JPS5913625A - Manufacture of oxysulfide of rare earth element - Google Patents

Manufacture of oxysulfide of rare earth element

Info

Publication number
JPS5913625A
JPS5913625A JP57118615A JP11861582A JPS5913625A JP S5913625 A JPS5913625 A JP S5913625A JP 57118615 A JP57118615 A JP 57118615A JP 11861582 A JP11861582 A JP 11861582A JP S5913625 A JPS5913625 A JP S5913625A
Authority
JP
Japan
Prior art keywords
rare earth
earth element
oxysulfide
sulfate
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57118615A
Other languages
Japanese (ja)
Inventor
Masahiro Matsui
正宏 松井
Hiroshi Kurokawa
洋 黒川
Akira Kaneda
金田 朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP57118615A priority Critical patent/JPS5913625A/en
Publication of JPS5913625A publication Critical patent/JPS5913625A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To manufacture easily the oxysulfide of a rare earth element of high quality, by reacting rare earth element ion with sulfate ion and urea and heating the resulting oxysulfate of the rare earth element in a hydrogen atmosphere. CONSTITUTION:>=1 Kind of rare earth element ion is reacted with sulfate ion and urea in an aqueous soln., and the resulting precipitate or the oxysulfate of the rare earth element obtd. by roasting the precipitate is heated in an atmosphere of gaseous hydrogen or a gaseous mixture of gaseous hydrogen with an inert gas to obtain the oxysulfide of the rare earth element. The rare earth element ion is prepared by dissolving an inorg. or org. acid salt of the rare earth element such as the sulfate, hydrochloride, formate or acetate in an aqueous soln. The sulfate ion is prepared by dissolving sulfuric acid, the sulfate of the rare earth element, the quat. ammonium salt of sulfuric acid such as ammonium sulfate or other salt of sulfuric acid such as pyridinium sulfate in an aqueous soln. A phosphor contg. the oxysulfide of the rare earth element as the base is obtd. by adding an activator for a phosphor to said aqueous soln.

Description

【発明の詳細な説明】 本発明は、希土類元素のオキシサルファイドの新しい製
造技術に関するものであり、従来用いられてきた製法に
比べ、製造操作が容易であり、かつ、得られる製品の品
質にバラ付きが少ない特徴を有するものである。さらに
、本発明の製法により得られる希土類元素のオキシザル
ファイドは、螢光体の母体としてすぐれたものである。
[Detailed Description of the Invention] The present invention relates to a new manufacturing technology for rare earth element oxysulfides, which is easier to operate than conventional manufacturing methods, and has less variation in the quality of the resulting products. It has the characteristic of less sticking. Furthermore, the rare earth element oxysulfide obtained by the production method of the present invention is excellent as a matrix for a phosphor.

希土類元素のオキシサルファイドは、一般式をLn、0
28 (Ln :希土類元素)と表わすことのできる化
合物であり、カラーテレビ用ブラウン管照明用ケイ光ラ
ンプ等のケイ光体として現在広く用いられているもので
ある。この化合物を工業的規模で製造する方法として、
従来は希土類元素の酸化物を炭酸ソーダ、リン酸カリウ
ムなどのブラックス剤の存在下、イオウと加熱反応させ
る方法が用いられてきた。この反応は高温での固体間の
反応であり、反応率を上げるためには、長時間を必要と
する欠点があった。さらに、この方法で得られた反応生
成物を、クイ光体などの通常の無機粉体材料として用い
る場合には、生成物に付着しているフラックス剤を除去
するために、酸洗、水洗を充分に行なう必要があり、そ
れに続く乾燥工程も必要とした。
Rare earth element oxysulfide has the general formula Ln,0
28 (Ln: rare earth element), and is currently widely used as a fluorescent substance for fluorescent lamps for cathode ray tube illumination for color televisions. As a method for producing this compound on an industrial scale,
Conventionally, a method has been used in which rare earth element oxides are heated and reacted with sulfur in the presence of a brax agent such as soda carbonate or potassium phosphate. This reaction is a reaction between solids at high temperatures, and has the drawback of requiring a long time to increase the reaction rate. Furthermore, when the reaction product obtained by this method is used as a normal inorganic powder material such as a quenching material, pickling and water washing are performed to remove the fluxing agent adhering to the product. It had to be carried out thoroughly and a subsequent drying step was also required.

本発明者らは、先に希土類元素イオン、硫酸イオンおよ
び尿素とを反応させて得られた沈澱物を焙焼することに
より、純度的にも、粉体粒度分布的にも極めて均一性の
大なる希土類元素のオキシツールフエ−1・を製造でき
ることを見出し、特許出願したが、ここで得られた沈澱
物、あるいは該沈澱物を焙焼して得られるオキシザルフ
エー)−(c原料として用いることにより、従来の方法
に比べ極めて容易に、かつ、純度的にも、粉体粒度分布
的にも均一性の大なる希土類元素のオキシザルファイド
を製造できる方法を見出し、本発明に至った。
By roasting the precipitate obtained by first reacting rare earth element ions, sulfate ions, and urea, the present inventors have achieved extremely high uniformity in terms of purity and powder particle size distribution. It was discovered that it was possible to produce rare earth element oxytool fae-1, and applied for a patent.However, by using the precipitate obtained here or the oxysulphate obtained by roasting the precipitate as a raw material, The inventors have discovered a method for producing rare earth element oxysulfide that is much easier than conventional methods and has greater uniformity in terms of purity and particle size distribution, leading to the present invention.

すなわち、本発明は、1種あるいは2種以上の希土類元
素イオンと硫酸イオンと尿素とを水溶液中で反応させて
得られる沈澱物、あるいは該沈澱物を焙焼して得られる
希土類元素のオキシザルフェートを、水素ガスあるいは
水素ガスと不活性ガスとの混合ガス雰囲気中で加熱還元
することを特徴とする季土類元素のオキシサルファイド
の製造法である。
That is, the present invention provides a precipitate obtained by reacting one or more rare earth element ions, sulfate ions, and urea in an aqueous solution, or a rare earth element oxysilane obtained by roasting the precipitate. This is a method for producing oxysulfide of seasonal earth elements, which is characterized in that phenate is heated and reduced in an atmosphere of hydrogen gas or a mixed gas of hydrogen gas and an inert gas.

本発明でいう希土類元素とは、ランタニド族の元素、す
なわち、ランタン、セリウム、プラセオジム、ネオジム
、グロメチウム、サマリウム、ユーロピウム、カドリニ
ウム、テルビウム、ジスプロシクム、ホルミウム、エル
ビウム、ツリウム、イッテルビウム、ルテチウムの15
元素にスカンジウム、イツトリウムを加えた17元素の
総称である。希土類元素イオンは、これらのうちから選
ばれた1種あるいは2種以上の元素の水溶性の塩、例え
ば、硫酸塩、塩化物、硝酸塩、ギ酸塩、酢酸塩等の趣、
機塩あるいは有機塩を水に溶解して得られるものでもよ
いし、酸化物、水酸化物等を硫酸、塩酸等の酸に溶解し
て得られたものでもよい。すなわち、陰イオンとして硫
酸イオン以外のもの、例えば、塩素イオン、硝酸イオン
等が原料中に含まれていてもかまわない。
The rare earth elements in the present invention are elements of the lanthanide group, namely lanthanum, cerium, praseodymium, neodymium, glomethium, samarium, europium, cadrinium, terbium, dysprosicum, holmium, erbium, thulium, ytterbium, and lutetium.
It is a general term for 17 elements including scandium and yttrium. Rare earth element ions are water-soluble salts of one or more elements selected from these, such as sulfates, chlorides, nitrates, formates, acetates, etc.
It may be obtained by dissolving a mechanical salt or an organic salt in water, or it may be obtained by dissolving an oxide, hydroxide, etc. in an acid such as sulfuric acid or hydrochloric acid. That is, the raw material may contain anions other than sulfate ions, such as chloride ions and nitrate ions.

本発明において原料として混合される硫酸イオンは、硫
酸、希土類元素の硫酸塩、硫酸アンモニウム等の硫酸の
4級アンモニウム塩、硫酸ピリジニウム等の塩類を水に
溶解することにより得られる。
The sulfate ion mixed as a raw material in the present invention can be obtained by dissolving sulfuric acid, a sulfate of a rare earth element, a quaternary ammonium salt of sulfuric acid such as ammonium sulfate, and a salt such as pyridinium sulfate in water.

本発明を実施するにあたって、原料となる混合水溶液中
の希土類元素イオンの濃度は%に限定するものではない
。本発明で使用する化学反応は、水溶液中での反応であ
り、生成物は固形となシ反応系外に出るため、原料とな
る希土類元素の塩が、始めに該希土類元素塩の溶解度以
上に充填され、沈澱として残っていても、反応が進むに
したがって溶は出し、反応に使われていく。
In carrying out the present invention, the concentration of rare earth element ions in the mixed aqueous solution serving as the raw material is not limited to %. The chemical reaction used in the present invention is a reaction in an aqueous solution, and the product exits the reaction system as a solid. Even if it is filled and remains as a precipitate, as the reaction progresses, the solution will be released and used in the reaction.

また、原料となる混合水溶液中の硫酸イオンの量は、目
的とする生成物であるオキシサルファイドの構造からし
て、希土類元素イオン1モルに対し、硫酸イオンは1/
2モル以上必要なことは明らかであろう。硫酸イオンが
希土類元素イオンに比ベモル比で1/2以上の場合は、
得られる生成物はすべて同じである、。
In addition, the amount of sulfate ions in the mixed aqueous solution that is the raw material is 1/1/1 mole of rare earth element ions, considering the structure of oxysulfide, which is the target product.
It is clear that 2 moles or more is required. If the sulfate ion is 1/2 or more in molar ratio to the rare earth element ion,
The products obtained are all the same.

また、尿素の量は、希土類元素イオンの原料、硫酸イオ
ンの原料の質により変わる。特に、遊離した硫酸がある
場合、あるいは硫酸そのものを硫酸イオンの原料として
用いた場合、必要となる尿素の量は多くなる。すなわち
、本発明の生成物の中間体である沈#は、酸により分解
するものであり、遊離硫酸により分解されてしまうため
、尿素あるいはその誘導体を過剰に加え、その熱分解生
成物であるアンモニウムイオンで酸を中和してやる必要
があるからである。使用する尿素の量が少なすぎた場合
、収率が低くなることは当然であり、好ましい量は、希
土類元素イオンのモル数と同等以上である。尿素の量が
化学反応上必要な隈取上存在しても、製品の品質は変わ
りなく、むしろ、原料となる尿素の貯蔵時の分解、反応
速度の増加等から考えると、希土類元素イオンの6〜8
倍モルの使用が実用的である。
Further, the amount of urea varies depending on the quality of the raw material for rare earth element ions and the raw material for sulfate ions. In particular, when there is free sulfuric acid or when sulfuric acid itself is used as a raw material for sulfate ions, the amount of urea required increases. That is, the precipitate, which is an intermediate of the product of the present invention, is decomposed by acid, and is decomposed by free sulfuric acid. This is because it is necessary to neutralize the acid with ions. Naturally, if the amount of urea used is too small, the yield will be low, and the preferable amount is equal to or greater than the number of moles of rare earth element ions. Even if the amount of urea is present in excess of the amount necessary for chemical reactions, the quality of the product will not change.In fact, considering the decomposition of the raw material urea during storage and the increase in reaction rate, the amount of rare earth element ions 8
It is practical to use twice the molar amount.

尿素の分解反応を進め る に は、原料の水溶散音7
0℃以上に加熱するか、もしくは常温付近で、該水溶液
に尿素分解酵素であるウレアーゼを添加して反応を行な
わせる。加熱分解を行なう場合、好まE7い反応温度は
90〜100℃の範囲である。これより温度が低いと、
尿素の分解速度が小さく、非常に長い反応時間を必要と
することになる。またウレアーゼ全使用する場合、その
量には特に限定はないが、添加量が多い11と反応は速
く進行する。その場合、該水浴液のpHは、ウレアーゼ
が至適pH範囲である6、4〜7.6になっていること
が望ましい。この範囲外のpHでは酵素活性が低ドする
ので、適当なpHg整剤で至適pH範囲に調整する。
In order to proceed with the decomposition reaction of urea, water dissolution of the raw material7
Urease, which is a urea degrading enzyme, is added to the aqueous solution by heating it to 0° C. or higher or at around room temperature to cause a reaction. When carrying out thermal decomposition, the preferable reaction temperature is in the range of 90 to 100°C. If the temperature is lower than this,
The decomposition rate of urea is slow and requires a very long reaction time. Further, when all of the urease is used, there is no particular limitation on the amount of urease, but when the amount of urease 11 added is large, the reaction proceeds quickly. In that case, the pH of the water bath solution is preferably 6.4 to 7.6, which is the optimum pH range for urease. Since the enzyme activity decreases at a pH outside this range, the pH is adjusted to the optimum range using an appropriate pH adjuster.

また、反応時間は、反応温度や尿素の添加量、ウレアー
ゼの添加量、希土類元素の種類等により変わるが、目安
としては、反応溶液の白濁化後1〜5時間で反応は完結
する。沈澱物の組成は、反応時間の経過と共に変わり、
その構造は未だ不明であるが、この時の沈澱物の組成に
無関係に、この沈澱物を水素ガスあるいは水素ガスと不
活性ガスとの混合ガス雰囲気下で加熱焙焼して得られる
製品は、希土類元素のオキシサルファイドである。
The reaction time varies depending on the reaction temperature, the amount of urea added, the amount of urease added, the type of rare earth element, etc., but as a guide, the reaction is completed in 1 to 5 hours after the reaction solution becomes cloudy. The composition of the precipitate changes as the reaction time progresses;
Although its structure is still unknown, the product obtained by heating and roasting this precipitate in an atmosphere of hydrogen gas or a mixed gas of hydrogen gas and inert gas, regardless of the composition of the precipitate at this time, is It is a rare earth element oxysulfide.

上記沈澱物’!f直接水素ガス雰囲気下、加熱すること
なく、一度、空気中で加熱して、先に特許出願した方法
で、該沈澱物をオキシサルフェートに変化させ、しかる
後に、水素ガスあるいは水素ガスと不活性ガスとの混合
ガス雰囲気下、該オキシサルフェートを加熱しても、本
発明の目的とする希土類元素のオキシサルファイドを得
ることができる。
The above sediment'! f) The precipitate is heated once in the air without heating directly in a hydrogen gas atmosphere to convert the precipitate into oxysulfate using the method previously applied for a patent, and then mixed with hydrogen gas or an inert mixture with hydrogen gas. Even if the oxysulfate is heated in a mixed gas atmosphere, the rare earth element oxysulfide that is the object of the present invention can be obtained.

本発明を実施するに当り、前記沈澱物あるいはオキシザ
ルフェートを、水素ガスあるいは水素ガスと不活性ガス
との混合ガス雰囲気上加熱還元する温度は、500〜1
000℃の範囲を適当とし、より好ましくは550〜7
00℃の範囲である。
In carrying out the present invention, the temperature at which the precipitate or oxysulfate is heated and reduced in an atmosphere of hydrogen gas or a mixed gas of hydrogen gas and an inert gas is 500 to 1
A suitable range is 000°C, more preferably 550-7
It is in the range of 00°C.

また、加熱時間は加熱温度等により変るが、上記加熱温
度範囲においては、0.5〜2時間が適当である。また
、水素ガスは不活性ガス、具体的には、チッ素ガス、ア
ルゴンガス、ヘリウムガス等と任意の割合で混合して用
いればよい。
Further, the heating time varies depending on the heating temperature, etc., but in the above heating temperature range, 0.5 to 2 hours is appropriate. Further, hydrogen gas may be used by mixing with an inert gas, specifically, nitrogen gas, argon gas, helium gas, etc. in any proportion.

水素ガスと不活性ガスとの混合比は、加熱炉の構造、加
熱炉内に設置する被還元材の量およびその容器の形状な
どにより実用的な値が決まるものである。被還元材周囲
の気体の拡散がしにくい構造の加熱炉などを使用する場
合は、水素ガス混合比を小さくとり、流量を多くするこ
とで水素供給量を必要量維持しつつ、被還元材周囲にあ
る分解ガスを除去することが還元速度を高めることにな
る。
A practical value for the mixing ratio of hydrogen gas and inert gas is determined by the structure of the heating furnace, the amount of the material to be reduced installed in the heating furnace, the shape of the container, etc. When using a heating furnace that has a structure that makes it difficult for gas to diffuse around the material to be reduced, keep the hydrogen gas mixture ratio low and increase the flow rate to maintain the required amount of hydrogen supply and diffuse the gas around the material to be reduced. Removal of cracked gases in the reactor will increase the rate of reduction.

一方、水素ガス混合比をあまシ小さくし過ぎると、還元
力が弱すぎ、環元速度は逆に遅くなる。
On the other hand, if the hydrogen gas mixing ratio is made too small, the reducing power will be too weak and the oxidation rate will conversely become slow.

実用的な水素ガス混合比は、水素ガス容量チとして10
0〜5%の範囲であり、好ましくは7o容址チ〜20容
景チである。
Practical hydrogen gas mixing ratio is 10 as hydrogen gas capacity
It ranges from 0 to 5%, preferably from 7° to 20°.

不発E!A[おいて、希土類元素イオン、硫酸イオンお
よび尿素の混合水溶液の中に、原料として、通常の螢光
体作成の際付活物質として母体に添加される元素、すな
わち、ユーロピウム、テルビウム、ビスマス、セリウム
等の73・溶性の塩、例えば、塩化物、硝酸塩、硫酸塩
等を添加することにより、希土類元素のオキシサルファ
イドを母体とする螢光体を製造することができる。
Unexploded E! A [In the mixed aqueous solution of rare earth element ions, sulfate ions, and urea, as raw materials, elements added to the matrix as activating materials during normal phosphor production, namely europium, terbium, bismuth, By adding a 73-soluble salt such as cerium, for example, chloride, nitrate, sulfate, etc., it is possible to produce a phosphor based on oxysulfide of a rare earth element.

付活物質の濃度は、付活元素のイオンのモル数が、母体
を構成する希土類元素のイオンのモル数)0.1〜10
%が適当であり、最適量は元素の組合せにより異なるも
のである。
The concentration of the activating material is such that the number of moles of ions of the activating element is 0.1 to 10 (the number of moles of ions of the rare earth element constituting the matrix).
% is appropriate, and the optimum amount varies depending on the combination of elements.

このようにし7て得られる螢光体は、従来知られている
希土類元素のオキシサルファイドを母体トするケイ光体
、すなわち、希土類元素の酸化物とイオウとを、炭酸ソ
ーダ、リン酸カリウムなどのフラックス剤の共存下、加
熱反応させて得られたものに比べ、輝度の点で同等がそ
れ以上の性能を示し、特徴的なことは、粒径が小なる粉
体を比べた場合、本発明により得られるケイ光体は、従
来法のケイ光体に比べ、相対輝度が犬となることである
The phosphor obtained in this way is a conventionally known phosphor based on rare earth element oxysulfide, that is, rare earth element oxide and sulfur are combined with sodium carbonate, potassium phosphate, etc. Compared to the powder obtained by heating reaction in the coexistence of a fluxing agent, the present invention shows the same or better performance in terms of brightness. The phosphor obtained by this method has a relative brightness that is comparable to that of the phosphor obtained by the conventional method.

本発明の方法で得られる希土類元素のオキシサルファイ
ドの粒径、粒度分布は、前駆物質となる前記沈澱物の粒
径、粒度分布全調節することでコントロールが可能であ
るのに比べ、従来法にょるオキソサルファイドの粒径は
、その前部物質である希土類元素の酸化物の粒径、さら
に、高温フラックス反応下での凝集などにより変化する
ため、粒径のコントロールが難か[7く、粒度分布の狭
い粉体全得ることは難かしい。
The particle size and particle size distribution of the rare earth element oxysulfide obtained by the method of the present invention can be controlled by fully adjusting the particle size and particle size distribution of the precipitate, which is a precursor, whereas in the conventional method. The particle size of oxosulfide varies depending on the particle size of the rare earth element oxide, which is the front material, and also due to agglomeration under high temperature flux reaction, so it may be difficult to control the particle size [7] It is difficult to obtain all the powder with narrow distribution.

以下に本発明の実施例を記載する。Examples of the present invention are described below.

実施例1〜10 表1の実施例1〜10に記した組成の原料を各1tの水
に溶解し、攪拌下、95℃にて6時間反応させ、生じた
沈澱fc沖取し、100℃に調温した熱風乾燥0中に4
時間放置し乾燥を行った。得られ/j@粉末をアルミナ
製ルツボに入れ、通常の管状電気炉内に設置し、炉心管
の片側よシ、水素ガス3り容量チ、窒素ガス70容量係
の混合ガスを、1分間に炉、b管の内容積と等量の供給
量で連続的に流し、ルツボ内温度が650℃になるよう
が114温し、1時間加熱した。
Examples 1 to 10 The raw materials having the compositions shown in Examples 1 to 10 in Table 1 were each dissolved in 1 t of water and reacted at 95°C for 6 hours with stirring, and the resulting precipitate was collected at 100°C. Hot air drying with temperature adjusted to 0 to 4
It was left to dry for a while. The obtained powder was placed in an alumina crucible, placed in a normal tubular electric furnace, and a mixed gas of 3 volumes of hydrogen gas and 70 volumes of nitrogen gas was added to one side of the furnace tube in 1 minute. The mixture was continuously supplied in an amount equal to the inner volume of the furnace and the tube B, and the crucible was heated to 114° C. so that the internal temperature of the crucible reached 650° C., and was heated for 1 hour.

6苅」後、各反応生成物のX線回折分析を行った結果、
それぞれ表2(A)〜(Jlに記した回折ピークを示し
、ASTMカードに記載されている各希土類元素のオキ
シサルファイドの値とよく一致していた。
After 6 hours, X-ray diffraction analysis of each reaction product revealed that
The diffraction peaks shown in Tables 2(A) to (Jl) were shown, respectively, and were in good agreement with the values of oxysulfide of each rare earth element listed in the ASTM card.

さらに、実施例1〜1oで得られた粉末中の希土類元素
とイオウのモル比(Ln/S)をケイ光X線により測定
したところ、表1に記したような値が得られた。これら
の値は、純粋なオキシサルファイドについての理論値と
ほぼ合致している。以上の結果により、実施例1〜1o
のいずれの場合も、得られた粉末は、純粋なオキシサル
ファイドであることが証明される。
Furthermore, when the molar ratio of rare earth elements to sulfur (Ln/S) in the powders obtained in Examples 1 to 1o was measured by fluorescent X-ray, the values shown in Table 1 were obtained. These values are in close agreement with the theoretical values for pure oxysulfide. Based on the above results, Examples 1 to 1o
In both cases, the powder obtained proves to be pure oxysulfide.

比較例1 酸化イツトリウム Y、0310 y 硫  黄          S          
 49炭酸ナトリクム  Na2CO36f リン酸カリ+7 ムに3PO4・3H201V上記物質
をポリエチレン瓶に入れて撮とりし、十分に混合する。
Comparative Example 1 Yttrium oxide Y, 0310y Sulfur S
49 Sodium Carbonate Na2CO36f Potassium Phosphate +7 3PO4・3H201V Put the above substances into a polyethylene bottle and mix thoroughly.

これをアルミナ製ルツボに入れ、空気中で1150 ’
Cにおいて3時間焙焼した。陪焼後の粉末には、粉砕・
分級・酸洗い・水洗・乾燥といった通常行なわれる後処
理を施した。
This was placed in an alumina crucible and heated to 1150' in air.
Roasted at C for 3 hours. After firing, the powder is crushed and
Conventional post-treatments such as classification, pickling, water washing, and drying were performed.

このようにして得られた生成物は、実施例1と同様のX
線回折パターンを示すが、若干の黄色味全侶・ひており
、ケイ光XiによりYとSのモル比(Y/s)をd用足
しノヒところ、1.95であり、また、フレーム原子吸
光法によりナトリウムを測定し7だところ、該生成′南
中に0.2チのNaが残っていた。
The product thus obtained was similar to that of Example 1.
Although the line diffraction pattern shows a slight yellowish tinge, the molar ratio of Y and S (Y/s) was added to d using fluorescent Xi and was 1.95, and the flame atomic absorption When the sodium content was measured by the method, it was found that 0.2% of Na remained in the product.

ま/ζ、第1図に実施例1おまひ比軟例1においてそれ
ぞれ得られた・fソトリウムオキシサルファイド粉末の
粒j及分布を示した。第1図よりわかるように、本発明
により得しれるオキシナルファイドのほうが従来法によ
り1:Iられるものに比べ、粒径が小心く、その分布も
ンヤーグでめつlこ。
Fig. 1 shows the particle size and distribution of the .f sotrium oxysulfide powder obtained in Example 1 and Example 1. As can be seen from FIG. 1, the oxynalphide obtained by the present invention has a smaller particle size and a wider distribution than that obtained by the conventional method.

比較例2 順化ランタンLa2O310f 休  黄        S            
 2f炭11安 ブー ト リ ウ ム   Na、C
o、、              6f!リン1賀カ
リウム K、PO,・3H101f上記物y4.1.−
ポリエチレン瓶に入れて振とうし、十分に混合する。こ
ノを全アルミナ製ルツボに入れ、空気中で1100 ’
Cにおいて3時間焙焼した。焙焼後の粉末には、粉砕・
分級・酸洗い・水洗・乾燥といった通′帛行なわれる後
処理を施した。
Comparative example 2 Acclimatized lanthanum La2O310f Rest Yellow S
2f charcoal 11 cheap boot lium Na, C
o,, 6f! Phosphorus 1ga Potassium K, PO, ・3H101f Above y4.1. −
Pour into a polyethylene bottle and shake to mix thoroughly. This material was placed in an all-alumina crucible and heated for 1100' in air.
Roasted at C for 3 hours. After roasting, the powder is crushed and
Conventional post-treatments such as classification, pickling, water washing, and drying were performed.

このように(2て得られた粉末のX線回折を行なった結
果、回折パターンには、ランタンオキシザルファイドの
ピークとともに、該化合物以外のピーク(La20.の
ピーク)も存在した。この結果よりわかるように、本比
較例における原料組成では、ランタンオキシサルファイ
ドと共に、ランタンの酸化物も混合していた。
As a result of X-ray diffraction of the powder obtained in (2), the diffraction pattern showed that in addition to the peak of lanthanum oxysulfide, there was also a peak other than the compound (peak of La20.). As can be seen, in the raw material composition in this comparative example, lanthanum oxide was also mixed together with lanthanum oxysulfide.

−また、第2図に実施例6および比較例2においてそれ
ぞれ得られたランタンオキシサルファイドの粉末の粒度
分布を示した。第2図よりわかるように、本発明により
得られるランタンオキシサルファイドのほうが、従来法
によち得られるものに比べ、粒径が小さく、その分布も
シャープであった。
-Furthermore, FIG. 2 shows the particle size distribution of the lanthanum oxysulfide powder obtained in Example 6 and Comparative Example 2, respectively. As can be seen from FIG. 2, the lanthanum oxysulfide obtained by the present invention had a smaller particle size and a sharper distribution than that obtained by the conventional method.

実施例11〜14 表3の実施例11〜14に記した組成の原料を・各14
の水にmwll、、攪拌下、95 ’Cにて3時間反応
させた結果生じた沈澱をPJI″!シ、乾燥後、800
℃で2時間・培焼した。以上の操作により得られた粉末
は、X線回折や、粉末を塩酸により溶解し、溶液中の希
土類元素とイオウのモル比全測定した結果より、各イツ
トリウム、ガドリニウム、ランタン、サマリウムのオキ
シサルフェートであることが確認された。そこで、得ら
れた各粉末をアルミナ製ルツボに入れ、メn常の管状電
気炉内に設置し、炉心管の片側より、水素ガス30容量
チ、窒素ガス70容量チの混合ガスを、1分間に炉心管
の内容積の6分の1の供給量で連続的に流し、ルツボ内
温度が650℃になるように調温し、2時間焙焼した。
Examples 11 to 14 Each of the raw materials having the compositions listed in Examples 11 to 14 in Table 3 was
The precipitate produced as a result of reaction in water at 95'C for 3 hours with stirring was heated to 800 °C after drying.
It was incubated at ℃ for 2 hours. The powder obtained by the above procedure was found to be oxysulfate of each of yttrium, gadolinium, lanthanum, and samarium by X-ray diffraction and by dissolving the powder in hydrochloric acid and measuring the molar ratio of rare earth elements and sulfur in the solution. It was confirmed that there is. Therefore, each powder obtained was placed in an alumina crucible, placed in a regular tubular electric furnace, and a mixed gas of 30 volumes of hydrogen gas and 70 volumes of nitrogen gas was applied from one side of the furnace tube for 1 minute. The crucible was continuously supplied at a rate of 1/6 of the internal volume of the furnace tube, and the temperature inside the crucible was adjusted to 650° C., and roasted for 2 hours.

冷却後、各反応生成物のX線回折を行なった結果、それ
ぞれ表4(A)〜(D)に記した回折ピークを示し、A
STMカードに記載されている各希土類元素のオキシサ
ルファイドについての値とよい一致が見られた。
After cooling, each reaction product was subjected to X-ray diffraction, and the results showed the diffraction peaks shown in Tables 4 (A) to (D), respectively.
Good agreement was observed with the values for oxysulfide of each rare earth element listed on the STM card.

さらに、実施例11〜14で得られた粉末について、ケ
イ光X線により希土類元素とイオウのモル比(Ln /
 S ) 11!I定したところ、各2.05 。
Furthermore, regarding the powders obtained in Examples 11 to 14, the molar ratio of rare earth elements to sulfur (Ln /
S) 11! I determined that each was 2.05.

2.05 、 JOB 、 2.08であった。以上の
結果により、実施例11〜14のいずれの場合も、得ら
れた粉末は、純粋なオキシサルファイドであることが証
明される。
2.05, JOB, 2.08. The above results prove that the powders obtained in all of Examples 11 to 14 are pure oxysulfides.

≠     1 表    3 表2(J)    表4(D) 表2(■)   表4(B) 実施例15 硫酸イツトリウム Y!(SO4)3・8H,O45,
75F尿  素                  
    60  2上記物質の混合水溶液11 t 掃
、拝上、95℃にて6時間反応させた結果化じた沈#を
濾過し、乾燥後得られた粉末をアルミナ製ルツボに入れ
、通常の管状電気炉内に設置し、炉心管の片側より、水
素ガス50簀量チ、窒素ガス50容量チの混合ガスを、
1分間に炉心管の内容積の3分の1の供給量で連に’R
的に流し、ルツボ内温度が600℃になるよう調温し、
2時間焙焼[7た。
≠ 1 Table 3 Table 2 (J) Table 4 (D) Table 2 (■) Table 4 (B) Example 15 Yttrium sulfate Y! (SO4)3・8H, O45,
75F urea
60 2 11 t of mixed aqueous solution of the above substances were washed, the precipitate formed as a result of reaction at 95°C for 6 hours was filtered, and the powder obtained after drying was placed in an alumina crucible and placed in an ordinary tubular electric Installed in the furnace, a mixed gas of 50 volumes of hydrogen gas and 50 volumes of nitrogen gas was introduced from one side of the furnace core tube.
'R' continuously at a supply rate of 1/3 of the inner volume of the reactor core tube per minute.
The temperature inside the crucible was adjusted to 600℃.
Roast for 2 hours [7 hours].

冷却後、反応生成物のX線回折を行なった結果、実施例
1において得られたイツトリウムオキシザルファイドと
同様の回折パターンがイ4Jられた。さらに、ケイ光X
線によりYとSのモル比(Y/S )を測定したところ
、2.06であった。以上の結果により、得られた粉末
が純粋なイツトリウムオキシザルファイドであることが
而−明される。なお、収率は96襲であった。
After cooling, the reaction product was subjected to X-ray diffraction, and as a result, a diffraction pattern similar to that of yttrium oxysulfide obtained in Example 1 was obtained. In addition, Keikou X
The molar ratio of Y and S (Y/S) was measured using a line and found to be 2.06. The above results demonstrate that the obtained powder is pure yttrium oxysulfide. Note that the yield was 96 times.

実施例16 硫酸イツトリウム Y2(804)3・8H,O45,
75r尿  素                  
  60  1上記物質の混合水溶液1tを欅、拝上、
95℃にて3時間反応させた結果化じた沈澱を濾過し、
乾燥後、得られた粉末をアルミナ製ルツボに入れ、通常
の管状電気炉内に設置し、炉心管の片側より、水素ガス
50容量チ、窒素ガス50容量チの混合ガスを、1分間
に炉心管の内容積の6分の1の供給量で連続的に流し、
ルツボ内温度が900℃になるよう調温し、2時間焙焼
した。
Example 16 Yttrium sulfate Y2(804)3.8H, O45,
75r urea
60 1 1 ton of mixed aqueous solution of the above substances was added to Keyaki,
Filter the precipitate formed as a result of reacting at 95°C for 3 hours,
After drying, the obtained powder was placed in an alumina crucible, placed in a normal tubular electric furnace, and a mixed gas of 50 volumes of hydrogen gas and 50 volumes of nitrogen gas was supplied from one side of the furnace tube to the core every minute. Flow continuously at a supply rate of 1/6 of the internal volume of the tube,
The temperature inside the crucible was adjusted to 900°C and roasted for 2 hours.

冷却後、反応生成物のX線回折を行なった結果は、表5
に示したが、この表よりわかるように、回折パターンに
は、イツトリウムのオキシザルファイドのピークと共に
、イツトリウムのオキサイドと思われるピークも存在し
ていた。すなわち、この実験においては、一部イットリ
ウムのオキシサルファイドが生成したが、イツトリウム
のオキサイドも混合していた。
After cooling, the reaction product was subjected to X-ray diffraction, and the results are shown in Table 5.
However, as can be seen from this table, the diffraction pattern included a peak of yttrium oxide as well as a peak of yttrium oxysulfide. That is, in this experiment, some yttrium oxysulfide was produced, but yttrium oxide was also mixed.

実施例 硫酸イツトリウム yt(so4)s・8H2045,
759尿  素                  
 60  7上記物質の混合水溶/(Mtを林、計上、
95℃にて6時間反応させた結果化じた沈澱k濾過し、
乾燥後、得られた粉末をアルミナIJtレツボに入れ、
通常の管状電気炉内に設置し、炉心管の片側より、水素
ガス5容量チ、窒素ガス95芥量チの混合ガスを、1分
間に炉心管の内容積の3分の1の供給量で連続的に流し
、ルーツボ内温度が600℃になるように調温し、2時
間焙焼した。
Example Yttrium sulfate yt(so4)s・8H2045,
759 Urea
60 7 Mixed aqueous solution of the above substances/(Mt Hayashi, accounted for,
The precipitate formed as a result of reaction at 95°C for 6 hours was filtered,
After drying, put the obtained powder into an alumina IJt receptacle,
Installed in an ordinary tubular electric furnace, a mixed gas of 5 volumes of hydrogen gas and 95 volumes of nitrogen gas is supplied from one side of the furnace core tube at a rate of one-third of the inner volume of the furnace core tube per minute. The mixture was poured continuously, the temperature inside the roots pot was adjusted to 600°C, and roasted for 2 hours.

冷却後、反応生成物のX線回折を行なった結果は、表6
に示したが、この表よりわかるように、回折パターンに
は、イツトリウムのオキシサルファイドのピークと共に
、イツトリウムのオキャーイドと思われるピークも存在
していた。すなわち、この実験においては、一部イット
リウムのオキシサルファイドが生成したが、イツトリウ
ムのオキサイドも混合していた。
After cooling, the reaction product was subjected to X-ray diffraction, and the results are shown in Table 6.
However, as can be seen from this table, the diffraction pattern included a peak of yttrium oxysulfide as well as a peak believed to be ocyanide of yttrium. That is, in this experiment, some yttrium oxysulfide was produced, but yttrium oxide was also mixed.

表  5      表  6 実施例18 硫酸イツト1)ラム Yz(SO4)3・8■I、04
5.759尿  累                
  20   g上記物質の混合水溶液1tを4+il
モ拌下、95℃にて3時間反応させた結果生じた沈#金
沢過し、乾燥後、得られた粉末をアルミナ製ルツボに入
れ、jrTi當の管状電気炉内に設置し、炉心管の片側
より、水素ガス50容量チ、屋素ガス50容量チの混合
ガスを、1分間に炉心管の内容積の6分の1の供給量で
連続的に流し、ルツボ内温度が650℃になるよう調温
し、2時間焙焼した。
Table 5 Table 6 Example 18 Sulfuric acid 1) Ram Yz(SO4)3・8 ■I, 04
5.759 urine cumulative
1 t of mixed aqueous solution of 20 g of the above substances to 4+il
After reacting at 95°C for 3 hours under constant stirring, the resulting powder was filtered through Kanazawa and dried. A mixed gas of 50 volumes of hydrogen gas and 50 volumes of nitrogen gas is continuously flowed from one side at a supply rate of 1/6 of the internal volume of the furnace tube per minute, and the temperature inside the crucible reaches 650℃. The temperature was adjusted accordingly and roasted for 2 hours.

冷却後、反応生成物のX線回折を行なった結果、実施例
1において得られたイツトリウムオキシサルファイドと
同様の回折パターンが得られた。さらに、ケイ光X線に
よりYとSのモル比(Y、/S)を測定したところ、2
.02であり、以上の結果により、得られた粉末が純粋
なイツトリウムオキシザルファイドであることが証明さ
れる。なお、収率は65%であつ7v 。
After cooling, the reaction product was subjected to X-ray diffraction, and as a result, a diffraction pattern similar to that of yttrium oxysulfide obtained in Example 1 was obtained. Furthermore, when the molar ratio of Y and S (Y, /S) was measured using fluorescent X-rays, it was found that 2
.. 02, and the above results prove that the obtained powder is pure yttrium oxysulfide. The yield was 65% and 7v.

実施例19 硫酸イツトリウム Yt(SO4)3・8H,O45,
75r尿  素                  
  60  7上記物質の混合水溶液1tを攪拌下、9
5℃にて30分間反応させた結果生じた沈#を濾過し、
乾燥後、得られた粉末をアルミナ製ルツボに入れ、通常
の管状電気炉内に設置し、炉心管の片側より、水素ガス
60容葉チ、窒素ガス50容M: %の混合ガスを、1
分間に炉心管の内容積の5分の1の供給量で連続的に流
し、ルツボ内温度が650℃になるよう調温し、2時間
焙焼した。
Example 19 Yttrium sulfate Yt(SO4)3.8H, O45,
75r urea
60 7 1 t of mixed aqueous solution of the above substances was stirred, 9
Filter the precipitate # generated as a result of reacting at 5°C for 30 minutes,
After drying, the obtained powder was placed in an alumina crucible, placed in a normal tubular electric furnace, and a mixed gas of 60 volumes of hydrogen gas and 50 volumes of nitrogen gas was added to one side of the furnace tube.
The crucible was continuously flowed at a feed rate of one-fifth of the inner volume of the furnace tube per minute, and the temperature inside the crucible was adjusted to 650° C., and roasted for 2 hours.

冷却後、反応生成物のX線回折を行なった結果、実施例
1において得られたイツトリウムオキシツルファイドと
同様の回折パターンが得られた。さらに、ケイ光X線に
よりYとSのモル比(Y/S)を測定したところ、2.
05であり、以上の結果により、得られた粉末が純粋な
イツトリウムオキシサルファイドであることが証明され
る。なお、収率は68%であった。
After cooling, the reaction product was subjected to X-ray diffraction, and as a result, a diffraction pattern similar to that of the yttrium oxysulfide obtained in Example 1 was obtained. Furthermore, when the molar ratio of Y and S (Y/S) was measured using fluorescent X-rays, it was found that 2.
05, and the above results prove that the obtained powder is pure yttrium oxysulfide. Note that the yield was 68%.

実施例20 硫酸イツトリウム Yt (804)3・8H2045
,75r尿  素                 
   60  2上記物質の混合水溶液1tを攪拌下、
95℃にて6時間反応させた結果生じた沈澱t濾過し、
乾燥後、得られた粉末をアルミナ製ルツボに入れ1通常
の管状電気炉内に設置し、炉心管の片側より、水素ノJ
ス50容量チ、窒素ガス50容量チの混合ガスを、1分
間に炉心管の内容積の6分の1の供給量で連続的にゲL
し、ルツボ内温度が650℃になるように調温し、6時
間たl焼した。
Example 20 Yttrium sulfate Yt (804)3.8H2045
,75r urea
60 2 While stirring 1 t of mixed aqueous solution of the above substances,
The precipitate produced as a result of reaction at 95°C for 6 hours was filtered,
After drying, the obtained powder was placed in an alumina crucible, placed in an ordinary tubular electric furnace, and hydrogen was injected into it from one side of the furnace tube.
A mixed gas of 50 volumes of gas and 50 volumes of nitrogen gas is continuously supplied at a rate of 1/6 of the internal volume of the furnace tube per minute.
Then, the temperature inside the crucible was adjusted to 650° C., and calcined for 6 hours.

冷却後、反応生成物のX線回折を行なった結果、実施例
1においてイ8られたイツトリウムのオキシザルファイ
ドと同様の回折パターンが得られた。
After cooling, the reaction product was subjected to X-ray diffraction, and as a result, a diffraction pattern similar to that of the yttrium oxysulfide obtained in Example 1 was obtained.

さらに、ケイ光X線によりYとSのモル比(Y/S)を
測定したところ、2.00であり、以上の結果により、
得られた粉末が純粋なイツトリウムのオキシザルファイ
ドであることが証明される。なお、7  収率Vより5
%であった。
Furthermore, when the molar ratio of Y and S (Y/S) was measured using fluorescent X-rays, it was 2.00, and based on the above results,
The powder obtained is proven to be pure yttrium oxysulfide. In addition, from 7 yield V, 5
%Met.

実施例21 硫酸イツトリウムYz(SOJs・8H,O45,75
r硫酸ユーロピウム Eu、(804)3・8H,01
,66V尿  素                 
   60   タ上記物質の混合水溶液1tを攪拌下
、95℃にて5時間反応させた結果生じた沈澱を沖過し
、乾燥後、得られた粉末金アルミナ製ルツボに入れ、通
常の管状′電気炉内に設置し、炉心管の片側より、水素
ガス30容量係、窒素ガス70容捕襲の混合ガスを、1
分間に炉心管の内容積の3分の1の供給量で連続的に流
し、ルツボ内温度が650℃になるよう訓温し、2時間
焙焼した。
Example 21 Yttrium sulfate Yz (SOJs・8H, O45,75
rEuropium sulfate Eu, (804)3.8H,01
,66V urea
The precipitate produced as a result of reacting 1 t of mixed aqueous solution of the above substances at 95°C for 5 hours with stirring was filtered, dried, and placed in the resulting powdered gold-alumina crucible, and placed in a conventional tubular electric furnace. A mixed gas of 30 volumes of hydrogen gas and 70 volumes of nitrogen gas is captured from one side of the reactor core tube.
The crucible was continuously fed at a rate of one-third of the internal volume of the furnace tube per minute, heated to a crucible internal temperature of 650°C, and roasted for 2 hours.

冷却後、反応生成物のX線回折を行なった結果、実施例
1において得られたイツトリウムのオキシザルファイド
と同様の回折パターンが得られた。
After cooling, the reaction product was subjected to X-ray diffraction, and as a result, a diffraction pattern similar to that of the yttrium oxysulfide obtained in Example 1 was obtained.

さらに、ケイ光X線によりYとSのモル比(Y/S)を
測定したところ、2.05であり、同時に測定したユー
ロピウムのイツトリウムに対する割合は6.02モル係
でめった。以上の結果によシ、ユーロピウム付活量がイ
ットリウムオキシサルファイド1?にXj l−、0,
0369f/であるKJR粋なY2O2S ; Euの
得られたことか証明される。
Furthermore, when the molar ratio of Y and S (Y/S) was measured using fluorescent X-rays, it was 2.05, and the ratio of europium to yttrium, which was measured at the same time, was 6.02 molar. Based on the above results, is the europium activation amount 1 yttrium oxysulfide? to Xj l-, 0,
KJR stylish Y2O2S which is 0369f/; proves that Eu was obtained.

比較例3 酸化イツトリウム Y、0310 @ 酸化ユーロピウム 原+20.      0.8フイ
シ1[黄            S        
      4 ≦−1代鹸ナトリ17ムNa2Co、
     6!;’) /$−h !J ラムに、PO
4・3H,O’ I V士直物d’ kポリエチレン瓶
に入れて振とりし7、十分に混甘すり。これ金アルミナ
製ノホに入れ、4(気中で1150℃VCb□ イテ5
 [((’ lil Q焼した。焙焼佐の粉末にr、1
、粉砕・分級・酸洗い・水洗・乾燥といった荊常行なわ
れる後処理を施した。
Comparative Example 3 Yttrium oxide Y, 0310 @ europium oxide raw +20. 0.8Fish 1 [Yellow S
4 ≦-1st generation Na2Co,
6! ;') /$-h! To J Ram, PO
4.3H, O' I V's direct product d' k Pour into a polyethylene bottle and shake 7. Mix and sweeten thoroughly. Put this in a gold alumina nozzle, and
[((' lil Q roasted. R, 1
After that, it was subjected to the usual post-treatments such as crushing, classification, pickling, water washing, and drying.

このようにして匍られた粉末のX線回折を行なったとこ
ろ、ASTMカードにム己載゛されているイツトリウム
オキシサルファイドVこついての1同とよい一致が兄ら
1tfcが、朽木の色に利i白ではなく、や−τ・y(
色味fL帝ひてい1ζ。クイ光X糾によりYとSのセル
比(Y/S)を測定したところ、1.96であり、!r
、た、フレームノ皇子(孜尤法によりナトリウムを測定
したところ、該生成物中に0.1%のNaが残っていた
When X-ray diffraction was performed on the powder thus mixed, it was found that 1TFC was in good agreement with the yttrium oxysulfide V which is included in the ASTM card. Instead of profit i white, ya −τ・y(
Color fL color is 1ζ. When the cell ratio of Y and S (Y/S) was measured using Kuiko X-con, it was 1.96! r
When the sodium content was measured by the Flame Prince method, 0.1% of Na remained in the product.

実施例21および比較例3においてそれぞれ得うレタユ
ーロピウム付活イットリウトオキシザルファイドY2O
25iEuの粉末の粒度分布をl1llJ定したところ
、本発明により得られるイツトリウムオキシサルファイ
ドのほうが、従来法により得られるものに比べ、粒径が
小さくその分布もシャープであった。平均粒径は、各6
.8μ、5.5μであった。
Retaeuropium-activated yttriutoxysulfide Y2O obtained in Example 21 and Comparative Example 3, respectively
When the particle size distribution of the 25iEu powder was determined, it was found that the yttrium oxysulfide obtained by the present invention had a smaller particle size and sharper distribution than that obtained by the conventional method. The average particle size is 6 each
.. They were 8μ and 5.5μ.

次に、これらの粉末をザンプルセルに詰めて成型した後
、島津製ケイ光光度計RF−500にセットシ、光電子
増倍管での検出により、励起波長527 nmの場合の
90°方向の発光(波長626nm ) 全測定したと
ころ、実施例21VCおいて得られたJoy S i 
Euでは相対強度64であり、一方、比較例3において
得られたY、02 S i Euでは相対強度58であ
った。すなわち、本発明において得られるイツトリウム
オキシサルファイドを母体とする螢光体は、従来法によ
り得られるオキシザルファイドを母体とする螢光体に比
べ、発光ル1i度が約10%向上した。
Next, these powders were packed into a sample cell and molded, and then set in a Shimadzu fluorescence photometer RF-500, and detected with a photomultiplier tube to detect the emission in the 90° direction (wavelength) at an excitation wavelength of 527 nm. 626 nm) When all measurements were carried out, the Joy Si obtained in Example 21VC
For Eu, the relative strength was 64, while for Y, 02 Si Eu obtained in Comparative Example 3, the relative strength was 58. That is, the phosphor based on yttrium oxysulfide obtained in the present invention has a luminescence intensity 1i degree improved by about 10% compared to the phosphor based on oxysulfide obtained by the conventional method.

実施例22 硫酸ガドリニウム Gd2(SO4)、・8H7026
,14!i’硫酸テルビウム Tbt (504)s・
811,0  0,74 r尿  素        
            60   タ上記物質の混合
水溶液1tを纜、扛下、100℃にて6時間反応させた
結果生じた沈澱ヲ許過し、乾燥後、得られた粉末をアル
ミナ製ルツボに入れ、通常の管状電気炉内に設置し、炉
心管の片側より、水素ガス70容MEチ、窒素ガス30
容量係の混合ガスを、1分間に炉心管の内容積の3分の
1の供給量で連続的に流し、ルツボ内温度が650℃に
なるよう調温し、2時間焙焼した。
Example 22 Gadolinium sulfate Gd2(SO4), 8H7026
,14! i' Terbium sulfate Tbt (504)s・
811,0 0,74 rurea
60 liters of mixed aqueous solution of the above substances was poured into a tube and allowed to react at 100°C for 6 hours. After drying, the resulting powder was placed in an alumina crucible and heated in a regular tubular electric kettle. Installed in the furnace, and from one side of the furnace tube, 70 volumes of hydrogen gas and 30 volumes of nitrogen gas were added.
A volumetric mixed gas was continuously supplied at a rate of one-third of the inner volume of the furnace tube per minute, and the temperature inside the crucible was adjusted to 650° C., and roasted for 2 hours.

冷却後、反応生成物のX線回折を行なった結果、実施例
9において得られたガドリニウムのオキシザルファイド
と同様の回折パターンが得られた。
After cooling, the reaction product was subjected to X-ray diffraction, and as a result, a diffraction pattern similar to that of the gadolinium oxysulfide obtained in Example 9 was obtained.

さらに、ケイ光X線によりGdとSのモル比(Gd/S
 ) ffi測定したところ、2.[16であり、同時
にd11]定したテルビウムのガドリニウムに対する割
合目2.98モルチであった。以上の結果により、テル
ビウム付活量がガドリニウムオキシサルファイド17に
対し0.0250fである純粋なGd、02S ; T
bの得られたことが証明される。
Furthermore, the molar ratio of Gd and S (Gd/S
) When ffi was measured, 2. [16, and at the same time d11] The ratio of terbium to gadolinium was determined to be 2.98 mol. Based on the above results, pure Gd, 02S;
It is proven that b is obtained.

比較例4 酸化ガドリニウム cd、o、     10  f/
酸化テルビウム Tb40.     0.4 f硫 
 黄        S           37炭
酸ナトリウム Na2CO,、6f/リン酸カリウムに
3PO,−3H,01Y上記物質をポリエチレン瓶に入
れて振とうし、十分に混合する。これをアルミナ製ルツ
ボに入れ、空気中で115o”しにおいて3時間焙焼し
た。焙焼後の粉末には、粉砕・分級・酸洗い・水洗・乾
燥といった通常行なわれる後処理音節した。
Comparative Example 4 Gadolinium oxide cd, o, 10 f/
Terbium oxide Tb40. 0.4 f sulfur
Yellow S 37 Sodium carbonate Na2CO,, 6f/Potassium phosphate and 3PO, -3H, 01Y Place the above substances in a polyethylene bottle and shake to mix thoroughly. This was placed in an alumina crucible and roasted at 115°C in air for 3 hours.The roasted powder was subjected to the usual post-processing steps such as crushing, classification, pickling, water washing, and drying.

このようにして得られた粉末のX線回折を行なったとこ
ろ、ASTMカードに記載されているガドリニウムオキ
シサルファイドについての値とよい一致が見られたが、
粉末の色は純白ではなく、やや黄色味を帯びていた。り
”イ光X線によりCdとSのモル比(Gd/ s )を
測定口Qころ、1.97であり、また、フレーム原子吸
光?ノミによりナトリウム金測定したところ、該生成物
中に0.1%のNaが残っていた。
When the powder thus obtained was subjected to X-ray diffraction, good agreement was found with the value for gadolinium oxysulfide listed in the ASTM card.
The color of the powder was not pure white, but rather yellowish. The molar ratio of Cd and S (Gd/s) was measured using optical X-rays at measurement port Q and was 1.97, and sodium gold was measured using a flame atomic absorption chisel. .1% Na remained.

実MCh例22および比較例4 VCおいてそねそれ得
られたテルビウム付活ガドリニウムオキシサルファイド
Gd 202 S i Tl)の粉末の粒度分布を測定
したところ、本発明により得られるノjトリニウムメキ
シザルファイドのほうが、従来法に二より得られるもの
に比べ、粒径が小さく、その分布もシャープであった。
Actual MCh Example 22 and Comparative Example 4 When the particle size distribution of the powder of terbium-activated gadolinium oxysulfide (Gd 202 S i Tl) obtained in VC was measured, it was found that The particle size of Fido was smaller and its distribution was sharper than that obtained by the conventional method.

平均粒径L[、各6.5μ、5.2μであった。The average particle size L[, 6.5μ and 5.2μ, respectively.

次に、これらの粉末をサンプルセルに晶めて成型した後
、島津製ケイ光光度削RF−500にセットし、光電子
増倍管ての検出により、励起波長543 nmの場合の
90°方向の発光(波長3750m)を測定したところ
、実施例22において得られたGd、O,S ; Tb
では相対強度70であり、一方、比較例4において得ら
れたGd、0,5iTbでは相対強度62であった。す
なわち、本発明において得られるガドリニウムオキシサ
ルファイドを母体とする螢光体は、従来法により得られ
るオキシザルファイドを母体とする螢光体に比べ、発光
輝度が約13チ向上した。
Next, these powders were crystallized and molded into a sample cell, and then set in a fluorescent photolithography RF-500 manufactured by Shimadzu, and detected by a photomultiplier tube in the 90° direction at an excitation wavelength of 543 nm. When light emission (wavelength 3750 m) was measured, Gd, O, S obtained in Example 22; Tb
The relative strength was 70, while the relative strength was 62 for Gd, 0.5iTb obtained in Comparative Example 4. That is, the phosphor based on gadolinium oxysulfide obtained in the present invention has improved luminance by about 13 degrees compared to the phosphor based on oxysulfide obtained by the conventional method.

実施例23 硫酸ランタン  La= (so4)3・qHto  
10,19 y塩化ユーロピウム EuCIAo、21
 ?尿  素                   
 50  7上記物質の混合水溶液1tを攪拌下、10
0℃にて2時間反応させた結果生じた沈澱ヲ渥過し、乾
燥後、得られた粉末をアルミナ製ルツボに入れ、通常の
管状電気炉内に設置し、炉心管の片側より、水素ガス6
0容量チ、置床ガス70容量襲の混合ガスを、1分間に
炉心管の内容積の3分の1の供給量で連続的に流し、ル
ツボ内温度が700℃になるよう調温し、2時間焙焼し
た。
Example 23 Lanthanum sulfate La= (so4)3・qHto
10,19y europium chloride EuCIAo, 21
? Urea
50 7 While stirring 1 t of mixed aqueous solution of the above substances, 10
The precipitate produced as a result of the reaction at 0°C for 2 hours was filtered out, and after drying, the obtained powder was placed in an alumina crucible, placed in a normal tubular electric furnace, and hydrogen gas was injected from one side of the furnace tube. 6
A mixed gas of 0 volume and 70 volumes of bed gas was continuously supplied at a rate of 1/3 of the internal volume of the furnace tube per minute, and the temperature inside the crucible was adjusted to 700 °C. Roasted for an hour.

冷却後、反応生成物のX線回折を行なった結果、実施例
乙において得られたランタンのオキシザルファイドと同
様の回折パターンが得られた。さらに、ケイ光X線によ
υLaとSのモル比(La/S)を測定したところ、2
.05であり同時に測定したユーロピウムのランタンに
対する割合は3.04モルチであった。以上の結果によ
り、ユーロピウム付活量がランタンオキシサルファイド
12に対し0.0270yである純粋なLa、02S 
; Euの得られたことが1fil−明される。
After cooling, the reaction product was subjected to X-ray diffraction, and as a result, a diffraction pattern similar to that of the lanthanum oxysulfide obtained in Example B was obtained. Furthermore, when the molar ratio of υLa and S (La/S) was measured using fluorescent X-rays, it was found that 2
.. 05, and the ratio of europium to lanthanum measured at the same time was 3.04 molti. Based on the above results, pure La, 02S with europium activation amount of 0.0270y for lanthanum oxysulfide 12
; It is clear that Eu was obtained.

比較例5 酸化ランタン  La20.、    10  ?酸化
ユーロピウムEu、0.     0.47硫  黄 
       3          5L?炭酸ナト
リウム Na、CO,、69 リン酸カリウム K、PO4・3)(、Q    I 
 Y上記物質をポリエチレン瓶に入れて振とうし、十分
に混合する。これをアルミナ製ルツボZに入れ、空気中
で1150℃において6時間焙焼した。焙焼後の粉末に
は、粉砕・分級・化法い・水洗・乾燥といった通電性な
われる後処理を施した。
Comparative Example 5 Lanthanum oxide La20. , 10? Europium oxide Eu, 0. 0.47 sulfur
3 5L? Sodium carbonate Na, CO,, 69 Potassium phosphate K, PO4・3) (, Q I
YPour the above substances into a polyethylene bottle and shake to mix thoroughly. This was placed in an alumina crucible Z and roasted in air at 1150°C for 6 hours. After roasting, the powder was subjected to post-processing to make it conductive, such as crushing, classification, chemical processing, washing with water, and drying.

このようにして得られた粉末のX線回折を行なったとこ
ろ、ASTMカードに記載されているランタンオキシツ
ルファイドについての値とよい一致が見られたが、粉末
の色は純白ではなく、やや黄色味を帯びていた。ケイ光
X線によりLaとSのモル比(La / S )を測定
したところ、1.97であり、またフレーム原子吸光法
によりナトリウムを測定したところ、該生成物中に0.
08%のNaが残っていた。
When the powder thus obtained was subjected to X-ray diffraction, good agreement was found with the value for lanthanum oxysulfide listed in the ASTM card, but the color of the powder was not pure white but slightly yellow. It had a taste. When the molar ratio of La and S (La/S) was measured using fluorescent X-rays, it was 1.97, and when sodium was measured using flame atomic absorption spectrometry, it was found that 0.0.
0.8% Na remained.

実施例23および比較例5においてそれぞれ得られたユ
ーロピウム付活ランタンオキシザルファイドLa201
SiEuの粉末の粒度分布を測定したところ、本発明に
より得られるランタンオキシサルファイドのほうが、従
来法により得られるものに比べ、粒径が小さく、その分
布もシャープであった。
Europium-activated lanthanum oxysulfide La201 obtained in Example 23 and Comparative Example 5, respectively
When the particle size distribution of SiEu powder was measured, it was found that the lanthanum oxysulfide obtained by the present invention had a smaller particle size and sharper particle size distribution than that obtained by the conventional method.

平均粒径は、各4.2μ、5.0μであった。The average particle diameters were 4.2μ and 5.0μ, respectively.

次に、これらの粉末をサンプルセルに詰めて成型した後
、島津製ケイ光光度計RF−500に七ツトシ、光電子
増倍管での検出により、励起波長527 nlnの場合
の90°方向の発光(波長626nm ) f測定した
ところ、実施例25において得られたLa、02S i
 Euでは相対強度55であり、一方、比較例5におい
て得られたLa2O2S i Euでは相対強度50で
あった。すなわち、本発明において得られるガドリニウ
ムオキシサルファイドを母体とすぎ螢光体は、従来法に
より得られるオキシサルファイドを母体とする螢光体に
比べ、発光輝度が10−向−ヒした。
Next, these powders were packed into a sample cell and molded, and then transferred to a Shimadzu fluorescence photometer RF-500 and detected by a photomultiplier tube to detect the emission in the 90° direction at an excitation wavelength of 527 nln. (Wavelength 626 nm) When f was measured, La obtained in Example 25, 02S i
Eu had a relative strength of 55, while La2O2S i Eu obtained in Comparative Example 5 had a relative strength of 50. That is, the phosphor based on gadolinium oxysulfide obtained in the present invention has a luminance of 10 times higher than the phosphor based on oxysulfide obtained by the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1および比較例1において得られた粉末
の各粒度分布を示すグラフ、第2図は実施例6および比
較例2において得られた粉末の各粒度分布を示すグラフ
である。 イケ イ:+:(、a) 千2・コ 柱径 快)
FIG. 1 is a graph showing the particle size distribution of the powders obtained in Example 1 and Comparative Example 1, and FIG. 2 is a graph showing the particle size distribution of the powders obtained in Example 6 and Comparative Example 2. Okay: +: (, a) 1,200,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 Column Diameter (Kai)

Claims (4)

【特許請求の範囲】[Claims] (1)1種あるいは2種以上の希土類元素イオンと硫酸
イオンと尿素とを水溶液中で反応させて得られる沈澱物
、あるいは該沈澱物を焙焼して得られる希土類元素のオ
キシサルフェートを、水素ガスあるいは水素ガスと不活
性ガスとの混合ガス雰囲気中で加熱することを特徴とす
る希土類元素のオキシサルファイドの製造法。
(1) A precipitate obtained by reacting one or more rare earth element ions, sulfate ions, and urea in an aqueous solution, or a rare earth element oxysulfate obtained by roasting the precipitate, is hydrogenated. A method for producing rare earth element oxysulfide, which is characterized by heating in a gas atmosphere or a mixed gas atmosphere of hydrogen gas and inert gas.
(2)希土類元素イオンが、該元素の硫酸塩、塩化物、
ギ酸塩、酢酸塩等の無機酸塩あるいは有機酸塩を水溶液
に溶解して作られるものである特許請求の範囲第1項記
載のオキシサルファイドの製造法。
(2) The rare earth element ion is a sulfate, chloride, or
The method for producing oxysulfide according to claim 1, wherein the oxysulfide is produced by dissolving an inorganic or organic acid salt such as formate or acetate in an aqueous solution.
(3)硫酸イオンが、硫酸、希土類元素の硫酸塩、硫酸
アンモニウム等の硫酸の4級アンモニウム塩、硫酸ピリ
ジニウム等の塩類を水溶液に溶解して得られるものであ
る特許請求の範囲第1項記載のオキシサルファイドの製
造法。
(3) The sulfate ion is obtained by dissolving sulfuric acid, a sulfate of a rare earth element, a quaternary ammonium salt of sulfuric acid such as ammonium sulfate, or a salt such as pyridinium sulfate in an aqueous solution. Method for producing oxysulfide.
(4)水溶液中に螢光体用付活物質を含む特許請求の範
囲第1項記載のオキシザルファイドの製造法。
(4) The method for producing oxysulfide according to claim 1, wherein the aqueous solution contains an activating material for a fluorescent material.
JP57118615A 1982-07-09 1982-07-09 Manufacture of oxysulfide of rare earth element Pending JPS5913625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57118615A JPS5913625A (en) 1982-07-09 1982-07-09 Manufacture of oxysulfide of rare earth element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57118615A JPS5913625A (en) 1982-07-09 1982-07-09 Manufacture of oxysulfide of rare earth element

Publications (1)

Publication Number Publication Date
JPS5913625A true JPS5913625A (en) 1984-01-24

Family

ID=14740924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57118615A Pending JPS5913625A (en) 1982-07-09 1982-07-09 Manufacture of oxysulfide of rare earth element

Country Status (1)

Country Link
JP (1) JPS5913625A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988003910A1 (en) * 1986-11-17 1988-06-02 Clarkson University Process for synthesis of uniform colloidal particles of rare earth oxides
US5015452A (en) * 1986-11-17 1991-05-14 Clarkson University Process for synthesis of uniform colloidal particles of rare earth oxides
US6296824B1 (en) * 1999-03-25 2001-10-02 Siemens Aktiengesellschaft Method for producing rare earth oxysulfide powder
JP2009083082A (en) * 2007-10-03 2009-04-23 Agc Seimi Chemical Co Ltd Method for recovering rare earth elements
JP2012144400A (en) * 2011-01-13 2012-08-02 National Institute For Materials Science Layered rare earth hydroxide, method for producing the same and application thereof
WO2015053033A1 (en) * 2013-10-08 2015-04-16 日立金属株式会社 Ceramic scintillator and method for producing same, scintillator array, and radiation detector
WO2017043619A1 (en) * 2015-09-11 2017-03-16 株式会社三徳 Method for producing rare earth oxysulfide, rare earth oxysulfide, and regenerator material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988003910A1 (en) * 1986-11-17 1988-06-02 Clarkson University Process for synthesis of uniform colloidal particles of rare earth oxides
US5015452A (en) * 1986-11-17 1991-05-14 Clarkson University Process for synthesis of uniform colloidal particles of rare earth oxides
US6296824B1 (en) * 1999-03-25 2001-10-02 Siemens Aktiengesellschaft Method for producing rare earth oxysulfide powder
JP2009083082A (en) * 2007-10-03 2009-04-23 Agc Seimi Chemical Co Ltd Method for recovering rare earth elements
JP2012144400A (en) * 2011-01-13 2012-08-02 National Institute For Materials Science Layered rare earth hydroxide, method for producing the same and application thereof
WO2015053033A1 (en) * 2013-10-08 2015-04-16 日立金属株式会社 Ceramic scintillator and method for producing same, scintillator array, and radiation detector
US10207957B2 (en) 2013-10-08 2019-02-19 Hitachi Metals, Ltd. Ceramic scintillator and its production method, and scintillator array and radiation detector
WO2017043619A1 (en) * 2015-09-11 2017-03-16 株式会社三徳 Method for producing rare earth oxysulfide, rare earth oxysulfide, and regenerator material

Similar Documents

Publication Publication Date Title
JP2914602B2 (en) Process for producing rare earth phosphate and product obtained thereby
US5746944A (en) Granular lanthanum/cerium/terbium/mixer phoshates having characteristic morphology and green luminophors comprised thereof
US6238593B1 (en) Rare-earth borate and its precursor, preparation processes and use of borate as luminophore
JP5176084B2 (en) Method for producing metal oxide phosphor
US5091110A (en) Method of making lanthanum cerium terbium phosphate phosphor
US7378038B2 (en) Process for producing phosphors
JPS5913625A (en) Manufacture of oxysulfide of rare earth element
JP2001172627A (en) Rare earth phosphate, method for producing the same and rare earth phosphate fluorescent substance
JP2001521055A (en) Use of thulium-containing lanthanum phosphate as a phosphor in a plasma or X-ray system
EP1176119B1 (en) Method of producing barium-containing composite metal oxide
JPS59164631A (en) Manufacture of oxysulfide of rare earth element
JP3804804B2 (en) Rare earth element phosphate composition and method for producing the same
US3562175A (en) Gadolinium oxide particle growth in lithium oxide flux
Lakshmanan et al. Rare earth doped CaSO4 luminescence phosphors for applications in novel displays–new recipes
JP5315501B2 (en) Method for producing fluorescent light emitting powder and fluorescent light emitting powder
JPS59162132A (en) Production of oxysulfate of rare earth element
JP2005298272A (en) Method of manufacturing rare-earth borate
US3929665A (en) Process for preparing luminescent materials based on oxysulphides
JPS5921523A (en) Manufacture of oxysulfide of rare earth element
RU2312122C2 (en) Yttrium oxysulfide-based luminophor synthesis method
US3630947A (en) Europium strontium chloride phosphate fluorescent composition
CN101400758A (en) Method for producing aluminate phosphor and aluminate phosphor
JP2001234166A (en) Yttrium silicate fluorescent substance for low voltage drive and its preparation process
JPS58167426A (en) Preparation of oxysulfate from rare earth element
JP2875058B2 (en) Method for producing lanthanum / cerium / terbium phosphate phosphor