JPS59138386A - Solar battery - Google Patents

Solar battery

Info

Publication number
JPS59138386A
JPS59138386A JP58011469A JP1146983A JPS59138386A JP S59138386 A JPS59138386 A JP S59138386A JP 58011469 A JP58011469 A JP 58011469A JP 1146983 A JP1146983 A JP 1146983A JP S59138386 A JPS59138386 A JP S59138386A
Authority
JP
Japan
Prior art keywords
layer
cell
cells
solar cell
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58011469A
Other languages
Japanese (ja)
Inventor
Masashi Yamaguchi
真史 山口
Akio Yamamoto
山本 「あき」勇
Atsushi Shibukawa
渋川 篤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58011469A priority Critical patent/JPS59138386A/en
Publication of JPS59138386A publication Critical patent/JPS59138386A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a multi-layer cell structural solar battery of a high efficiency by facilitating the electric connection of a discrete cell by a method wherein a plurality of cells having P-N junctions of semiconductor layers of different forbidden band widths are laminated in planar form to a multi-layer, and the electric connection part of each of the cells is arranged on the surface or the back surface of the main body of the solar battery. CONSTITUTION:The solar battery of a multi-layer is composed of the upper cell semiconductor material 11 and the lower one 12 whose forbidden band widths are different respectively. Here, a P type layer 16 and an N type layer 17 of the upper cell are formed of the material 11, thus generating a P-N junction 13 therebetween. A P type layer 18 and an N type layer 19 of the lower cell are formed of the material 12, thus generating a P-N junction 14 therebetween. In this constitution, the relation of the forbidden band widths Eg1 and Eg2 of the materials 11 and 12 is decided as Eg2<Eg1, and carrier density, thickness, etc. are selected according to desired characteristics. Thereafter, electrodes 21, 22 and 23 are installed on the surface exposed planes of the layers 17, 18, and 19, and a lattice form electrode 20 is formed on the layer 16.

Description

【発明の詳細な説明】 本発明は、禁止帯幅の異なる半導体のpn接合をプレー
ナ状に多層に積層することにより、変換効率を高めだ太
陽電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar cell in which conversion efficiency is increased by stacking pn junctions of semiconductors having different bandgap widths in a planar manner.

従来の太陽電池の多くは1例えば第1図頭に示すようt
と、”x 、GaAsの同一材料からなるホモpn接合
構造/で構成されていた。これらの単一半導体を用いて
いる限りは、太陽光エネルギーを有効利用できず、特に
半導体の禁止帯幅より低エネルギーの光は太陽電池内に
おける光起電力発生に寄与し得す、光電変換効率は最適
禁止帯幅(約/、1IeV )の半導体を用いても、A
MO(人工衛星軌道上)で最大約22%、 hM/、s
で最大約Jチである。
Many of the conventional solar cells are
and ``x,'' a homo pn junction structure made of the same materials, GaAs.As long as these single semiconductors are used, solar energy cannot be used effectively, and especially due to the forbidden band width of the semiconductor. Low-energy light can contribute to photovoltaic power generation in solar cells, and the photoelectric conversion efficiency is A
MO (on satellite orbit) maximum approximately 22%, hM/, s
The maximum value is approximately J.

しだがって、それ以上の高効率を実現するためには、多
種類の禁止帯幅の異なる半導体を用いて太陽光スペクト
ルを幅広く利用する必要がある。このような太陽電池と
して、第1図[F])に示すように。
Therefore, in order to achieve even higher efficiency, it is necessary to utilize a wide range of sunlight spectra by using many types of semiconductors with different band gaps. Such a solar cell is shown in FIG. 1 [F]).

禁止帯幅の異なる半導体のpn接合を個別セルとして同
一基板上に多層に積層したモノリシック・カスケード形
太陽電池と呼ばれるものがある。ここで、コはGaAl
As層、3はGaAjtAs l@ 2に形成されたp
n接合、IlはGaAs層、SはGaAs層グに形成さ
れたpn接合、6は層コとグとの間に配置されたトンネ
ル接合である。
There is a so-called monolithic cascade type solar cell in which pn junctions of semiconductors with different forbidden band widths are stacked in multiple layers on the same substrate as individual cells. Here, ko is GaAl
As layer, 3 is p formed in GaAjtAs l@2
In the n junction, Il is a GaAs layer, S is a pn junction formed in GaAs layer G, and 6 is a tunnel junction arranged between layers C and G.

ところが、これまでに作製されたモノリシック・カスケ
ード形太陽電池の変換効率は、理論的に予想されるもの
よりも著しく低いものであった。
However, the conversion efficiency of the monolithic cascade solar cells produced so far has been significantly lower than what would be theoretically expected.

例えば、第1図(B)に示したGaAJAs層ノのpn
接合3とGaAs層qのpn接合5から成るモノリシッ
ク・カスケード形太陽電池では、25〜30係の変換効
率が理論的に期待されるにもかかわらず、実際の効率は
73〜15チ程度で、 GaA、s単独の太陽電池の場
合の効率20チよりもはるかに小さいものであった。そ
の原因は、Ga、AlAs層コ内およびCaA、s層l
内の各pn接合部3およびSで発生した光キャリアを有
効に外部に取出すためのこれら両層間の電気的接続機構
、通常はトンネル接合部に問題があることに存する。
For example, the pn of the GaAJAs layer shown in FIG.
Although a monolithic cascade solar cell consisting of a junction 3 and a pn junction 5 of a GaAs layer q is theoretically expected to have a conversion efficiency of 25 to 30, the actual efficiency is about 73 to 15. This was much lower than the efficiency of 20 cm in the case of a solar cell made of GaA,s alone. The cause is inside the Ga and AlAs layers and inside the CaA and s layers.
The problem lies in the electrical connection mechanism between these two layers, usually the tunnel junction, in order to effectively take out the optical carriers generated at each pn junction 3 and S within the layer.

このように、従来のモノリシック・カスケード形太陽電
池では、個別セルとしての各半導体層間の電気的接続の
ために高不純物濃度接合(トンネル接合)を用いる構造
であったから、電気的接続部の抵抗が犬きく、また高不
純物濃度接合部での光吸収を無視できないので、変換効
率を向上させることができなかった。
In this way, conventional monolithic cascade solar cells have a structure that uses high impurity concentration junctions (tunnel junctions) for electrical connection between each semiconductor layer as an individual cell, so the resistance of the electrical connection increases. However, the conversion efficiency could not be improved because light absorption at the junction with high impurity concentration could not be ignored.

本発明の目的は、これらの欠点を解決して、個別セルの
電気的接続を容易ならしめ、以て高効率の多層セル構造
の太陽電池を提供することにある。
An object of the present invention is to solve these drawbacks and facilitate the electrical connection of individual cells, thereby providing a highly efficient solar cell with a multilayer cell structure.

かかる目的を達成するために、本発明では、禁止帯幅の
異なる半導体のpn接合を有する複数個のセルをプレー
ナ状に多層に積層することにより変換効率を高め電気的
接続部を太陽電池表面あるいは裏面に配置することによ
り、各セルの電極配線および電気的接続を容易にする。
In order to achieve such an object, the present invention improves conversion efficiency by stacking a plurality of cells having p-n junctions made of semiconductors with different bandgap widths in a multi-layered planar configuration, thereby increasing the conversion efficiency and connecting electrical connections to the surface of the solar cell or the like. Placing it on the back surface facilitates electrode wiring and electrical connection of each cell.

以下に図面を参照しながら、実施例を用いて本発明の詳
細な説明するが、かかる実施例は本発明の例示に過ぎず
、本発明の範囲内で種々の改良や変形があり得ることは
勿論である。
The present invention will be described in detail below using examples with reference to the drawings, but these examples are merely illustrative of the present invention, and it is understood that various improvements and modifications may be made within the scope of the present invention. Of course.

第2図■は、本発明に係る太陽電池の基本構成を示す。FIG. 2 (■) shows the basic configuration of the solar cell according to the present invention.

まず、禁止帯幅Egの異なる上部セル半導体材料/lに
よる9層16とn層/7.および下部セル半導体材料l
λ(こよるp j@ 7gとn層/?によりそれぞれ形
成されたpn接合/3および/りをプレーナ状に多層に
積層する。ここで、半導体//および/、2の各禁止帯
幅Eg、およびEg2(<Eg、 )、各半導体層の伝
導形(上述のp形およびn形は互いに逆にすることもで
きる)キャリア濃度、厚さなどは所望の特性に応じて決
定するものとする。太陽先君の受光表面側からの第1層
は表面再結合によるキャリアの損失を防ぐだめの窓層1
5.@、2および3層は上部セル半導体材料l/がら成
るp(またけn)層/乙およびn(またはp)層/7.
第グおよび5層は下部セル半導体材料7.2から成るp
(まだはn)層/gおよびn(tたはp)層19である
First, nine layers 16 and n layers/7. and bottom cell semiconductor material
The pn junctions /3 and /2 respectively formed by λ (p , and Eg2 (<Eg, ), the conduction type of each semiconductor layer (the above-mentioned p-type and n-type can be reversed), the carrier concentration, thickness, etc. shall be determined according to the desired characteristics. The first layer from the light-receiving surface side of the solar panel is a window layer 1 that prevents loss of carriers due to surface recombination.
5. @, 2nd and 3rd layers are p (straddle n) layer/B and n (or p) layer/7 consisting of upper cell semiconductor material l/.
The 5th and 5th layers consist of lower cell semiconductor material 7.2.
(yet n) layer/g and n(t or p) layer 19.

次に、各セルの電気的接続部を太陽電池表面に配置する
。第2図(A)に示すように、上部セルp i)要用電
極−〇を窓層/左上に配置する。上部セルn争)滑用′
Kf、極、z/I下部セルp←)要用電極nおよび下部
セルn (p)滑川1+L極コ3を、それぞれ、受光面
側にプレーナ状に露出しているこれら層/’)、7gお
よび/りの各露出表面部分に配置するっ2グは窓層/S
に被着した反射防止膜である。
Next, electrical connections for each cell are placed on the solar cell surface. As shown in FIG. 2(A), the upper cell p i) Required electrode - is placed on the window layer/upper left. Upper cell n battle) slide'
7g The second group placed on each exposed surface of the window layer/S
It is an anti-reflection coating coated on the surface.

このように、本発明の太陽電池によれば、禁止帯幅の異
なる半導体層を多層に積層できることから、太陽光スペ
クトルを幅広く利用でき、なおかつ多数の個別セルの電
気的接続部を太陽電池表面に配置できるので、各セルの
電気的接続を太陽電池表面で任意所望の形態でかつ容易
に行うことができる。しかもまた、従来問題となってい
た高不純物濃度接合部での光吸収の点も解決できる。
As described above, according to the solar cell of the present invention, since semiconductor layers with different band gaps can be laminated in multiple layers, the sunlight spectrum can be widely used, and the electrical connections of a large number of individual cells can be connected to the surface of the solar cell. Since the solar cells can be arranged, electrical connection of each cell can be easily made in any desired form on the surface of the solar cell. Furthermore, the conventional problem of light absorption at high impurity concentration junctions can be solved.

本発明の効果を明らかにするために、MBE (分子線
エピタキシャル成長)法とエツチング法を併用して、第
a図CB)に示すように、上部セルおよび下部セルを、
それぞれ、GaAlAsおよびGaAsで構成して太陽
電池を作製した、ここで、第1層はG a o、2 A
 l c 、a A Sの窓層3S、第ユおよび3層は
Gao、6AJ、4Asから成る9層36およびn層3
7、第グおよび5層はGaAsから成るp層3gおよび
n層39であ反射防止膜+pを窓層3S上に配置して多
層構造の太陽電池を作製した。
In order to clarify the effects of the present invention, an upper cell and a lower cell were formed using a combination of MBE (molecular beam epitaxial growth) method and etching method, as shown in Figure a, CB).
Solar cells were fabricated with GaAlAs and GaAs, respectively, where the first layer was GaAlAs and GaAs, where the first layer was GaAlAs and GaAs.
l c , a A S window layer 3S, U and 3 layers are 9 layers 36 and n layer 3 made of Gao, 6AJ, and 4As.
7. The G and 5 layers were a p layer 3g and an n layer 39 made of GaAs, and an antireflection film +p was placed on the window layer 3S to fabricate a multilayer solar cell.

かかる太陽電池を各セルの直列接続の状態でAM/ !
rの条件下で動作させたところ、変換効率2g、!i%
が得られた。この効率は、従来のGaAjlAs−Ga
ASのモノリシック・カスケード形太陽電池の/タチ、
 GaAJAs / GaAsのへテロフェイス太陽電
池の22係を上回るものであシ、本発明がきわめて優れ
ていることは明らかである。
When such solar cells are connected in series, AM/!
When operated under conditions of r, the conversion efficiency was 2g! i%
was gotten. This efficiency is higher than that of conventional GaAjlAs-Ga
AS's monolithic cascade solar cell/tachi,
It is clear that the present invention is extremely superior to the 22 ratio of GaAJAs/GaAs heteroface solar cells.

以上の実施例においては、 GaA71AsとGa、A
sを用いた例について本発明を説明してきたが5上部セ
ル材料および下部セル材料として、1nI −XI −
X2A71x1Gax2AS+Ga1−y工nyAS、
−zPzなどの構成材料を用いることもできる。また、
本発明では、一つの個別セルから成る多層構造太陽電池
を例にとって説明してきたけれど、3つ以上の個別セル
から成る多層構造太陽電池をも構成できることは明らか
である。
In the above examples, GaA71As and Ga, A
Although the invention has been described in terms of examples using
X2A71x1Gax2AS+Ga1-y engineering nyAS,
Constituent materials such as -zPz can also be used. Also,
Although the present invention has been explained by taking as an example a multilayer solar cell consisting of one individual cell, it is clear that a multilayer solar cell consisting of three or more individual cells can also be constructed.

さらに、第3図に示すように、本発明に係る太陽電−池
の各セル/A 、 /7および1g 、 /qの主要な
電気的接続部2/、nおよびNを太陽電池裏面に配置す
ることもできる。この場合には、第2図(ト)および[
F])の構成例に比べて、表面電極部による太陽電池へ
の光入射損失を低減できる利点を有する。
Furthermore, as shown in FIG. 3, the main electrical connections 2/, n and N of each cell /A, /7 and 1g, /q of the solar cell according to the present invention are arranged on the back side of the solar cell. You can also. In this case, Figure 2 (G) and [
F]) has the advantage that the loss of light incident on the solar cell due to the surface electrode portion can be reduced.

第り図は1本発明太陽電池の更に他の構成例を示す。本
発明の第2図(至)または(B)、または第3図に示し
た実施例では、主要な電気的接続部を表面に配置してい
ることから、各半導体層の直列抵抗を無視できない場合
も生ずる。このような場合。
Figure 2 shows still another example of the structure of the solar cell of the present invention. In the embodiment shown in FIG. 2 (to) or (B) or FIG. 3 of the present invention, the main electrical connections are arranged on the surface, so the series resistance of each semiconductor layer cannot be ignored. Cases also occur. In such cases.

第9図に示すように、上部セル/A 、 /7および下
部セル/g 、 /qに対して、例えば各セルの中間、
すなわち層/7と1gとの間に高電気伝導性の半導体層
As shown in FIG. 9, for the upper cells /A, /7 and the lower cells /g, /q, for example, the middle of each cell,
That is, a highly electrically conductive semiconductor layer between layer /7 and 1g.

例えばn”(p+) )脅S/およびp+(n”)層S
2をプレーナ状に設け、これら層S/および3.2の太
陽電池本体表面側に露出する部分に電極2/および2−
を配置することにより、直列抵抗損失を低減することが
できる。この場合でも、モノリシック・カスケード形太
陽電池のトンネル接合部におけるような高不純物濃度層
を必要としないことから、高伝導性層左/および見にお
ける光吸収損失は無視できる。
For example, n”(p+) layer S/and p+(n”) layer S
2 is provided in a planar shape, and electrodes 2/ and 2- are provided on the portions of these layers S/ and 3.2 exposed on the surface side of the solar cell main body.
By arranging , series resistance loss can be reduced. Even in this case, the light absorption loss in the highly conductive layer can be ignored since a highly doped layer as in the tunnel junction of a monolithic cascade solar cell is not required.

さらに5本発明に係る太陽電池において、各セル間、例
えば上部セル/A、/りと下部セルフg 、 /9との
間の電気的分離が要求される場合も予想される。
Furthermore, in the solar cell according to the present invention, it is expected that electrical isolation may be required between each cell, for example, between the upper cell /A, /2 and the lower cell G, /9.

このような場合には、第5図に示すように、各セル/A
 、 /7と1g 、 /9との中間に、すなわち層左
/と見との間に半絶縁性の半導体層33をプレーナ状に
設けることにより各セルの電気的分離が達成される。
In such a case, as shown in FIG.
, /7 and 1g, /9, that is, between the left and right layers, electrical isolation of each cell is achieved by providing a semi-insulating semiconductor layer 33 in a planar manner.

なお1本例では層/qに対する高電気伝導性半導体層5
例えばn+(1)+)層Sグをも設け、この層/9の表
面側露出部分に電極ユ3を配置する。このような半絶縁
性の半導体層はMBE法などのエピタキシャル成長時に
おけるFe 、 Or 、 0なとの不純物添加により
容易に作製でき、また少量の不純物添加で良いから、こ
の層幻における光吸収損失もまだ無視でき、以て高い変
換効率を達成できる。
Note that in this example, the highly electrically conductive semiconductor layer 5 for layer /q
For example, an n+(1)+) layer S is also provided, and the electrode unit 3 is placed on the exposed surface side of this layer/9. Such a semi-insulating semiconductor layer can be easily fabricated by adding impurities such as Fe, Or, or 0 during epitaxial growth using the MBE method, and since a small amount of impurity addition is sufficient, light absorption loss in this layer can be reduced. It is still negligible, and high conversion efficiency can be achieved.

以上説明したように1本発明太陽電池は、禁止帯幅の異
なる半導体のpn接合を有する複数個のセルをプレーナ
状に多層に積層することによって、太陽光に対するスペ
クトル感度帯域が拡大されているので、従来の太陽電池
に比べて高効率であり、しかも1本発明では各セルの電
気的接続一部を太陽電池本体表面あるいは裏面に配置す
るので、各セルの電極配線や電気的接続が容易となり、
以て高い変換効率を有する多層構造の太陽′電池を実現
することができる。
As explained above, in the solar cell of the present invention, the spectral sensitivity band for sunlight is expanded by stacking a plurality of cells having p-n junctions of semiconductors with different bandgap widths in a planar shape. , it has higher efficiency than conventional solar cells, and in addition, in the present invention, part of the electrical connection of each cell is placed on the front or back side of the solar cell body, making electrode wiring and electrical connection of each cell easy. ,
Thus, a multilayer solar cell with high conversion efficiency can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第7図(2)および[有])は従来の太陽′電池の構成
の2例を示す断面図、第2図(2)は本発明に係る太陽
電池の基本構成例を示す断面図、第2図(J3)は本発
明太陽電池の一実施例を示す断面図、第3図、第を図、
第S図は本発明太陽電池の他の実施例を示す断面図であ
る。 /−ホモpn接合、 2−= Ga、AlAs層1 、? −= GaAjlAs層のpn接合。 グ・・・CaA s層、 5−GaAs層のpn接合。 6・トンネル接合 //・・・上部セル半導体材料。 /コ・・下部セル半導体材料、 /3・・・上部セル用pn接合。 /ダ・・・下部セル用pn接合。 lS・・・窓層、 /A・・・上部セルp(n)層。 /7・・・上部セルn(p)層、 1g・・・下部セルp(n)層。 /q・・・下部セルn (p)層。 〃・・・上部セルp(ハ)要用電極、 2/・・・上部セルn(p)要用電極5〃・・・下部セ
ルp(n)要用電極。 刀・・・下部セルnや)要用電極、 21/、・・・反射防止膜。 J・・・太陽光。 3k −= p −Gao、 2Aj!、8As層、3
6− p −Ga、6AJ。、4As層。 、77−n −Ga、、6AJ、4As層、3g・・・
p −GaAs層1 .79 ・n −GaAs層、 qθ・= p −Ga、6A1゜、4As層用電極。 y/−n −Ga、6Aノ、4As層用電極、q2− 
p −GaAs層用電極。 ’43−n −GaAS層用電極用 電極、t・・・反射防止膜 Sl 高電気伝導性n+ (p + )層。 見・・高電気伝導性p + (n+ )層、左J・・・
半絶縁性層、 5グ・・高電気伝導性n+(p+)層。 特許出願人 日本電信電話公社 (A)            (B)JJLJ+ JNN (B)
Figures 7 (2) and 2) are cross-sectional views showing two examples of the configuration of a conventional solar cell; Figure 2 (2) is a cross-sectional view showing an example of the basic configuration of a solar cell according to the present invention; Figure 2 (J3) is a sectional view showing one embodiment of the solar cell of the present invention;
FIG. S is a sectional view showing another embodiment of the solar cell of the present invention. /-homo pn junction, 2-=Ga, AlAs layer 1, ? -= pn junction of GaAjlAs layer. G... pn junction between CaAs layer and 5-GaAs layer. 6.Tunnel junction //... Upper cell semiconductor material. /3...lower cell semiconductor material, /3...pn junction for upper cell. /Da... pn junction for lower cell. lS...window layer, /A...upper cell p(n) layer. /7... Upper cell n(p) layer, 1g... Lower cell p(n) layer. /q...lower cell n (p) layer. 〃... Upper cell p(c) required electrode, 2/... Upper cell n(p) required electrode 5... Lower cell p(n) required electrode. Sword... lower cell n) required electrode, 21/,... anti-reflection film. J...Sunlight. 3k −= p −Gao, 2Aj! , 8As layer, 3
6-p-Ga, 6AJ. , 4As layer. , 77-n -Ga, , 6AJ, 4As layer, 3g...
p-GaAs layer 1. 79 ・n-GaAs layer, qθ・=p-Ga, 6A1°, 4As layer electrode. y/-n -Ga, 6A, 4As layer electrode, q2-
Electrode for p-GaAs layer. '43-N-GaAS layer electrode, t...Antireflection film Sl High electrical conductivity n+ (p+) layer. View: Highly conductive p+ (n+) layer, left J...
Semi-insulating layer, 5g... Highly electrically conductive n+ (p+) layer. Patent applicant Nippon Telegraph and Telephone Public Corporation (A) (B) JJLJ+ JNN (B)

Claims (1)

【特許請求の範囲】 1)禁止帯幅の異なる半導体のpn接合を有する複数個
のセルをプレーナ状に多層に積層し、前記セルの各々の
電気的接続部を太陽電池本体表面あるいは裏面に配置し
たことを特徴とする太陽電池。 2、特許請求の範囲第1項記載の太陽電池において、前
記セルに対して該セルに電気的に接続される高電気伝導
性の半導体層を設けたことを特徴とする太陽電池。 3)特許請求の範囲第1項または第一項に記載の太陽電
池において、前記セルの各々の中間に、該セルを電気的
に分離するための半絶縁性の半導体層を設けたことを特
徴とする太陽電池。
[Claims] 1) A plurality of cells having p-n junctions made of semiconductors with different forbidden band widths are laminated in a multilayer planar shape, and the electrical connection portions of each of the cells are arranged on the front or back surface of the solar cell main body. A solar cell characterized by: 2. The solar cell according to claim 1, further comprising a highly electrically conductive semiconductor layer electrically connected to the cell. 3) The solar cell according to claim 1 or 1, characterized in that a semi-insulating semiconductor layer is provided between each of the cells to electrically isolate the cells. solar cells.
JP58011469A 1983-01-28 1983-01-28 Solar battery Pending JPS59138386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58011469A JPS59138386A (en) 1983-01-28 1983-01-28 Solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58011469A JPS59138386A (en) 1983-01-28 1983-01-28 Solar battery

Publications (1)

Publication Number Publication Date
JPS59138386A true JPS59138386A (en) 1984-08-08

Family

ID=11778930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58011469A Pending JPS59138386A (en) 1983-01-28 1983-01-28 Solar battery

Country Status (1)

Country Link
JP (1) JPS59138386A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0984494A1 (en) * 1998-03-19 2000-03-08 Toyota Jidosha Kabushiki Kaisha Solar battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0984494A1 (en) * 1998-03-19 2000-03-08 Toyota Jidosha Kabushiki Kaisha Solar battery
EP0984494A4 (en) * 1998-03-19 2001-05-09 Toyota Motor Co Ltd Solar battery
CN1319179C (en) * 1998-03-19 2007-05-30 丰田自动车株式会社 Solar battery

Similar Documents

Publication Publication Date Title
US5019177A (en) Monolithic tandem solar cell
US5322572A (en) Monolithic tandem solar cell
US5853497A (en) High efficiency multi-junction solar cells
US6239354B1 (en) Electrical isolation of component cells in monolithically interconnected modules
US6552259B1 (en) Solar cell with bypass function and multi-junction stacked type solar cell with bypass function, and method for manufacturing these devices
US6359210B2 (en) Solar cell having an integral monolithically grown bypass diode
US5391896A (en) Monolithic multi-color light emission/detection device
KR20080079058A (en) Thin-film solar cell module and fabrication method thereof
CN101740663A (en) Method of manufacturing solar cell
US20100095998A1 (en) Low resistance tunnel junctions for high efficiency tanden solar cells
CN111213235B (en) Solar panel with four-terminal stacked solar cell arrangement
JPH02135786A (en) Solar battery cell
EP1443566B1 (en) Solar cell having an integral monolithically grown bypass diode
US20150295114A1 (en) Multi-junction power converter with photon recycling
JPS63100781A (en) Semiconductor element
JPH0661513A (en) Laminated solar battery
JP3368822B2 (en) Solar cell
WO1999048157A1 (en) Solar battery
JPS59138386A (en) Solar battery
JPH08204215A (en) Series connected solar cell
JPH0955522A (en) Tunnel diode
US20200395495A1 (en) Multi-junction solar cell
JPH0548134A (en) Solar battery and its manufacture
JPH03263880A (en) Solar cell and manufacture thereof
RU2701873C1 (en) Semiconductor structure of multi-junction photoconverter