14 安徽一天电气技术有限公司 Wideband voltage signal acquisition device
CN103728582A (en) * 2013-12-04 2014-04-16 国家电网公司 Capacitive voltage divider and intermediate voltage measurement method applied to electrified calibration
KR20170044724A (en) * 2014-08-29 2017-04-25 지멘스 악티엔게젤샤프트 Oil active part design in gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01181764A (en) * 1988-01-14 1989-07-19 Q P Corp Liquid seasoning
WO2006015966A1 (en) * 2004-08-06 2006-02-16 Siemens Aktiengesellschaft Hv-circuit arrangement having a high electric strength of at least 10 kv and use of said arrangement
CN103245821A (en) * 2013-05-27 2013-08-14 安徽一天电气技术有限公司 Wideband voltage signal acquisition device
CN103728582A (en) * 2013-12-04 2014-04-16 国家电网公司 Capacitive voltage divider and intermediate voltage measurement method applied to electrified calibration
KR20170044724A (en) * 2014-08-29 2017-04-25 지멘스 악티엔게젤샤프트 Oil active part design in gas
US10514395B2 (en) 2014-08-29 2019-12-24 Siemens Aktiengesellschaft Method and system for insulating an RC voltage divider with an active part in oil and an outer part in gas

Similar Documents

Publication Publication Date Title
US20060012382A1 (en) Modular voltage sensor
US9766272B2 (en) Very high-voltage DC line voltage sensor
CN1912638B (en) Can type capacitor voltage mutual inductor
EP2853903A1 (en) A high voltage divider
US20050122122A1 (en) Voltage sensor and dielectric material
US1873977A (en) Condenser bushing
JPS59138960A (en) Voltage divider
Lee et al. The measurement of surge voltages on transmission lines due to lightning
US4931843A (en) High voltage measurement capacitor
US6909590B2 (en) High voltage capacitor and magnetron
US4227229A (en) Lightning arrester device
JP2760416B2 (en) Surge arrester for thyristor valve and thyristor valve for direct current transmission using the same
US1194195A (en) Vania
JPH05159909A (en) Fault monitor for lightning arrestor
JPH08138973A (en) Capacitor for surge protection
JPS58167968A (en) Voltage divider for measuring dc voltage
CN218782848U (en) Integrated lightning arrester
JPH063462B2 (en) Capacitive voltage divider type voltage detector
JPS6119508Y2 (en)
Cole Flashover characteristics of transformer condenser bushings
CA2126149C (en) Tank-shape arrester
JPS596111Y2 (en) transformer protection device
JPS5922909B2 (en) Lightning arrester deterioration detection device
US3467888A (en) Capacitor bank surge protection device
JPH0432488B2 (en)