JPS5913831B2 - electrochemical photocell - Google Patents

electrochemical photocell

Info

Publication number
JPS5913831B2
JPS5913831B2 JP50032054A JP3205475A JPS5913831B2 JP S5913831 B2 JPS5913831 B2 JP S5913831B2 JP 50032054 A JP50032054 A JP 50032054A JP 3205475 A JP3205475 A JP 3205475A JP S5913831 B2 JPS5913831 B2 JP S5913831B2
Authority
JP
Japan
Prior art keywords
oxide film
electrode
titanium
current
electrochemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50032054A
Other languages
Japanese (ja)
Other versions
JPS51107074A (en
Inventor
健一 本多
昭 藤島
紘一 小早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP50032054A priority Critical patent/JPS5913831B2/en
Publication of JPS51107074A publication Critical patent/JPS51107074A/ja
Publication of JPS5913831B2 publication Critical patent/JPS5913831B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Description

【発明の詳細な説明】 本発明は電気化学光電池に関する。[Detailed description of the invention] The present invention relates to electrochemical photovoltaic cells.

詳しくは本発明はチタン酸化皮膜電極を用いた電気化学
光電池に関する。本発明者らは先にTiO2、ZnOな
どのn型半導体電極に光照射すると電解酸化反応の電位
がより卑な電位へシフトし、酸素の発生が平衡電位より
も低いところで起る現象を見出し、光増感電解酸化と名
づけた(工業化学雑誌7−2、108一113(196
9))、また本発明者らはこの光増感電解現象を利用し
て光照射したn型半導体電極を負極、pt電極等の対向
電極を正極、水を活物質とする電気化学光電池(特公昭
46一20182号)、更には異なつたpH値を有する
電解質水溶液を2つの単極室を透電性隔壁で接続した電
気化学電池(特願昭49−25036号)を開発した。
More specifically, the present invention relates to an electrochemical photovoltaic cell using a titanium oxide film electrode. The present inventors have previously found that when an n-type semiconductor electrode such as TiO2 or ZnO is irradiated with light, the potential of the electrolytic oxidation reaction shifts to a more base potential, and oxygen generation occurs below the equilibrium potential. It was named photosensitized electrolytic oxidation (Industrial Chemistry Magazine 7-2, 108-113 (196
9)), and the present inventors utilized this photosensitized electrolytic phenomenon to develop an electrochemical photovoltaic cell (specially In addition, he developed an electrochemical cell (Japanese Patent Application No. 49-25036) in which two monopolar chambers connected by a conductive partition wall were made of electrolyte aqueous solutions having different pH values.

上記の光電池は、太陽光線のような無尽蔵に存在する光
エネルギーを電気エネルギーに変換すると同時に豊富に
存在する天然資源である水を分解して酸素並びに水素を
与えるものであつて、原理的には極めて注目すべきもの
ではある力、その電極に単結晶のTiO2半導体を使用
しているため非常に高価であり、実用的には不満足なも
のであつた。
The photovoltaic cell described above converts inexhaustible light energy such as sunlight into electrical energy, and at the same time decomposes water, an abundant natural resource, to provide oxygen and hydrogen. What is extremely noteworthy is that it uses a single-crystal TiO2 semiconductor for its electrodes, making it very expensive and unsatisfactory for practical use.

n型半導体電極を使用した電気化学光電池について、こ
れまでい〈つかo改良が試みられているが、現在までの
ところ、大きな成功を収めるに至つていな(・。本発明
者らは、TiO2半導体電極を用いた電気化学電池の実
用性を高めるため0改良につき、鋭意検討を重ねていた
が、チタン金属を高温で処理し表面に酸化皮膜を作つた
チタン酸化皮膜電極を用いることによつて光電池特性が
同程度で経済性を大幅に向上させ得ることを見出して本
発明に到達した。本発明の目的は光電池特性をそこなわ
ずに安価なTiO2半導体電極を提供することにあり、
この目的はチタン金属を高温処理し表面に酸化皮膜を生
成させたチタンの酸化皮膜電極と対向電極とを被電解液
を入れた器内に設置し、チタン酸化皮膜の表面に光を照
射し、両電極の導線の両端から電気的出力を得ることに
よつて達成される。以下に本発明について詳細に説明す
る。
Attempts have been made to improve electrochemical photovoltaic cells using n-type semiconductor electrodes, but so far they have not achieved great success. In order to improve the practicality of electrochemical cells using semiconductor electrodes, we have been conducting extensive research into improving the electrochemical cell, but we have discovered that by using a titanium oxide film electrode, which is made by treating titanium metal at high temperatures to form an oxide film on its surface. The present invention was achieved by discovering that the economical efficiency can be significantly improved while the photovoltaic properties are at the same level.The purpose of the present invention is to provide an inexpensive TiO2 semiconductor electrode without impairing the photovoltaic properties.
The purpose of this is to place a titanium oxide film electrode, which is made by treating titanium metal at a high temperature to form an oxide film on its surface, and a counter electrode in a container containing a liquid to be electrolyzed, and to irradiate the surface of the titanium oxide film with light. This is achieved by obtaining electrical output from both ends of the conductors of both electrodes. The present invention will be explained in detail below.

本発明においては、TiO2電極としてチタン金属に酸
化皮膜を形成させたものを用いる。
In the present invention, a titanium metal with an oxide film formed thereon is used as the TiO2 electrode.

チタン金属の酸化皮膜生成法としては一般に電解酸化法
と高温酸化法があるが、本発明に}いては、後者が採用
される。すなわち、チタン板を種々の条件下で高温酸化
して得られるチタン金属酸化皮膜を電気化学光電池のア
ノードとする場合へチタン板の圧延板を脱脂しただけで
そのまま試料としたものの表面を定電位および定電流密
度で陽極酸化して得たチタン陽極酸化皮膜を使用する場
合と比較して極めて優れた特性を示し、とりわけガス炎
高温酸化して得られる酸化皮膜に訃いてはおよそ10倍
の特性値を得ることができる。
Generally, there are an electrolytic oxidation method and a high-temperature oxidation method as methods for forming an oxide film on titanium metal, and in the present invention, the latter is adopted. In other words, when a titanium metal oxide film obtained by oxidizing a titanium plate at high temperature under various conditions is used as an anode for an electrochemical photovoltaic cell, a rolled titanium plate is simply degreased and used as a sample, and the surface is heated to a constant potential. It shows extremely superior properties compared to the case of using a titanium anodic oxide film obtained by anodizing at constant current density, and in particular, the property value is about 10 times higher than that of the oxide film obtained by gas flame high temperature oxidation. can be obtained.

チタン金属を、都市ガスその他のガスの炎や電気炉中で
高温処理し表面に酸化皮膜をつくり、表面積1cdとな
るようにエポキシ樹脂などで被覆した電極について温度
条件などを変えて光照射下でポテンシヨスタツトを用い
て電位・電流の測定を中心に電気化学光電池のアノード
としての特性を検討した。
Titanium metal is treated at high temperature in a city gas or other gas flame or in an electric furnace to form an oxide film on the surface, and then the electrode is coated with epoxy resin to a surface area of 1 cd and exposed to light under different temperature conditions. We investigated the characteristics of an anode for electrochemical photocells, focusing on measuring potential and current using a potentiostat.

第1図は一定時間(5分間)種々の温度のガス炎中で焼
成したチタン酸化物電極の500Wキセノン燈照射下に
卦ける電位・電流曲線を示すものである。熱処理しない
チタン電極、すなわち高温酸化皮膜が生成していないチ
タン電極では、光電流がほとんど流れていないが、皮膜
生成とともに酸化電流が増大し、1350℃以上では域
少しはじめる。一方、電気炉を用いて1000℃以下の
条件での酸化皮膜形成ど光電極挙動についてへ長時間加
熱すれば約400℃から光感応性皮膜が得られ、約75
0℃で最高の光電極挙動を示す(図示せず)。第2図は
炎温度1300℃のときの焼成時間に対する酸化電流の
関係を示したものである。焼成とともに半導体性質のあ
る膜が成長し、電流も上昇するが、一定時間よりも長い
焼成では酸化が進んで抵抗を増大させるため電流も減少
していくことがわかる。すなわち、酸化電流は膜組成や
膜厚などと密接な関係があることが理解されるが、更に
酸化膜のX線回折による組成分析と酸化電流との関連を
示す第3図の結果も同様にこの関係のあることを示して
いる。すなわち、酸化温度上昇とともにチタン量が減少
しルチ′型TiO,の量が増加し、半導体的性質のある
膜が成長し光電流も上昇するが、1400℃になると酸
化が進んで膜の一部が化学量論比の高抵抗のルチル型T
iO2となり光電流が減少してくる。このことは良好な
光電極挙動を得るには、結晶中に酸素欠陥によるドナー
が存在することと、光を十分に吸収できるだけの膜厚が
必要であり例えば酸素不足雰囲気である都市ガス炎中で
は酸素の供給が十分でないために酸素欠陥のある膜とな
り良好な光感応性を示すものと推禎1される。前述した
ように、チタン金属を高温酸化して得たチタン酸化皮膜
、とくにチタン板を種々のガス炎中で高温酸化させて得
た皮膜はすぐれた光電極挙動を示す。
FIG. 1 shows the potential/current curves of a titanium oxide electrode fired in a gas flame at various temperatures for a certain period of time (5 minutes) under irradiation with a 500 W xenon lamp. In a titanium electrode that is not heat-treated, that is, in a titanium electrode in which no high-temperature oxide film is formed, almost no photocurrent flows, but the oxidation current increases as the film forms, and begins to rise slightly above 1350°C. On the other hand, if an electric furnace is used to heat the oxide film for a long time under conditions of 1000°C or less, a photosensitive film can be obtained from about 400°C, and about 75%
The best photoelectrode behavior is shown at 0° C. (not shown). FIG. 2 shows the relationship between oxidation current and firing time when the flame temperature is 1300°C. It can be seen that as the film is fired, a film with semiconductor properties grows and the current increases, but if the firing is longer than a certain period of time, oxidation progresses and resistance increases, so the current also decreases. In other words, it is understood that the oxidation current is closely related to the film composition, film thickness, etc., but the results in Figure 3, which show the relationship between the compositional analysis of the oxide film by X-ray diffraction and the oxidation current, are also similar. This shows that there is a relationship. That is, as the oxidation temperature increases, the amount of titanium decreases and the amount of ruti'-type TiO increases, a film with semiconductor properties grows and the photocurrent increases, but at 1400°C, oxidation progresses and part of the film is a high resistance rutile type T with a stoichiometric ratio.
The photocurrent becomes iO2 and decreases. This means that in order to obtain good photoelectrode behavior, it is necessary to have donors due to oxygen defects in the crystal and to have a film thickness sufficient to absorb light. It is presumed that due to insufficient supply of oxygen, the film becomes a film with oxygen defects and exhibits good photosensitivity. As mentioned above, titanium oxide films obtained by high-temperature oxidation of titanium metal, particularly films obtained by high-temperature oxidation of titanium plates in various gas flames, exhibit excellent photoelectrode behavior.

チタン板をブンゼンパーナ一を多数個等間隔に配置した
加熱源にて適当時間加熱して酸化皮膜を形成させた電極
素子は安価でかつ簡単に作製できる。次に得られたチタ
ン酸化皮膜をアノードとして電気化学光電池を組み立て
る方法を説明する。
An electrode element in which an oxide film is formed by heating a titanium plate for a suitable period of time using a heat source including a large number of Bunsen Parners placed at equal intervals can be produced at low cost and easily. Next, a method for assembling an electrochemical photocell using the obtained titanium oxide film as an anode will be explained.

水あるい各種電解質水溶液から選ばれた被電解液、例え
ば水酸化カリウム、水酸化ナトリウム、硫酸ナトリウム
、塩化ナトリウム、硫酸等の水溶液を入れた容器内に前
記チタン酸化皮膜電極と平滑白金電極等の対向電極を対
設し、それぞれの電極を適当な負荷等を入れあるいは無
負荷で接続し閉回路を形成し、チタン酸化皮膜電極に光
照射できるように容器に窓を設ける。この場合被電解皮
膜を電解質水溶液とし、その容器を二分してそれぞれ単
極室とし、2室間を透電性隔壁で接続し、チタン酸化皮
膜電極側の室のPH値を他方室より高くし、より光電池
効率を高めた力式とすることもできる。各電極上部には
発生するガスを捕集するため・の装置を設け、更に捕集
ガス貯槽を接続してもよい。得られた光電池を作動させ
るには、チタン酸化皮膜電極の表面を光照射し、この場
合照射光は3.0eVよりも高エネルギー、すなわち4
15mμよりも短波長である必要がある。具体的には水
銀灯、キセノン灯、太陽光線が用いられる。このチタン
酸化皮膜を電気化学光電池のアノードとして用い、太陽
光のもとで作動させて実際かなりの量の水素を得ること
ができることから無公害の理想燃料といわれる水素を安
価に製造する手段に重要な後割をはたすものである。
The titanium oxide film electrode and the smooth platinum electrode are placed in a container containing an electrolyte solution selected from water or various electrolyte aqueous solutions, such as an aqueous solution of potassium hydroxide, sodium hydroxide, sodium sulfate, sodium chloride, sulfuric acid, etc. Opposite electrodes are provided, each electrode is connected with an appropriate load or the like or with no load to form a closed circuit, and a window is provided in the container so that the titanium oxide film electrode can be irradiated with light. In this case, the membrane to be electrolyzed is an electrolyte aqueous solution, the container is divided into two, each having a monopolar chamber, the two chambers are connected with a conductive partition, and the PH value of the chamber on the titanium oxide layer electrode side is set higher than that of the other chamber. It is also possible to use a power type with higher photovoltaic efficiency. A device for collecting the generated gas may be provided above each electrode, and a collected gas storage tank may be connected thereto. To operate the resulting photovoltaic cell, the surface of the titanium oxide film electrode is irradiated with light, in which case the irradiated light has an energy higher than 3.0 eV, i.e. 4
The wavelength needs to be shorter than 15 mμ. Specifically, mercury lamps, xenon lamps, and sunlight are used. This titanium oxide film can be used as the anode of an electrochemical photovoltaic cell and operated under sunlight to produce a considerable amount of hydrogen, making it an important means of inexpensively producing hydrogen, which is said to be an ideal pollution-free fuel. It gives you a discount.

以下に本発明の実施の態様を実施例等によりさらに具体
的に説明するが、本発明はその要旨を超えなX.根り以
下の実施例により限定されるものではなX,)実施例
1 〔単槽式電気化学光電池の製造〕 市販のチタン金属板(厚さ0.1Twft)をブンゼン
バーナ一を等間隔に9ケ並べた都市がス炎温度1300
℃で均一な皮膜ができるよう種々時間を変えて加熱した
Embodiments of the present invention will be described in more detail below with reference to Examples, but the present invention does not go beyond the gist of the invention. EXAMPLES Without being limited by the following examples
1 [Manufacture of a single tank type electrochemical photovoltaic cell] Nine commercially available titanium metal plates (thickness 0.1 Twft) were arranged with Bunsen burners at equal intervals, and the flame temperature was 1300.
The mixture was heated at ℃ for various times to form a uniform film.

得られたチタン酸化皮膜をアノードとしこれにリード線
をハンダコテを用いて接続し、カソードとして平滑白金
板を選び同じくリード線を接続し一端に透明石英板から
なる光照射窓を設けて水槽中に対向設置し単槽式光電池
を得た。〔複槽式電気化学光電池の製造〕 一槽に1N−NaOHを他の槽に1N−H2SO4を入
れ両槽を透電性隔壁として塩橋を用いて接続し、前記チ
タン酸化皮膜をNaOH槽に設置してアノード室とし、
平滑白金板をH2SO4槽に設置してカソード室とした
The obtained titanium oxide film was used as an anode, and a lead wire was connected to it using a soldering iron. A smooth platinum plate was selected as a cathode, and a lead wire was also connected to it. A light irradiation window made of a transparent quartz plate was provided at one end, and it was placed in an aquarium. A single-tank photovoltaic cell was obtained by installing them facing each other. [Manufacture of double tank type electrochemical photovoltaic cell] Put 1N-NaOH in one tank and 1N-H2SO4 in the other tank, connect both tanks using a salt bridge as a conductive partition, and apply the titanium oxide film to the NaOH tank. Installed and used as an anode room,
A smooth platinum plate was placed in a H2SO4 tank to serve as a cathode chamber.

アノード室には透明石英板を用いた光照射用の窓を設け
複槽光電池を得た。(実施例 1)得られた複槽式電気
化学光電池を使用し炎温度が1300℃で加熱時間を変
えて得たチタン酸化皮膜電極(25×28wn)の5〜
7月0決晴時に}ける太陽光下の電流一電位曲線を第4
図に示す。
The anode chamber was equipped with a window for light irradiation using a transparent quartz plate to obtain a double tank photovoltaic cell. (Example 1) Titanium oxide film electrodes (25 x 28wn) obtained using the obtained double tank electrochemical photocell with a flame temperature of 1300°C and varying heating times.
The current-potential curve under sunlight at the time of clear skies in July is the 4th graph.
As shown in the figure.

加熱時間30秒においてもある程度の特性を示し加熱時
間を増すと特性は向上するが6〜8分程度で飽和した。
最適加熱条件はチタン板の大きさ、厚さ、加熱装置など
が関係する。第1表に上の条件で得た酸化皮膜Aと他の
条件で得た酸化皮膜(0.1w1n厚、25×28m1
1400℃2分)B1}よび真空中処理して得たTiO
2単結晶電極Cを同一条件で比較した特性0一例を示す
。酸化皮膜電極で単結晶電極と同等の光電極特性が得ら
れ加熱時間が適切であれば面積を大きくしても特性は低
下しない。
Even at a heating time of 30 seconds, some characteristics were exhibited, and as the heating time was increased, the characteristics improved, but saturated after about 6 to 8 minutes.
The optimal heating conditions are related to the size and thickness of the titanium plate, the heating device, etc. Table 1 shows oxide film A obtained under the above conditions and oxide film A obtained under other conditions (0.1w1n thickness, 25×28m1
1400°C 2 minutes) B1} and TiO obtained by treatment in vacuum
An example of the characteristics of two single-crystal electrodes C under the same conditions is shown below. An oxide film electrode can provide photoelectrode properties equivalent to those of a single crystal electrode, and if the heating time is appropriate, the properties will not deteriorate even if the area is increased.

第4図の8分加熱した電極を電解液組成1N−NaOH
(アノード室)一1N−H2SO4(カソード室)の電
気化学光電池とした場合、短絡電流は太陽光下で25m
Aを示し、l時間当り10軛の水素ガスを得た。(実施
例 2) 実施例1で示したチタン酸化皮膜電極のアノード面積を
大きくし大きな出力となる電池とするために酸化皮膜電
極をPt電極に対して複数個並列接続したところ、単一
アノード電池の場合の算術和を下回る回路電流が得られ
た。
The electrode heated for 8 minutes as shown in Figure 4 was heated using an electrolyte composition of 1N-NaOH.
(Anode chamber) -1N-H2SO4 (Cathode chamber) When using an electrochemical photocell, the short circuit current is 25m under sunlight.
A, and 10 yoke of hydrogen gas was obtained per hour. (Example 2) In order to increase the anode area of the titanium oxide film electrode shown in Example 1 and create a battery with high output, a plurality of oxide film electrodes were connected in parallel to the Pt electrode, and a single anode battery was obtained. A circuit current lower than the arithmetic sum for the case was obtained.

減少の程度は光強度が大きい、したがつて電流が大きい
ほど、また接続数を増すほど大きくなる。
The degree of reduction increases as the light intensity and hence the current increase, and as the number of connections increases.

単一アノードの電池の算術和電流に対する並列接続した
ときの実際の回路電流の関係を第5図に示す。この電流
の域少は塩橋や溶液などにおける抵抗による電圧降下に
よると考えられる。アノード4個並列の電気化学光電池
を5つ組立て、おの}の短絡下で作動させたところ、5
〜7月の快晴日で1日あたり(午前6〜午後5時)白金
カソードで合計約100011tの水素を捕集した。こ
の場合受光面積は1700cdであるから1イあたり6
tとなり水素の燃焼熱(68Kc&1/MOl)より1
8.2Kca1のエネルギーに相当し(太陽光のエネル
ギーを1日1w7あたり3000Kca1(日本全国平
均)とすれば効率は0.6%ということになる。
FIG. 5 shows the relationship between the arithmetic sum current of a single anode battery and the actual circuit current when connected in parallel. This small current range is thought to be due to voltage drop due to resistance in salt bridges, solutions, etc. When five electrochemical photovoltaic cells with four anodes in parallel were assembled and operated under short-circuit conditions, 5
A total of approximately 100,011 tons of hydrogen was collected using the platinum cathode per day (from 6 a.m. to 5 p.m.) on a sunny day in July. In this case, the light receiving area is 1700 cd, so 6 per i
t becomes 1 from the heat of combustion of hydrogen (68Kc & 1/MOl)
This corresponds to 8.2 Kca1 of energy (assuming that the energy of sunlight is 3000 Kca1 (Japan's national average) per 1w7 per day, the efficiency is 0.6%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図屯チタ7焼成温度と電位、電流との関係を示し、
第2図は1300℃におけるチタン焼成時間と酸化電流
との関係を示し、第3図はチタン焼成温度と電流あるい
はX線回折強度との関係を示し、第4図はチタン焼成時
間と電位、電流との関係を示し、そして第5図は艷ヒ皮
膜電極を並列接続したときの実回洛電流と算術和電流と
の関係を示すものである。
Figure 1 shows the relationship between firing temperature, potential, and current.
Figure 2 shows the relationship between titanium firing time and oxidation current at 1300°C, Figure 3 shows the relationship between titanium firing temperature and current or X-ray diffraction intensity, and Figure 4 shows the relationship between titanium firing time, potential, and current. FIG. 5 shows the relationship between the actual loop current and the arithmetic sum current when the membrane electrodes are connected in parallel.

Claims (1)

【特許請求の範囲】[Claims] 1 チタン金属を加熱処理し表面に酸化皮膜を生成させ
たチタンの酸化皮膜電極と対向電極とを、被電解液を入
れた器内に設置し、チタン酸化皮膜電極の表面に光を照
射し、両電極の導線の両端から電気的出力を得るように
したことを特徴とする電気化学電池
1. A titanium oxide film electrode, which is made by heat-treating titanium metal to form an oxide film on its surface, and a counter electrode are placed in a container containing an electrolyte, and the surface of the titanium oxide film electrode is irradiated with light. An electrochemical cell characterized in that electrical output is obtained from both ends of the conductor wires of both electrodes.
JP50032054A 1975-03-17 1975-03-17 electrochemical photocell Expired JPS5913831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50032054A JPS5913831B2 (en) 1975-03-17 1975-03-17 electrochemical photocell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50032054A JPS5913831B2 (en) 1975-03-17 1975-03-17 electrochemical photocell

Publications (2)

Publication Number Publication Date
JPS51107074A JPS51107074A (en) 1976-09-22
JPS5913831B2 true JPS5913831B2 (en) 1984-04-02

Family

ID=12348141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50032054A Expired JPS5913831B2 (en) 1975-03-17 1975-03-17 electrochemical photocell

Country Status (1)

Country Link
JP (1) JPS5913831B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148245U (en) * 1984-09-04 1986-04-01

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826623B2 (en) * 1976-12-20 1983-06-03 松下電器産業株式会社 photocell
US4511638A (en) * 1983-06-01 1985-04-16 Energy Conversion Devices, Inc. Photoresponsive amorphous semiconductor materials, methods of making the same, and photoanodes made therewith
JP3795515B1 (en) 2005-08-10 2006-07-12 善典 中川 Manufacturing method of semiconductor photoelectrochemical cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148245U (en) * 1984-09-04 1986-04-01

Also Published As

Publication number Publication date
JPS51107074A (en) 1976-09-22

Similar Documents

Publication Publication Date Title
US4042758A (en) Photochemical cell
Archer Electrochemical aspects of solar energy conversion
Bak et al. Photo-electrochemical properties of the TiO2-Pt system in aqueous solutions
US4427749A (en) Product intended to be used as a photocatalyst, method for the preparation of such product and utilization of such product
Fan et al. Semiconductor electrodes. 31. Photoelectrochemistry and photovoltaic systems with n-and p-type tungsten selenide (WSe2) in aqueous solution
ES450192A1 (en) Solar energy conversion
Akikusa et al. Photoresponse and AC impedance characterization of n-TiO2 films during hydrogen and oxygen evolution reactions in an electrochemical cell
Khan et al. Stability and Photoresponse of Nanocrystalline n‐TiO2 and n‐TiO2/Mn2 O 3 Thin Film Electrodes during Water Splitting Reactions
Liang et al. Photocathode-assisted redox flow desalination
US4501804A (en) Photo-assisted electrolysis cell with p-silicon and n-silicon electrodes
Ohashi et al. Hydrogen and electricity from water and light
Jayewardena et al. Fabrication of n-Cu2O electrodes with higher energy conversion efficiency in a photoelectrochemical cell
US4124464A (en) Grooved n-type TiO2 semiconductor anode for a water photolysis apparatus
US4253919A (en) Electrodeposition of cadmium-selenium semiconducting photoelectrodes from an acid citrate bath
JPS5913831B2 (en) electrochemical photocell
US4734168A (en) Method of making n-silicon electrodes
Minoura et al. CdS-electrochemical photocell with S2− ion-containing electrolyte
CN103219565B (en) Inverse photoelectrochemicalcell cell
US4379740A (en) Photoassisted generation of hydrogen from water
CA1237510A (en) Liquid junction photoelectrodes using amorphous silicon-based thin film semiconductor
US3879228A (en) Photo-regenerative electrochemical energy converter
JP2019503435A (en) Photocathode for photoelectrolysis device, method for producing photocathode, and photoelectrolysis device
Sakamaki et al. Photoelectrochemical visible light zero-bias hydrogen generation with membrane-based cells designed for decreasing overall water electrolysis voltage and water dissociation: the second stage
JPS5927391B2 (en) Water splitting device using light energy
Pandey et al. Solar hydrogen production using semiconductor septum (n-CdSeTi and n-TiO2Ti) electrode based photoelectrochemical solar cells