JPS59137513A - Production of high-quality, high-performance carbon fiber - Google Patents

Production of high-quality, high-performance carbon fiber

Info

Publication number
JPS59137513A
JPS59137513A JP1182883A JP1182883A JPS59137513A JP S59137513 A JPS59137513 A JP S59137513A JP 1182883 A JP1182883 A JP 1182883A JP 1182883 A JP1182883 A JP 1182883A JP S59137513 A JPS59137513 A JP S59137513A
Authority
JP
Japan
Prior art keywords
atmosphere
carbon
fiber
inert
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1182883A
Other languages
Japanese (ja)
Inventor
Hajime Torigata
鳥潟 肇
Nobuyuki Matsubara
伸行 松原
Minoru Yoshinaga
吉永 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1182883A priority Critical patent/JPS59137513A/en
Publication of JPS59137513A publication Critical patent/JPS59137513A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:Acrylic fiber is preoxidized by heating it in an oxidative atmosphere in the presence of a specific amount of a reactive inorganic metal or metal-containing compound, then carbonization is effected in an inert atmosphere at high temperature to remove a trace amount of inorganic components in the atmosphere, thus producing the titled carbon fiber. CONSTITUTION:When acrylic fiber is converted into preoxidized fiber by heating it in an oxidative atmosphere and the resultant fiber is carbonized by heating it in an inert atmosphere at higher temperature, an oxidative gas and an inert gas containing a reactive inorganic metal or metal-containing compound that reacts with carbon to form metal-carbon solid solution, carbide and/or acetilide at at least 500 deg.C in an amount lower than about 0.5mg/Nm<3> are used as the oxidative and inert atmospheres to produce the objective high-quality, high-performance carbon fiber.

Description

【発明の詳細な説明】 本発明は高品質、高性能炭素繊維の製造法に関する。[Detailed description of the invention] The present invention relates to a method for producing high quality, high performance carbon fiber.

従来、アクリル系繊維などのプレカーサから得られる炭
素繊維は、比強度、比弾性率などの力学的性質に優れて
おり、航空、宇宙用途から釣竿。
Conventionally, carbon fibers obtained from precursors such as acrylic fibers have excellent mechanical properties such as specific strength and specific modulus, and are used for aviation, space applications, and fishing rods.

ゴルフシャフトおよびテニス・ラケットまでの広い用途
に使用され、大量に生産されている。その製造法として
、アクリル系繊維からの炭素繊維の製造法を1例に挙げ
ると、該アクリル系繊維を予        長かしめ
、酸化性雰囲気中で加熱して該繊維を構成定な構造を有
する繊維に転換せしめる耐炎化工程もしくは酸化工程お
よびさらに高温の不活性ガス雰囲気中で加熱して前記熱
安定化繊維を炭素繊維に転換せしめる炭化乃至黒鉛化工
程からなっているが、上記耐炎化(酸化)及び炭化工程
は炭素繊維の工業的製造においてそ9力学的性質および
生−サのアクリル系繊維は高温の酸化雰囲気に曝される
ことによって化学的にその分子構造が変化すると共に、
各種多様な熱分解物を形成し、この熱分解物によって繊
維表面が汚染されたり、単糸相互間が融着し、さらに耐
炎化の進行につれて繊維の内、外部の構造的欠陥がボイ
ドやクランク等の欠陥として顕在化し、得られる炭素繊
維の品質。
It is used in a wide variety of applications, including golf shafts and tennis rackets, and is produced in large quantities. One example of a manufacturing method is a method for manufacturing carbon fibers from acrylic fibers. The acrylic fibers are pre-lengthened and heated in an oxidizing atmosphere to transform the fibers into fibers with a defined structure. The process consists of a flame-retardant step or an oxidation step to convert the heat-stabilized fibers into carbon fibers, and a carbonization or graphitization step to convert the heat-stabilized fibers into carbon fibers by heating in a high-temperature inert gas atmosphere. The carbonization process is used in the industrial production of carbon fibers.The mechanical properties and raw acrylic fibers are exposed to a high-temperature oxidizing atmosphere, which chemically changes their molecular structure.
A variety of pyrolytic products are formed, and these pyrolytic products can contaminate the fiber surface, fuse the filaments together, and as flame resistance progresses, structural defects inside and outside the fibers can form, such as voids and cracks. The quality of the resulting carbon fiber manifests itself as defects such as.

性能を低下させると言われている。また、炭化工程にお
いても、上記酸化工程よりさらに高温の不活性雰囲気で
加熱され、熱分解物を形成し、酸化工程と同様の問題が
生ずる。そして、このような耐炎化および炭化工程にお
ける炭素繊維の品質。
It is said to reduce performance. Furthermore, in the carbonization step, the material is heated in an inert atmosphere at a higher temperature than the oxidation step, and thermal decomposition products are formed, causing the same problems as in the oxidation step. And the quality of carbon fiber in such flameproofing and carbonization processes.

性能の低下を防止するために、プレカーサとしてのアク
リル系繊維の改良、融着防止のための油剤付与ならびに
耐炎化および炭化手段の改良について多くの提案がなさ
れている。それらの中でも。
In order to prevent the deterioration of performance, many proposals have been made for improving the acrylic fiber as a precursor, adding an oil agent to prevent fusion, and improving flame resistance and carbonization means. Among them.

特開昭53−126325号公報には、プレカーサのア
クリル系繊維は、その製造原料および製造プロセスに起
因して該繊維中に不純物1例えば。
JP-A-53-126325 discloses that precursor acrylic fibers contain, for example, impurities in the fibers due to the raw materials and manufacturing process.

金属、ハロゲン、イオウ等が含有されると、得られる炭
素繊維の耐酸化性や電気的性質が低・下することが記載
されている。
It is stated that when metals, halogens, sulfur, etc. are contained, the oxidation resistance and electrical properties of the resulting carbon fibers are reduced.

本発明者らは、このような繊維そのものに含まれる不純
物ではなくて、加熱雰囲気、特に酸化性気体および不活
性気体中に含まれる微量成分が炭素繊維の物性に及ぼす
影響について鋭意検討を行った結果、該酸化繊維の炭化
温度で炭素と反応して固溶体、カーバイドおよび/また
はアセチリドなどを形成すると言われている無機金属類
およびそれらの金属化合物の影響が大きいことを見いだ
し9本発明を為すにいたったものである。
The present inventors have conducted extensive studies on the influence of trace components contained in the heating atmosphere, particularly oxidizing gases and inert gases, on the physical properties of carbon fibers, rather than impurities contained in the fibers themselves. As a result, it was discovered that inorganic metals and their metal compounds, which are said to react with carbon to form solid solutions, carbides, and/or acetylides, etc. at the carbonization temperature of the oxidized fibers and their metal compounds have a large influence. That's all.

すなはち、一般に耐炎化工程に用いられる酸化性雰囲気
1例えば、空気中には、地域あるいは環境によって若干
の相違はあるとしても、有機物。
In other words, the oxidizing atmosphere generally used in the flameproofing process 1. For example, in the air there are organic substances, although there may be slight differences depending on the region or environment.

無機物および粉塵等の微小成分が含有されている。さら
に、上記耐炎化工程においては2酸化性雰囲気の汚染を
防止し、かつ環境衛生上並びに省エネルギーの見地から
、該酸化性雰囲気は触媒処理して循環使用されるが、こ
の場合に該触媒処理に起因する無機金属やそれらの化合
物が酸化性雰囲気中に混入される。また、同様に炭化工
程に用いられる不活性雰囲気9例えば、窒素中にも配管
等に起因する無機物および粉塵の微小成分が含有されて
いる。
Contains minute components such as inorganic substances and dust. Furthermore, in the above-mentioned flameproofing step, the oxidizing atmosphere is treated with a catalyst and recycled for use in order to prevent contamination of the oxidizing atmosphere and from the viewpoint of environmental hygiene and energy saving. Inorganic metals and their compounds are mixed into the oxidizing atmosphere. Similarly, the inert atmosphere 9, for example, nitrogen, used in the carbonization process also contains minute components of inorganic substances and dust caused by piping and the like.

本発明は、この酸化雰囲気中の微量無機成分および不活
性雰囲気中の微量無機成分が炭素繊維の物性に及ぼす影
響を明らかにし、高品質、高性能炭素繊維の工業的製造
方法を確立せんとすることを目的とするものである。
The present invention aims to clarify the effects of trace inorganic components in an oxidizing atmosphere and trace inorganic components in an inert atmosphere on the physical properties of carbon fibers, and to establish an industrial manufacturing method for high-quality, high-performance carbon fibers. The purpose is to

このような本発明の目的は前記特許請求の範囲に記載し
た発明、すなわち、耐炎化工程における酸化性雰囲気お
よび炭化工程における不活性雰囲気として、少なくとも
soo”cにおいて炭素と反応して固溶体、カーバイド
および/またはアセチリドを形成する無機金属類および
それらの化合物(以下1反応性熱機金属類と言う)の含
有量が約0゜5 m g / N m3  以下の雰囲
気を用いることにより達成することができる。本発明に
おいて酸化性雰囲気としては空気、不活性雰囲気として
窒素を代表例として挙げることができるがこれに限定さ
れるものではない。本発明の特徴は特定の微小成分の含
有量が少ない酸化性雰囲気および不活□ 性雰囲気を用いる点にある。            
     :ここで1本発明で云う少なくとも500’
Cにおいて炭素と反応して固溶体を形成する無機金属及
びその化合物としてはFeおよび酸化鉄があり。
The object of the present invention is to achieve the invention described in the claims, that is, as an oxidizing atmosphere in the flameproofing process and an inert atmosphere in the carbonizing process, reacting with carbon at least in soo'c to form a solid solution, carbide, and This can be achieved by using an atmosphere in which the content of acetylide-forming inorganic metals and their compounds (hereinafter referred to as 1-reactive thermomechanical metals) is about 0.5 mg/N m3 or less. In the present invention, air is representative of the oxidizing atmosphere, and nitrogen is representative of the inert atmosphere, but the present invention is not limited to these.The feature of the present invention is that the oxidizing atmosphere has a low content of specific minute components. and the use of an inert atmosphere.
: At least 500' as defined in the present invention.
Inorganic metals and compounds thereof that react with carbon to form a solid solution in C include Fe and iron oxide.

カーバイドを形成するものとしてはFe、Ni。Those that form carbide include Fe and Ni.

Co、Mn、Cr、Mo+ Ca、および炭酸カルシウ
ム等を代表例として挙げることができ、さらに、アセチ
リドを形成するものとしてはZn。
Typical examples include Co, Mn, Cr, Mo+Ca, and calcium carbonate, and furthermore, Zn forms an acetylide.

Cu、Mg、Cd、Au、AgおよびHgなどを例示す
ることができる。
Examples include Cu, Mg, Cd, Au, Ag, and Hg.

、本発明に用いる酸化性雰囲気中および不活性雰囲気中
の上記反応性無機金属類の含有量は可及的により少量9
通常約0 、 5 m g / N m’ 以下である
ことが必要であり、好ましくは約0.1mg/Nm’ 
 以下、さらに好ましくは約0.05mg/N m’ 
 以下にするのがよい。該反応性無機金属類の含有量が
約0 、 5 m g / N m’  を越えると本
発明の目的とする高品質、高性能炭素繊維の製造が難し
く、特に引張強伸度を飛曜的に向上させることが困難に
なるのである。特に2反応性無機金属類の中で固溶体を
形成するもの(Fe)は炭素繊維の物性に及ぼす影響が
大きいので0.05mg/ N m’ 以下にするのが
よい。
, the content of the above-mentioned reactive inorganic metals in the oxidizing atmosphere and inert atmosphere used in the present invention is as small as possible9
It usually needs to be about 0.5 mg/Nm' or less, preferably about 0.1 mg/Nm'
Below, more preferably about 0.05 mg/N m'
It is best to do the following. If the content of the reactive inorganic metals exceeds about 0.5 mg/Nm', it is difficult to produce high quality, high performance carbon fibers, which is the object of the present invention, and especially the tensile strength and elongation are extremely low. This makes it difficult to improve. In particular, among direactive inorganic metals, one (Fe) that forms a solid solution has a large effect on the physical properties of carbon fibers, so it is preferable to limit the amount to 0.05 mg/N m' or less.

このような反応性無機金属類の含有量が約0.5mg/
 Nm3以下の酸化性雰囲気および不活性雰囲気の調製
方法としては、雰囲気気体の強制濾過、該反応する液浴
中に雰囲気気体を吹き込み清浄化する方法などがあり特
に限定されるものではないが。
The content of such reactive inorganic metals is about 0.5 mg/
Methods for preparing the oxidizing atmosphere and inert atmosphere of Nm3 or less include, but are not particularly limited to, methods such as forced filtration of the atmospheric gas, and a method of blowing the atmospheric gas into the reacting liquid bath for cleaning.

好ましくは、ガラスフィルターや焼結金属フィルターに
よって濾過するのが工業的に有利である。
Preferably, it is industrially advantageous to filter with a glass filter or a sintered metal filter.

その1例を示すと、繊維径: 10ミクロン、厚さ:5
0mm、密度:8Kg/m3 、集塵効率ニア0%以上
(ダスト7ミクロン、2.5m/秒)のガラスフィルタ
ー(日本硝子繊維■製”MKR−10″)などがある。
One example is fiber diameter: 10 microns, thickness: 5
0mm, density: 8Kg/m3, and a dust collection efficiency of 0% or more (dust 7 microns, 2.5m/sec) glass filter ("MKR-10" manufactured by Nippon Glass Fiber ■).

本発明において、上記酸化製雰囲気および不活性雰囲気
の清浄化処理は、耐炎化工程に供給される酸化性気体お
よび炭化工程に供給される不活性気体すべてについて行
う必要があり、たとえば。
In the present invention, the cleaning treatment of the oxidizing atmosphere and inert atmosphere needs to be performed on all the oxidizing gas supplied to the flameproofing process and the inert gas supplied to the carbonization process, for example.

耐炎化工程に循環される空気、特に触媒処理されたもの
は勿論、未使用の新鮮空気も処理されるのである。この
ような酸化性雰囲気及び不活性雰囲気を用いる本発明の
炭素繊維の製造条件としては前記反応性無機金属類の含
有量が約0.5mg/Nm3以下の酸化性雰囲気中、2
30〜320Cの昇温下でブレカーサを加熱して耐炎化
繊維に転換し9次いで、該耐炎化繊維を少なくとも50
00Cの前記反応性無機金属類の含有量が約0.5mg
  /Nm3 以下の不活性雰囲気(窒素、ヘリウム、
アルゴン)中で昇温下に加熱し、炭化乃至黒鉛化する方
法がある。このような条件を採用するときは、得られる
炭素繊維の力学的性質の向上が著しい。本発明の酸化性
雰囲気および不活性雰囲気をもちいて、耐炎化−炭化す
ることにより。
Not only the air recycled to the flameproofing process, especially the catalytically treated one, but also the unused fresh air is treated. The conditions for producing the carbon fiber of the present invention using such an oxidizing atmosphere and an inert atmosphere are as follows: 2.
The breaker is heated at an elevated temperature of 30 to 320 C to convert it into flame resistant fibers.
The content of the reactive inorganic metals of 00C is about 0.5 mg
/Nm3 or less inert atmosphere (nitrogen, helium,
There is a method of carbonizing or graphitizing by heating at an elevated temperature in argon). When such conditions are adopted, the mechanical properties of the resulting carbon fibers are significantly improved. By flameproofing and carbonization using the oxidizing atmosphere and inert atmosphere of the present invention.

得られる炭素繊維の物性2品質の向上は耐炎化工程およ
び炭化工程において付着、結合する反応性無機金属類が
炭化工程において経時的に炭素質に転換されてい(繊維
と反応して、固溶体、カーバイドおよびアセチリドなど
、炭素とは異質の化合物を形成するのを抑制することに
よって達成されるのである。
Physical properties 2 of the resulting carbon fibers are improved because the reactive inorganic metals that adhere and bond during the flame resistance process and carbonization process are converted into carbonaceous substances over time during the carbonization process (reacting with the fibers to form a solid solution and carbide). This is achieved by suppressing the formation of compounds foreign to carbon, such as carbon and acetylide.

以下、実施例により本発明をさらに具体的に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

なお1本発明において、酸化性雰囲気および不活性雰囲
気中の反応性無機金属類の検出、定量法としては、柴田
化学社製光散乱方法デジタル粉塵計RA−3型を用いて
、公知の原子吸光法(たとえば、保田和雄、長谷用俊彦
共著、講談社発行「原子吸光分析」第336〜352ペ
ージ参照)に準じて測定した。
In the present invention, the method for detecting and quantifying reactive inorganic metals in an oxidizing atmosphere and an inert atmosphere uses a light scattering method digital dust meter RA-3 manufactured by Shibata Chemical Co., Ltd., and a known atomic absorption method. (For example, see pages 336 to 352 of "Atomic Absorption Spectrometry," co-authored by Kazuo Yasuda and Toshihiko Hase, published by Kodansha).

実施例 1.比較例 1 単糸繊度1d、単糸本数 6000本2強度5.6g/
d、伸度 11.5%のアクリル系繊維を空気を酸化性
雰囲気とする加熱炉中で240〜270 ℃で焼成し、
耐炎化繊維を作成した。
Example 1. Comparative example 1 Single yarn fineness 1d, number of single yarns 6000 2 strength 5.6g/
d. Acrylic fibers with an elongation of 11.5% are fired at 240 to 270 °C in a heating furnace with air as an oxidizing atmosphere,
We created flame-resistant fibers.

この際、第1表に示す各種無機金属化合物を含む酸化性
雰囲気を用いて耐炎化を行った。
At this time, flame resistance was achieved using an oxidizing atmosphere containing various inorganic metal compounds shown in Table 1.

得られた耐炎化繊維を各種無機金属化合物合計含有量0
.01mg/Nm’ 以下の窒素を不活性雰囲気とする
700〜1500’Cの炭化工程でそれぞれ昇温上炭化
して炭素繊維を作成した。
The total content of various inorganic metal compounds in the obtained flame-resistant fiber is 0.
.. Carbon fibers were produced by raising the temperature and carbonizing the carbon fibers in a carbonization step of 700 to 1500'C in an inert atmosphere of nitrogen of 01 mg/Nm' or less.

テストNo、1では、酸化性雰囲気に用いる空気を日本
硝子繊維社製のマイクログラスフィルターMKR−10
Aを用いて濾過し、空気中無機金属化合物量を0.01
mg/Nm3 にしたところ。
In test No. 1, the air used for the oxidizing atmosphere was filtered using a micro glass filter MKR-1 manufactured by Nippon Glass Fiber Co., Ltd.
Filter using A to reduce the amount of inorganic metal compounds in the air to 0.01
When it was set to mg/Nm3.

得られた炭素繊維の物性は強度340 k g/mm2
弾性率23.8t/mm2であった。
The physical properties of the obtained carbon fiber are strength: 340 kg/mm2
The elastic modulus was 23.8 t/mm2.

テストNo、  2〜6では、テストNo、lと同様空
気をMKR−10を用いて濾過後、この空気に各無機金
属化合物を第1表に示す量添加した。
In Test Nos. 2 to 6, air was filtered using MKR-10 as in Test No. 1, and each inorganic metal compound was added to the air in the amount shown in Table 1.

テストNo、’lおよびテストN o 、  31p 
M n O。
Test No.'l and Test No. 31p
M n O.

、  Ca COB  、は炭素とカーバイドを作る金
属化合物であり、雰囲気中に0 、 8 m g /N
m’ 。
, CaCOB, is a metal compound that forms carbide with carbon, and is present at 0.8 mg/N in the atmosphere.
m'.

1 、 0 m g / N m’  存在すると、得
られた炭素繊維の強度は、それぞれ265kg/mm2
,203K g / m m′L とテストNo、lに
比べ大幅に低下している。
1 and 0 mg/N m', the strength of the obtained carbon fibers is 265 kg/mm2, respectively.
, 203K g/mm'L, which is significantly lower than test No. 1.

またテストNo、4のF e;z03 は、炭素と固溶
体およびカーバイドを作るものであり、0.6mg/N
−存在するだけで、炭素繊維強度が176Kg/ m 
mス と著しく低下する。
In addition, Fe; z03 in Test No. 4 forms a solid solution and carbide with carbon, and has a concentration of 0.6 mg/N.
-The carbon fiber strength is 176Kg/m just by its presence.
ms decreases significantly.

テストNO65およびテストN016のZnOは。ZnO in test No. 65 and test No. 016.

炭素とカーバイドをつくり、また、アセチレンと反応し
てアセチリドを作る金属化合物である。
It is a metal compound that creates carbide with carbon and also reacts with acetylene to create acetylide.

テストN005に示すように、雰囲気中にZnOが0.
6mg / N−存在すると、得られる炭素繊維の強度
は280Kg/mm″Lに低下するが、テストNo、6
の0.4mg/Nm3では1強度が325Kg/in2
と強度低下がみられなかった。
As shown in test No. 005, ZnO was present in the atmosphere at 0.
6 mg/N - the strength of the obtained carbon fiber decreases to 280 Kg/mm''L, but test No. 6
At 0.4mg/Nm3, 1 strength is 325Kg/in2
No decrease in strength was observed.

・ 比較例 2 単糸繊度 1d、単糸本数 6000本8強度5.6g
/d、 伸度 11・5%のアクリル系繊維を240〜
270’Cの空気を酸化性雰囲気とする加熱炉で焼成し
、耐炎化繊維を作成した。
- Comparative example 2 Single yarn fineness 1d, number of single yarns 6000 8 strength 5.6g
/d, acrylic fiber with elongation of 11.5% from 240
A flame-resistant fiber was produced by firing in a heating furnace using air at 270'C as an oxidizing atmosphere.

この際、酸化性雰囲気に用いる空気を日本板硝子繊維社
製のマイクログラスフィルターMKR−10を用いて濾
過し、空気中の無機金属化合物量を0 、 01 m 
g / N m3 にした。得られた酸化繊維をF e
20JO,7rn g / N rn’  添加した窒
素を雰囲気とする700〜1500 °Cの炭化工程で
昇温下戻化して炭素繊維を作成した。得られた炭素繊維
の強度は150 K g/mm”  、弾性率は。
At this time, the air used for the oxidizing atmosphere was filtered using a microglass filter MKR-10 manufactured by Nippon Sheet Glass Fiber Co., Ltd. to reduce the amount of inorganic metal compounds in the air to 0.01 m
g/Nm3. The obtained oxidized fiber is F e
20 JO, 7 rn g/N rn' The carbon fibers were prepared by returning the carbon fibers at an elevated temperature in a carbonization process at 700 to 1500° C. in an atmosphere of nitrogen added. The obtained carbon fiber has a strength of 150 K g/mm'' and an elastic modulus of .

24、 5 t /mm’  であり2強度が大幅に低
下した。
24.5 t/mm', and the 2 strength decreased significantly.

実施例 2 単糸繊度 1d、単糸本数 6000本9強度5.6g
/d、伸度 11.5%のアクリル系繊維糸条を約24
00に設定された熱風循環式加熱炉中で酸化し9次いで
、700〜1500  @Cの昇温勾配を有する各種無
機金属化合物の合計含有量が0.01mg/Nm3以下
の窒素雰囲気炭化炉中に導いて炭化し、炭素繊維を製造
した。
Example 2 Single yarn fineness 1d, number of single yarns 6000 9 strength 5.6g
/d, elongation 11.5% acrylic fiber yarn about 24
Oxidized in a hot air circulation heating furnace set at 0.00C, then placed in a nitrogen atmosphere carbonization furnace with a temperature increase gradient of 700 to 1500 @C and a total content of various inorganic metal compounds of 0.01mg/Nm3 or less. It was then carbonized to produce carbon fiber.

この場合、上記熱風循環式加熱炉に循環する空気は接触
酸化触媒層を通じて清浄化し、これをそのまま循環させ
た。得られた炭素繊維の引張強度は270 K g/m
m2 であった。
In this case, the air circulating in the hot air circulation type heating furnace was purified through the catalytic oxidation catalyst layer and then circulated as it was. The tensile strength of the obtained carbon fiber is 270 K g/m
It was m2.

そこで、熱風循環式加熱炉に循環する空気を前記触媒処
理後3日本硝子繊維社製マイクログラスフィルターMK
R−10を用いて濾過したところ。
Therefore, after the above-mentioned catalyst treatment, the air circulating in the hot air circulation type heating furnace was
After filtering using R-10.

得られた炭素繊維の引張強度は350 K g / m
 m’であった。
The tensile strength of the obtained carbon fiber is 350 K g/m
It was m'.

なお、マイクログラスフィルターで濾過する前の循環空
気中の無機金属を原子吸光分析により。
Inorganic metals in the circulating air before being filtered with a microglass filter were analyzed using atomic absorption spectrometry.

分析、定量したところ、Je、Cu、Crが検知され、
その量は1 m g / N−に達ししていたが。
When analyzed and quantified, Je, Cu, and Cr were detected.
Although the amount reached 1 mg/N-.

前記フィルターで濾過した後は、O,01mg/Nm’
 であった。
After filtering with the filter, O.01mg/Nm'
Met.

特許出願人  東し株式会社Patent applicant: Toshi Co., Ltd.

Claims (1)

【特許請求の範囲】 アクリル系繊維を酸化性雰囲気中で加熱して耐炎化繊維
に転換し2次いで該耐炎化繊維を不活性雰囲気中でさら
に高温で加熱し炭化するに際して、前記酸化性雰囲気お
よび不活性雰囲気として1次の反応性無機金属類および
それらの金属含有化合物の含有量が、約0.5m g 
/ N m3以下である酸化性気体および不活性気体を
用いることを特徴とする高品質。 高性能炭素繊維の製造法。 ここで、上記反応性無機金属類およびそれらの金属含有
化合物とは、少なくとも500°Cの不活性雰囲気中に
おいて炭素と反応して金属炭素の固溶体、カーノ(イド
および/またはア
[Claims] When heating acrylic fibers in an oxidizing atmosphere to convert them into flame-resistant fibers, and then heating the flame-resistant fibers at a higher temperature in an inert atmosphere to carbonize them, the oxidizing atmosphere and As an inert atmosphere, the content of primary reactive inorganic metals and their metal-containing compounds is approximately 0.5 m g
High quality, characterized by the use of oxidizing gases and inert gases of less than / N m3. A method for producing high-performance carbon fiber. Here, the above-mentioned reactive inorganic metals and their metal-containing compounds are those that react with carbon in an inert atmosphere at at least 500°C to form a solid solution of metallic carbon, carno(ide) and/or acarno(ide) and/or acarno(ide).
JP1182883A 1983-01-27 1983-01-27 Production of high-quality, high-performance carbon fiber Pending JPS59137513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1182883A JPS59137513A (en) 1983-01-27 1983-01-27 Production of high-quality, high-performance carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1182883A JPS59137513A (en) 1983-01-27 1983-01-27 Production of high-quality, high-performance carbon fiber

Publications (1)

Publication Number Publication Date
JPS59137513A true JPS59137513A (en) 1984-08-07

Family

ID=11788621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1182883A Pending JPS59137513A (en) 1983-01-27 1983-01-27 Production of high-quality, high-performance carbon fiber

Country Status (1)

Country Link
JP (1) JPS59137513A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5052323A (en) * 1973-04-06 1975-05-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5052323A (en) * 1973-04-06 1975-05-09

Similar Documents

Publication Publication Date Title
US9156694B2 (en) Porous carbon and method of manufacturing same
JP4612287B2 (en) Silicon carbide fiber substantially free of whiskers and method for producing the same
JP4392432B2 (en) Method for producing carbonized fabric
JPS638209B2 (en)
US4073869A (en) Internal chemical modification of carbon fibers to yield a product of reduced electrical conductivity
DE3339756C2 (en)
KR20190064151A (en) Activated carbon with excellent adsorption performance
US3497318A (en) Preparation of carbon textiles from polyacrylonitrile base textiles
JP4355343B2 (en) Carbonized fabric manufacturing method and carbonized fabric obtained thereby
JPS59137513A (en) Production of high-quality, high-performance carbon fiber
JP4392433B2 (en) Method for producing carbonized fabric
CN1217394A (en) Polyacrylonitrile radical active carbon fiber and producing process therefor
JP4478797B2 (en) Method for producing silicon carbide based porous material
JP2591967B2 (en) Processed carbonaceous felt product and method for producing the same
JPS61132629A (en) Production of nonwoven fabrics of pitch activated carbon fiber
US3723605A (en) Process for the production of a continuous length of graphitic fibrous material
JP4355344B2 (en) Carbonized fabric manufacturing method and carbonized fabric obtained thereby
KR0151987B1 (en) Method of manufacturing carbon fiber
JP4022606B2 (en) Expanded graphite, method for producing the same, and oil absorbing material
JPH059812A (en) Porous carbon fiber, its production, production of porous graphite fiber and treatment of porous carbon fiber
JP4392435B2 (en) Method for producing carbonized fabric
JPS585287B2 (en) Treatment agent for firing carbon fiber precursor
JPS6152244B2 (en)
JPH05302215A (en) Porous carbon fiber and its production
JPH03174019A (en) Production of carbon yarn