JPS5913734A - Preparation of tertiary olefin - Google Patents

Preparation of tertiary olefin

Info

Publication number
JPS5913734A
JPS5913734A JP57121234A JP12123482A JPS5913734A JP S5913734 A JPS5913734 A JP S5913734A JP 57121234 A JP57121234 A JP 57121234A JP 12123482 A JP12123482 A JP 12123482A JP S5913734 A JPS5913734 A JP S5913734A
Authority
JP
Japan
Prior art keywords
catalyst
tertiary
selectivity
reaction
ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57121234A
Other languages
Japanese (ja)
Inventor
Yoshimi Ozaki
尾崎 吉美
Eizo Sueoka
末岡 英三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP57121234A priority Critical patent/JPS5913734A/en
Publication of JPS5913734A publication Critical patent/JPS5913734A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To prepare a tertiary olefin, keeping the excellent catalytic activity for a long period, without losing the high long-term reactivity and selectivity even at a low temperature, by decomposing a tertiary ether in the presence of steam using a heteropolyacid supported on a neutral or acidic carrier as a catalyst. CONSTITUTION:A hetropolyacid of formula (X is center element such as P, Si, B, etc.; M is legand element such as Mo, W, V, etc.; l is >1; m is 0.1-10; n is 6-18; p is 10-70; q is 0-40), e.g. silicomolybdic acid, phosphotungstic acid, etc. is supported on a neutral or acidic carrier (e.g. silica, alumina, carbon black, etc.) in an amount of 1-70wt%, preferably 5-50wt% to obtain a catalyst. A tertiary ether is made to contact with the catalyst in the presence of steam at 80-350 deg.C, preferably 100-250 deg.C to obtain the objective compound. The amount of steam is preferably 0.5-5mol per 1mol of the raw material.

Description

【発明の詳細な説明】 本発明は、第三級エーテルの分解によって第三級オレフ
ィンを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for producing tertiary olefins by decomposition of tertiary ethers.

種々の触媒の存在下に第三級エーテルを第三級オレフィ
ンとアルコールに分解する方法は知られている。例えば
米国特許第 3170000号によれば種々の金属酸化物触媒を使用
する方法が提案されているが、ここに具体的に開示され
ている触媒は、200 ’C以下というような低温度に
おける触媒活性が小さいためん工業的には望ましからざ
る高温度での操作を行わざるを得ないという難点を有す
る。
Methods are known for decomposing tertiary ethers into tertiary olefins and alcohols in the presence of various catalysts. For example, U.S. Pat. No. 3,170,000 proposes a method using various metal oxide catalysts, but the catalyst specifically disclosed herein has catalytic activity at low temperatures such as 200'C or less. Since the temperature is small, it has the disadvantage that it must be operated at high temperatures, which is undesirable from an industrial perspective.

また特公昭51−26401号によれば、銅\鉄、ニッ
ケル、アルミニウムなどの硫酸塩を触媒とする方法が提
案されているが、反応条件下における硫酸塩の分解によ
って装置の腐食や活性の低下などのトラブルの発生が懸
念されるため、工業的に採用し難い。さらGこまだ特公
昭47−41882号によれば、比表面積の大きいアル
ミナやそれに硫酸塩を含有するものなどを触媒に用いる
方法が開示されている。しかし、比表面積の大きいアル
ミナは生成したアルコールがエーテル化し易い為、反応
時に水を共存させなければならないが、水を共存させる
と200°C以下という低い湿度ではt−ブタノールの
副生量が多いという欠点を有している。
Furthermore, according to Japanese Patent Publication No. 51-26401, a method using sulfates of copper, iron, nickel, aluminum, etc. as a catalyst has been proposed, but decomposition of sulfates under the reaction conditions leads to corrosion of the equipment and a decrease in activity. It is difficult to adopt it industrially because there are concerns that such troubles may occur. Sara G Kodada Japanese Patent Publication No. 47-41882 discloses a method in which alumina having a large specific surface area or alumina containing sulfate is used as a catalyst. However, since alumina with a large specific surface area easily etherifies the alcohol produced, water must be present during the reaction, but if water is present, a large amount of t-butanol will be produced as a by-product at low humidity below 200°C. It has the following drawbacks.

又、硫酸塩を含有するアルミナ触媒は水蒸気共存下で硫
酸塩の結晶化が促進され活性が低下し易いという欠点を
有している。
In addition, alumina catalysts containing sulfate have the disadvantage that crystallization of the sulfate is promoted in the presence of water vapor and the activity tends to decrease.

本発明者らは、活性持続性が浸れ、低温度においても長
期間反応性及び選択性良く第三級オレフィンを製造する
ことのできる方法について検討した結果、ヘテロポリ酸
を使用する方法を見出すに至った。すなわち本発明は、
第三級エーテルを、水蒸気の共存下、中性もしくは酸性
担体Gこ担持したヘテロポリ酸と接触させることを特徴
とする第三級オレフィンの製造方法である。
The present inventors investigated a method that can produce tertiary olefins with long-lasting activity, long-term reactivity, and high selectivity even at low temperatures, and as a result, they discovered a method using heteropolyacids. Ta. That is, the present invention
This is a method for producing a tertiary olefin, which comprises bringing a tertiary ether into contact with a heteropolyacid supported on a neutral or acidic carrier G in the presence of water vapor.

本発明の原料となる第三級エーテルは、−価又は多価の
エーテルであって、エーテル性酸素に結合する炭化水素
基の少なくとも1個が第三級炭化水素基であるものであ
る。具体的にはメチル第三ブチルエーテル、エチル第三
ブチルエーテル、メチル第三アミルエーテル、エチル第
三アミルニーデル、メチル第三ヘキシルエーテル、メチ
ル第三ヘプチルエーテル、エチレングリコールジ第三ブ
チルエーテルなどの第一級・第三級エーテルを代表例と
して例示することができる。これらは第三級オレフィン
類と第一級アルコールの反応によって容易に得ることが
できるがら、第三級オレフィンを含有するオレフィン混
合物と第一級アルコールの反応によって第三級オレフィ
ンを選択的にエーテル化し、分離してから本発明を適用
すれば、第三級オレフィンを含有するオレフィン混合物
から第三級オレフィンの高純度品を単離することができ
る。
The tertiary ether which is a raw material of the present invention is a -valent or polyvalent ether, and at least one of the hydrocarbon groups bonded to etheric oxygen is a tertiary hydrocarbon group. Specifically, primary and tertiary butyl ether such as methyl tert-butyl ether, ethyl tert-butyl ether, methyl tert-amyl ether, ethyl tert-amyl needle, methyl tert-hexyl ether, methyl tert-heptyl ether, and ethylene glycol di-tert-butyl ether are used. Tertiary ether can be cited as a representative example. Although these can be easily obtained by the reaction of tertiary olefins and primary alcohols, tertiary olefins can be selectively etherified by the reaction of olefin mixtures containing tertiary olefins with primary alcohols. By applying the present invention after separation, a highly purified tertiary olefin can be isolated from an olefin mixture containing a tertiary olefin.

本発明においては、中性もしくは酸性の担体に担持した
ヘテロポリ酸が触媒に用いられる。該担体としては例え
ばシリカ、アルミナ、シリカアルミナ、カーボンブラッ
ク、チタニア、シリカチタニア、ジルコニアなどを例示
することができる。
In the present invention, a heteropolyacid supported on a neutral or acidic carrier is used as a catalyst. Examples of the carrier include silica, alumina, silica-alumina, carbon black, titania, silica-titania, and zirconia.

これら担体の代りに塩基性の担体を用いた場合には、触
媒活性が低く好ましくない。
When a basic carrier is used instead of these carriers, the catalytic activity is low and this is not preferred.

担体に担持されるヘテロポリ酸は、一般式H1XmMn
 op−q、 H2O(但し、Xは中心元素であって、
例えばP% Sis Bz Tis Ges Asなど
を示し、Mは配位元素を示すものであって、例えばMo
、W。
The heteropolyacid supported on the carrier has the general formula H1XmMn
op-q, H2O (where X is the central element,
For example, it represents P% Sis Bz Tis Ges As, and M represents a coordination element, such as Mo.
,W.

Vなどを示し、4は1より大きい数であり、mは0.1
ないし10、nは6ないし18、Pは1oないし70、
qは0ないし4oである)で示される化合物を例示する
ことができる。より具体的にはケイモリブデン酸、リン
モリブデン酸、ホウモリブデン酸、ケイタングステン酸
、リンタングステン酸、ホウタングステン酸などを代表
例として例示することができる。
V, etc., 4 is a number larger than 1, m is 0.1
from 10 to 10, n from 6 to 18, P from 1o to 70,
q is 0 to 4o). More specifically, representative examples include silicomolybdic acid, phosphomolybdic acid, boromolybdic acid, silicotungstic acid, phosphotungstic acid, and borotungstic acid.

これらへテロポリ酸は、担体Gこ1ないし70重置火、
とくに5ないし50重量%担持されていることが望まし
い。
These heteropolyacids are prepared by heating 1 to 70 times the carrier G,
In particular, it is desirable that 5 to 50% by weight be supported.

分解反応は、水蒸気の共存下、原料エーテルが気相を呈
する条件下に行われる。好適な反応温度は80ないし3
50℃、とくにiooないし250°Cの範囲である。
The decomposition reaction is carried out in the presence of water vapor under conditions in which the raw material ether is in a gas phase. The preferred reaction temperature is 80 to 3
50°C, especially in the range of ioo to 250°C.

水蒸気の共存量は原料1モル当り、0.1ないし20モ
ル、とくに0.5ないし5モルの範囲で充分である。な
お水蒸気の共存は触媒の活性低下を防止するために重要
であるが、必らずしも連続的に使用する必要はなく、間
欠的な使用でもよい。
The amount of water vapor present is sufficient in the range of 0.1 to 20 mol, particularly 0.5 to 5 mol, per mol of raw material. Although the coexistence of water vapor is important for preventing a decrease in the activity of the catalyst, it is not necessarily necessary to use it continuously, and it may be used intermittently.

分解反応は例えば所定温度に調整された触媒充填層に、
原料エーテル及び水蒸気を含有する混合気体を流通させ
ることによって行うことができる。
For example, the decomposition reaction is carried out in a catalyst packed bed adjusted to a predetermined temperature.
This can be carried out by circulating a mixed gas containing raw material ether and water vapor.

この際、とくに希釈剤を用いる必要はないが、望むなら
ば窒素のような不活性希釈剤を使用してもよい。触媒容
積に対する時間当りの第三級エーテルの供給量(LH3
V )は0.1ないし50、とくに065ないし15の
範囲が適当である。
At this time, it is not necessary to use a particular diluent, but if desired, an inert diluent such as nitrogen may be used. The amount of tertiary ether fed per hour relative to the catalyst volume (LH3
V ) is suitably in the range of 0.1 to 50, particularly 065 to 15.

本発明によれば、比較的低温度において触媒活性カ高く
、シカとも生成アルコールのエーテル化の如き副反応は
ほとんど起こらないので目的とする第三級オレフィンを
収率良く製造することができる。
According to the present invention, the catalytic activity is high at relatively low temperatures, and side reactions such as etherification of the alcohol produced with carbon dioxide hardly occur, so that the desired tertiary olefin can be produced with good yield.

以下に実施例によりさらに詳細に説明する。This will be explained in more detail with reference to Examples below.

実施例1 リンモリブデン酸水溶液(日本無機化学工業製、銘柄名
NPM−40) 5.9 gに水22gを加えて作った
水溶液をシリカゲル(富士デピソン製より型ゲル5Dを
32〜6oメツシユに分級したもの)10gに含浸させ
た。−夜放置後70〜80 ’Cで1昼夜乾燥させた。
Example 1 An aqueous solution prepared by adding 22 g of water to 5.9 g of phosphomolybdic acid aqueous solution (manufactured by Nippon Inorganic Chemical Industry Co., Ltd., brand name NPM-40) was classified into 32-6 o mesh using silica gel (Model Gel 5D manufactured by Fuji Depison). (10 g) was impregnated. - After being left overnight, it was dried at 70-80'C for one day and night.

次いで、空気雰囲気下250’Cで3Hr焼成した。こ
の触媒IQmlを内径17mmのステンレス製反応器に
充填し、外側から小型電気炉で表1に示した温度に調節
した。原料メチルt−ブチルエーテル(MよりE))及
び水は各々3QJ/H。
Then, it was fired for 3 hours at 250'C in an air atmosphere. IQml of this catalyst was filled into a stainless steel reactor with an inner diameter of 17 mm, and the temperature was adjusted from the outside to the temperature shown in Table 1 using a small electric furnace. Raw materials methyl t-butyl ether (M to E) and water were each 3QJ/H.

6.8mβ/Hで定量ポンプにより予熱器を経由して反
応器に供給した。圧力は常圧であった。
It was supplied to the reactor via a preheater by a metering pump at 6.8 mβ/H. The pressure was normal.

触媒層を出る生成ガスは氷水で冷却したトラップ、及び
ドライアイスで冷却したトラップに通じて凝縮液化させ
て捕集した。
The generated gas exiting the catalyst bed was collected by condensation and liquefaction through a trap cooled with ice water and a trap cooled with dry ice.

コレらの捕集液はガスクロマトグラフィーによす分析し
、インブチレン、メタノール、未反応MTBEの含量を
求めた。
The collected liquid was analyzed by gas chromatography to determine the contents of inbutylene, methanol, and unreacted MTBE.

結果を表1に示した。The results are shown in Table 1.

表1の反応率、選択率の定義は次のとおりである。The definitions of reaction rate and selectivity in Table 1 are as follows.

MTBEの反応率(%)一 時間当りの供給MTEEのモル数 イソブチレンの選択率(%)一 時間当りの生成インブチレンのモルBxi□。MTBE reaction rate (%) Moles of MTEE supplied per hour Isobutylene selectivity (%) Moles of inbutylene produced per hour Bxi□.

時間当りの反応MTBEのモル数 メタノールの選択率(%)一 時間当りの反応MTBEOモル数一 時間当りの供給MTBEのモル数一 時間当りの回収未反応MTBEのモル数実施例2〜4 実施例1のリンモリブデシ酸水溶液の代わりにタングス
テン酸水溶液(日本無機化学工業製、銘柄名NPW  
40 )、ケイモリブデン酸水溶液(日本無機化学工業
製、銘柄名Ivsr、+−40)、ケイタングステン酸
水溶液(日本無機化学工業製、銘柄名N5W−40)を
各々6g用い32〜6oメツシユに破砕分級したチタニ
ア(ダイヤキャタリスト製、銘柄名DC−3144)1
0gに同様の方法で担持した触媒を調製し、M T B
 Eの分解テストを実施例1と同様の条件、方法で行っ
た。結果を表1に示した。
Number of moles of reacted MTBE per hour Methanol selectivity (%) Number of moles of MTBEO reacted per hour Number of moles of MTBE fed per hour Number of moles of recovered unreacted MTBE per hour Examples 2 to 4 Instead of the phosphomolybdic acid aqueous solution in step 1, use a tungstic acid aqueous solution (manufactured by Japan Inorganic Chemical Industry Co., Ltd., brand name: NPW).
40), silicomolybdic acid aqueous solution (manufactured by Nippon Inorganic Chemical Industry Co., Ltd., brand name Ivsr, +-40), and silicotungstic acid aqueous solution (manufactured by Nippon Inorganic Chemical Industry Co., Ltd., brand name N5W-40) were used, 6 g each, and crushed into 32 to 6 o meshes. Classified titania (manufactured by Diamond Catalyst, brand name DC-3144) 1
A catalyst supported on 0g was prepared in the same manner, and M T B
A decomposition test of E was conducted under the same conditions and method as in Example 1. The results are shown in Table 1.

実施例5 MTBEの代わりにメチルt−アミルエーテル(MTA
B )を用いた以外は実施例1と同じ触媒、同じ方法で
MTAEの分解を行った。MTAEの反応率は98%、
2−メチルブテン−2及び2−・メチルブテン−1の選
択率98%、メタノールの選択率99%であった。
Example 5 Methyl t-amyl ether (MTA
MTAE was decomposed using the same catalyst and method as in Example 1, except that B) was used. The reaction rate of MTAE was 98%,
The selectivity for 2-methylbutene-2 and 2-methylbutene-1 was 98%, and the selectivity for methanol was 99%.

実施例6 実施例1で調製した触媒10m4を内径4闘のステンレ
ス管に充填した。この反応管の上流側に予熱管を取り付
はシリコーン油浴に入れ、油浴の温度を制御して反応温
度とした。反応管の下流側には圧力調製器を取りつけた
。圧力調製器を通過した生成ガスは実施例1と同じ方法
で捕集分析した。
Example 6 10 m4 of the catalyst prepared in Example 1 was filled into a stainless steel tube with an inner diameter of 4 mm. A preheating tube was attached to the upstream side of this reaction tube and placed in a silicone oil bath, and the temperature of the oil bath was controlled to set the reaction temperature. A pressure regulator was attached to the downstream side of the reaction tube. The generated gas that passed through the pressure regulator was collected and analyzed in the same manner as in Example 1.

原料MTBE、及び水は各々3Qml/H,6,8ml
/Hで定量ポンプで供給した。反応温度は200°C1
圧力は5 kg/an2aで反応を行った。反応開始1
our後のMTBKの反応率は97%、インブチレンの
選択率99%、メタノールの選択率98%であった。2
00時間連続テスト後のMTBEの反応率は96%、イ
ンブチレンの選択率99%、メタノールの選択率98%
であり、この間の活性の劣化は殆んど認められなかった
Raw material MTBE and water are each 3Qml/H, 6.8ml
/H with a metering pump. Reaction temperature is 200°C1
The reaction was carried out at a pressure of 5 kg/an2a. Reaction start 1
The reaction rate of MTBK after our was 97%, the selectivity of inbutylene was 99%, and the selectivity of methanol was 98%. 2
After 00 hours of continuous testing, the reaction rate of MTBE is 96%, the selectivity of inbutylene is 99%, and the selectivity of methanol is 98%.
, and almost no deterioration in activity was observed during this period.

比較例1 水の供給を行わなかった以外は実施例6と同じ方法でM
TBEの分解テストを行った。反応開始10Hr後、M
TBEの反応率は96%、インブチレンの選択率98%
、メタノールの選択率97%であったが200時間後に
はMTBEの反応率が81%に低下した。
Comparative Example 1 M was prepared in the same manner as in Example 6 except that water was not supplied.
A TBE decomposition test was conducted. After 10 hours of reaction start, M
TBE reaction rate is 96%, inbutylene selectivity is 98%
Although the methanol selectivity was 97%, the MTBE reaction rate decreased to 81% after 200 hours.

比較例2 NiSO4・s H70(和光純薬製、特級) 0.8
 gを18gの水にとかし、シリカゲル(富士デピソン
製ID型ゲルを32〜60メツシユに分級したもの)9
gに吸収させた。70〜80°Cで24Hr乾燥後、3
00°Cで3Hr焼成した。この触媒10m4を用いて
実施例6と同じ方法でテストを行った。
Comparative example 2 NiSO4・s H70 (manufactured by Wako Pure Chemical Industries, special grade) 0.8
Dissolve g in 18 g of water and add silica gel (Fuji Depison ID type gel classified into 32 to 60 mesh) 9
It was absorbed into g. After drying for 24 hours at 70-80°C, 3
It was baked at 00°C for 3 hours. A test was conducted in the same manner as in Example 6 using 10 m4 of this catalyst.

原料MTBEを30mβ/Hでフィードし、反応温度2
00’C,反応圧力5kq/cノr+2Gで分解を行っ
た。
Feed raw material MTBE at 30 mβ/H, reaction temperature 2
Decomposition was carried out at 00'C and reaction pressure of 5 kq/c Nor+2G.

反応開始10Hr後のMTBEの反応率は96%、イン
ブチレンの選択率99%、メタノールの選択率99%で
あったが、200Hr後にはMTEEの反応率は86%
に低下した。
10 hours after the start of the reaction, the reaction rate of MTBE was 96%, the selectivity of inbutylene was 99%, and the selectivity of methanol was 99%, but after 200 hours, the reaction rate of MTEE was 86%.
It declined to .

比較例3 実施例2〜4で担体に用いたチタニアをヘテロポリ酸を
担持しないで触媒として用い、実施例1と同じ条件でM
TE Eの分解テストを行った。
Comparative Example 3 Titania used as a carrier in Examples 2 to 4 was used as a catalyst without supporting a heteropolyacid, and M
We conducted a disassembly test of TE E.

MTBEの反応率は25%、イソブチレンの選択率10
0%・メタノールの選択率100%であった。
MTBE reaction rate is 25%, isobutylene selectivity is 10
0% methanol selectivity was 100%.

比較例4 62〜60メツシユに破砕分級したr−アルミナ(8揮
化学製N611−N、比表面積210m/g)を用いた
以外実施例6と全く同じ方法でMTBEの分解を行った
Comparative Example 4 MTBE was decomposed in exactly the same manner as in Example 6, except that r-alumina (N611-N, manufactured by 8 Koku Kagaku Co., Ltd., specific surface area 210 m/g) crushed and classified into 62 to 60 meshes was used.

反応開始10Hr後のMTBEの反応率は65%、イソ
ブチレンの選択率90%、メタノールの選択率99%で
あったが、200Hrの連続テスト後の反応率は49%
に低下した。イソブチレンの選択率が低いのはt−ブタ
ノールの副生が多い為であった。
The reaction rate of MTBE after 10 hours of reaction initiation was 65%, the selectivity of isobutylene was 90%, and the selectivity of methanol was 99%, but after a continuous test of 200 hours, the reaction rate was 49%.
It declined to . The reason for the low selectivity of isobutylene was that there was a large amount of t-butanol as a by-product.

出願人  三井石油化学工業株式会社 代理人  山  口     和Applicant: Mitsui Petrochemical Industries, Ltd. Agent Kazu Yamaguchi

Claims (1)

【特許請求の範囲】[Claims] (1)第三級エーテルを、水蒸気の共存下、中性もしく
は酸性担体に担持したヘテロポリ酸と接触させることを
特徴とする第三級オレフィンの製造方法。
(1) A method for producing a tertiary olefin, which comprises bringing a tertiary ether into contact with a heteropolyacid supported on a neutral or acidic carrier in the presence of water vapor.
JP57121234A 1982-07-14 1982-07-14 Preparation of tertiary olefin Pending JPS5913734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57121234A JPS5913734A (en) 1982-07-14 1982-07-14 Preparation of tertiary olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57121234A JPS5913734A (en) 1982-07-14 1982-07-14 Preparation of tertiary olefin

Publications (1)

Publication Number Publication Date
JPS5913734A true JPS5913734A (en) 1984-01-24

Family

ID=14806228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57121234A Pending JPS5913734A (en) 1982-07-14 1982-07-14 Preparation of tertiary olefin

Country Status (1)

Country Link
JP (1) JPS5913734A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126A (en) * 1984-06-08 1986-01-06 Mitsui Petrochem Ind Ltd Production of tertiary olefin
US4825248A (en) * 1985-11-06 1989-04-25 Canon Kabushiki Kaisha Sheet handling apparatus
US5280330A (en) * 1990-07-12 1994-01-18 Nisca Corporation Automatic document feeding device
JP2016145206A (en) * 2010-02-24 2016-08-12 ビーピー ピー・エル・シー・ Process for preparing alkene
JP2016153393A (en) * 2010-02-24 2016-08-25 ビーピー ピー・エル・シー・ Process for preparing alkene

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126A (en) * 1984-06-08 1986-01-06 Mitsui Petrochem Ind Ltd Production of tertiary olefin
JPH0417166B2 (en) * 1984-06-08 1992-03-25 Mitsui Petrochemical Ind
US4825248A (en) * 1985-11-06 1989-04-25 Canon Kabushiki Kaisha Sheet handling apparatus
US5280330A (en) * 1990-07-12 1994-01-18 Nisca Corporation Automatic document feeding device
JP2016145206A (en) * 2010-02-24 2016-08-12 ビーピー ピー・エル・シー・ Process for preparing alkene
JP2016153393A (en) * 2010-02-24 2016-08-25 ビーピー ピー・エル・シー・ Process for preparing alkene

Similar Documents

Publication Publication Date Title
CA1322203C (en) Process for preparing fluorinated c_ to c_ hydrocarbons and novel cyclic fluorinated hydrocarbons and their use as propellant gas and working fluid for heat pump systems
US4343959A (en) Process for the production of tertiary olefin
US4560804A (en) Catalytic process for the manufacture of ketones
CA2067370A1 (en) Halocarbon hydrogenolysis
JPS59157037A (en) Production of tertiary olefin
US2504919A (en) Preparation of olefinic compounds
JPH01279854A (en) One-stage synthesis of methyl-t-butyl ether
US4822921A (en) Method for one-step synthesis of methyl t-butyl ether
JPS5913734A (en) Preparation of tertiary olefin
JPS6340411B2 (en)
CA1286323C (en) Process for producing isobutylene
JP2939433B2 (en) Method for producing cyclic N-vinylcarboxylic acid amide
JPH05221905A (en) Method for synthesizing alkyl tertiary alkyl ether using fluorocarbon sulfonic acid polymer on inactive carrier
JPS5910528A (en) Production of tertiary olefin
US3446842A (en) Production of n,n-dimethylformamide
JPS6092224A (en) Production of conjugated diolefin
US4367362A (en) Process for the isomerization of N-alkenes
GB1570890A (en) Process for producing tetrahydrofuran
US20020128478A1 (en) Process for a carbon-carbon coupling reaction of aryl halides with olefins by heterogeneous catalysts
CA1133505A (en) Process for the oxidation of olefins
JPS6362525B2 (en)
US4471141A (en) Preparation of aldehydes
AU707322B2 (en) Process for the preparation of propyne
RU2698094C1 (en) Method of producing dimethyl ether (versions)
JPH09241220A (en) Production of tertiary amine compound