JPS5913601A - Production of hydrogen and oxygen by photolysis of water - Google Patents

Production of hydrogen and oxygen by photolysis of water

Info

Publication number
JPS5913601A
JPS5913601A JP57122457A JP12245782A JPS5913601A JP S5913601 A JPS5913601 A JP S5913601A JP 57122457 A JP57122457 A JP 57122457A JP 12245782 A JP12245782 A JP 12245782A JP S5913601 A JPS5913601 A JP S5913601A
Authority
JP
Japan
Prior art keywords
complex
metal
water
oxygen
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57122457A
Other languages
Japanese (ja)
Other versions
JPH0329722B2 (en
Inventor
Masao Kaneko
正夫 金子
Akira Yamada
瑛 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP57122457A priority Critical patent/JPS5913601A/en
Publication of JPS5913601A publication Critical patent/JPS5913601A/en
Publication of JPH0329722B2 publication Critical patent/JPH0329722B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To obtain H2 and O2 by irradiating light on an aqueous soln. contg. a mixed complex consisting of a hexacyano-metallic complex and a salt of a transition metal and a tris(polypyridyl) metallic complex to cause the photolysis of the water. CONSTITUTION:An aqueous soln. contg. a hexacyano-metallic complex having an element belonging to the Va, VIa, VIIa or VIII group in the periodic table such as V, Cr, Mn, Fe or Co as the central metal and a salt of a metal belonging to the VIa, VIIa, VIII or I b group is prepared. Ferrous chloride, manganese chloride, cupric chloride or the like is used as the metallic salt. A tris(polypyridyl) metallic (II) complex of a metal belonging to the VIII group such as Prussion blue prepared from hexacyano-iron (III) potassium and an aqueous soln. of a ferrous salt is dissolved in said aqueous soln., and the pH of the resulting aqueous soln. is adjusted to the acidic side. Light is irradiated on the acidic soln. from a light source such as a W lamp to decompose the water into H2 and O2 usually at room temp.

Description

【発明の詳細な説明】 本発明は水を光分解して水素と酸素を91!る方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention photolyzes water to produce 91% hydrogen and oxygen! It concerns how to

水の光分解による水素と酸素の生産は、太陽光の化学的
変換利用という観点から極めて注目宴れている。
The production of hydrogen and oxygen through the photolysis of water has attracted much attention from the perspective of utilizing sunlight for chemical conversion.

本発明者らは、ヘキサシアノ金属錯体と遷移金属の塩と
から成る混合錯体捷たけ混合物においては電子の蓄積や
出入が容&であること、1だ、トリス(ポリビリノル)
金属([I)錯体(却下「M(ppy)3」と略す)の
光励起状態を利用すると理論的に水の分解が可能なこと
に着目し鋭瀬研究を行った。
The present inventors have found that in a mixed complex mixture consisting of a hexacyano metal complex and a transition metal salt, the accumulation and release of electrons is easy.1.
Atase research focused on the fact that it is theoretically possible to decompose water by utilizing the photoexcited state of a metal ([I) complex (abbreviated as "M(ppy)3").

その結果、ヘキサシアノ金属錯体と遷移金属の塩とから
成る混合錯体およびM(ppV)3  を含む水溶液に
光照射することにより水が光分解されて水素と酸素が得
られることを見出し本発明を完成するにキつだ。
As a result, they discovered that by irradiating an aqueous solution containing M(ppV)3 and a mixed complex consisting of a hexacyano metal complex and a transition metal salt, water was photolyzed to produce hydrogen and oxygen, and the present invention was completed. It's really tough.

本発明に使用されるヘキザンアノ金t<m体の中心金属
は、周期表のVa、waX Wa、■族にカイするもの
である。たとえば、V XCr 、 lJ++、 FA
、 Co、N1、Ruなどが挙げられる。したがって上
記へキサシアノ金属錯体は一般式 %式%() で光わすことができる。式中、Ml  は、Na、K、
NH4を示し、M2  は上記中心金属を示す。
The central metal of the hexaneanogold t<m body used in the present invention is one belonging to groups Va, waX, Wa, and ■ of the periodic table. For example, V XCr, lJ++, FA
, Co, N1, Ru, etc. Therefore, the above hexacyano metal complex can be illuminated by the general formula %. In the formula, Ml is Na, K,
NH4 is shown, and M2 is the above-mentioned central metal.

また遷移金属の塩としては、周期野のMa、■a1■、
Ib  族に属する金属の塩、たとえば、第一塩化鉄、
塩化マンガン、第二塩化銅、塩化コバルト、)IA化モ
リブデンなどが使用される。
In addition, as transition metal salts, periodic field Ma, ■a1■,
Salts of metals belonging to group Ib, such as ferrous chloride,
Manganese chloride, cupric chloride, cobalt chloride, molybdenum IA, and the like are used.

ヘキツシアノ金属(4)体と上記遷移金属の塩とから成
る混合錯体または混合物(以下r MCJ  と略す)
は、単に両者の水溶液を混合するだけで調製される。M
Cの代表的な例としては、ヘキサシアノ鉄(III)カ
リウムと第一鉄塩の水溶液から調製されるプロシアンブ
ルー(V下「P8」  と略す)がある。一般にMCは
水中でコロイド溶液として存在する。MOはへキサシア
ノ金属錯体の水溶液に光照射することによっても得られ
る。たとえば、2日はへキサシアノ鉄(fil)カリウ
ムの水溶液に光照射することによって得ることができる
。この場合は前記遷移金属塩を添加しなくてもよい。
A mixed complex or mixture (hereinafter abbreviated as r MCJ) consisting of a hexyanometal (4) compound and a salt of the above transition metal
is prepared by simply mixing aqueous solutions of both. M
A typical example of C is Prussian Blue (abbreviated as "P8" under V), which is prepared from an aqueous solution of potassium hexacyanoferrate (III) and a ferrous salt. Generally, MC exists as a colloidal solution in water. MO can also be obtained by irradiating an aqueous solution of a hexacyano metal complex with light. For example, 2 days can be obtained by irradiating an aqueous solution of potassium hexacyanoferrate (fil). In this case, the transition metal salt may not be added.

本発明に使用されるM(pl)Y)3  の、l? I
Jピリジル配位子としては、たとえば、!1.2I−ビ
ビリノン(以下r bpy Jと略す)、0−フェナン
トロリンなどを挙げることができる。゛また中心金属と
しては、周8Ij表の)雪原に属する鉄、コバルト、ニ
ッケル、ル・テニウム、ロジウム、パラジウム、オスミ
ウム、イリジウム、白金が挙げられる。
l? of M(pl)Y)3 used in the present invention? I
For example, as a J pyridyl ligand,! Examples include 1.2I-bivirinone (hereinafter abbreviated as r bpy J) and 0-phenanthroline. Examples of the central metal include iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, and platinum, which belong to the snow fields (Table 8Ij).

水の光分解はM(ppy)3  とMCの混合水溶液、
またはM(1)I)!/)S+ とヘキサシアノ金属錯
体の混合水溶液に光を照射することにより行われる。
For photolysis of water, a mixed aqueous solution of M(ppy)3 and MC,
Or M(1)I)! /) It is carried out by irradiating a mixed aqueous solution of S+ and a hexacyano metal complex with light.

M(ppy)fi+ の濃度は10−6〜10−3Mの
範囲が選ばれるが、10−5〜10”Mが適昌である。
The concentration of M(ppy)fi+ is selected to be in the range of 10-6 to 10-3M, with 10-5 to 10''M being suitable.

MCまたはへキサシアノ金PA錯体の濃度は70〜10
−2Mの範囲が選ばれるが、10−4〜/ 0−3Mが
適尚である。MCtたはヘキザシアノ金pJ4錯体は、
M(ppy)j+ に対して10〜100倍モル過剰に
用いるのが好ましい。また、ヘキサシアノ金属錯体と遷
移金属塩との比率は10:/〜10:10(モル比)程
度が好ましい。
The concentration of MC or hexacyano gold PA complex is 70-10
A range of -2M is chosen, but 10-4 to /0-3M is suitable. MCt or hexacyano gold pJ4 complex is
It is preferable to use it in a 10 to 100 times molar excess with respect to M(ppy)j+. Further, the ratio of the hexacyano metal complex to the transition metal salt is preferably about 10:/-10:10 (molar ratio).

反応水溶液のpl+は酸性が選ばれる。特にpn’、2
前後において良好な結果が得られる。
The pl+ of the reaction aqueous solution is selected to be acidic. Especially pn', 2
Good results can be obtained before and after.

本発明においては、アルカリ金属のハロゲン化物、特に
、塩化カリウム、臭化カリウム、塩化ルビジウムなどの
中性塩を添加することが望ましい。
In the present invention, it is desirable to add an alkali metal halide, particularly a neutral salt such as potassium chloride, potassium bromide, and rubidium chloride.

これらの中性塩を添加することにより分糸効率を1fI
r大せしめることができる。中性塩濃度は05M前後が
最も良好な結果を与える。MCが凝集すると光分解の効
率が低下するので、光反応中、溶液を攪拌してMCの凝
集が起らないようにすることが望せしい。
By adding these neutral salts, the splitting efficiency can be increased to 1fI.
r can be increased. A neutral salt concentration of around 05M gives the best results. Since aggregation of MC reduces the efficiency of photodecomposition, it is desirable to stir the solution during the photoreaction to prevent aggregation of MC.

水を光分解す′るには、M(1)I)Y):8+ とM
Cを共に光励起する必要がある。M(ppy)j+ け
金属ないし配位子の種類によって吸収の極大波長(λm
ax )が異なる。たとえば、Ru(bpy)j+のλ
maxは4tJ2nm にあ、jl)XPa  のλm
axは700 nmにある。
To photolyze water, M(1)I)Y):8+ and M
It is necessary to photoexcite both C and C. M(ppy)j+ Depending on the type of metal or ligand, the maximum wavelength of absorption (λm
ax) are different. For example, λ of Ru(bpy)j+
max is 4tJ2nm, jl)XPa's λm
ax is at 700 nm.

このよりなM(ppy)3  とMC両者の極大波長領
域をSむ光であればいずれも有効に使用することができ
る。したがって通常の光源、たとえばタングステンラン
フ’ 、太11Wt光、キセノンランプ、プロジェクタ
−用うンノ、螢光灯などはすべて用いることができる。
Any light that radiates in the maximum wavelength region of both M(ppy)3 and MC can be effectively used. Therefore, all conventional light sources such as tungsten lamps, 11 Wt lights, xenon lamps, projector tubes, fluorescent lamps, etc. can be used.

反応温度は00〜gθ℃ の範囲から選ばれるが、通常
は室温でよい。戯゛素が混入すると光反応が若干妨げら
れるので、窒素、アルゴンなどの不活性気体中て反応を
行わせるのが好せしい。
The reaction temperature is selected from the range of 00 to gθ°C, but usually room temperature is sufficient. Since the photoreaction is somewhat hindered by the presence of nitrogen, it is preferable to carry out the reaction in an inert gas such as nitrogen or argon.

発生する水素および酸素は、ガスクロマトグラフィーに
より同定、定ωされる。捷だ、D20およびH2180
を含む水を光分解して生ずる気体を’174 jit分
析g1にて測定するとDDHX  00.2 島 OOが観察されることにより、水が光分解して水素と酸
素を発生していることが確認される。
The hydrogen and oxygen generated are identified and determined by gas chromatography. Shoda, D20 and H2180
When the gas generated by photolyzing water containing be done.

以下実施例により説明する。This will be explained below using examples.

実施例/ ≠OmMのフェリシアン化カリ水溶液と、同じ濃度の塩
化第一鉄水溶液を同量混合することによシ、PB  の
コロイド水溶液を調製した。
Example/ A colloidal aqueous solution of PB was prepared by mixing equal amounts of a ≠OmM potassium ferricyanide aqueous solution and a ferrous chloride aqueous solution of the same concentration.

PBjmM、)リス(2、,2’−ビビリノル)ルテニ
ウム(It)錯体(以下r Ru(bpY)fi” J
と略す)10μMXKα0.jMXpH,2(Hα−に
α緩衝溶液)の水溶液10fntを攪拌しながらアルゴ
ン雰囲気下室温で300Wキセノンフンプからの光を照
射した。
PBjmM,) Lis(2,,2'-bibylinor)ruthenium (It) complex (r Ru(bpY)fi" J
) 10μMXKα0. 10 fnt of an aqueous solution of jMX pH, 2 (Hα- to α buffer solution) was irradiated with light from a 300 W xenon pump at room temperature under an argon atmosphere while stirring.

75時間の光反応後水素0,3μm、、酸素0. / 
!; pLの気体が得られた。
After 75 hours of photoreaction, 0.3 μm of hydrogen and 0.3 μm of oxygen were removed. /
! pL of gas was obtained.

実施例λ 実施例/の光反応を90時間行なったところ、水素/、
≠μt、、酸素0.7μtが得られた。
Example λ When the photoreaction of Example / was carried out for 90 hours, hydrogen /,
≠ μt, 0.7 μt of oxygen was obtained.

実施例3 実施例/と同じ組成の水溶液100tを底面積、2Rの
平らな容器に入れ、攪拌しなからアルコ9ン雰囲気下、
室温でg時間太陽光で照射したところ約2−の水素と/
−の酸素が得られた。
Example 3 100 t of an aqueous solution having the same composition as in Example 1 was placed in a flat container with a bottom area of 2R, and without stirring, was heated under an alcohol atmosphere.
When irradiated with sunlight for g hours at room temperature, about 2- hydrogen and /
− of oxygen was obtained.

実施例≠ 実施例/において、Ru(bl)/)3  の代υにト
リス(2、2’−ビピリジル)イリジウu (It)錯
体をjOμM用い、臭化カリウムを0.6M用いたほか
は、実施例/と同様に光反応させたところ、水素0、λ
μt1 酸素0. /μtを得た。
Example ≠ In Example/, except that jOμM of tris(2,2'-bipyridyl)iridium u (It) complex was used in place of Ru(bl)/)3 and 0.6M of potassium bromide was used. When a photoreaction was carried out in the same manner as in Example/, hydrogen 0, λ
μt1 Oxygen 0. /μt was obtained.

実施例j PB  を/mM、)リス(0−7エナントロリン)ロ
ジウム(1)錯体を20μM、および塩化カリウ^0.
11.Mを含み、P)I/、fの水溶液10θdを30
0Wのタングステンランプで30時間照射シ、水素!p
ts  酸素コ、jμt を得た。
Example j PB/mM, 20 μM of lith(0-7 enanthroline) rhodium(1) complex, and 0.0 μM of potassium chloride.
11. Aqueous solution 10θd of P)I/, f containing M is 30
Irradiated with a 0W tungsten lamp for 30 hours, hydrogen! p
ts oxygen, jμt was obtained.

実施例乙 実施例/において塩化第一鉄の代シに塩化第一マンガン
を用いて調製した混合物を用いた他は、実施例/ど全く
同様に光反応を行ない、水素0.乙μt1 酸素0.3
μt を得た。
Example 2 A photoreaction was carried out in the same manner as in Example 2, except that a mixture prepared by using manganous chloride instead of ferrous chloride in Example 2 was used, and 0. Oto μt1 oxygen 0.3
μt was obtained.

実施例7 実施例/において、塩化第一鉄の代シに塩化第二銅を用
いた他は、実施例/と全く同様に光反応を行ない、水素
o、lI−μt1 酸素0.2μt を得た。
Example 7 A photoreaction was carried out in exactly the same manner as in Example/, except that cupric chloride was used in place of ferrous chloride, to obtain hydrogen o, lI-μt1 and oxygen 0.2μt. Ta.

実施例g 、20 mMのフェリシアン化カリウム水溶液に光照射
(70〜/j時間)することによ、9 PB  を生成
せしめる。しかる後に実施例/と同様に光反応を行ない
、水素0.3μt1 酸素0. / J mを得た。
Example g: 9PB is produced by irradiating a 20 mM potassium ferricyanide aqueous solution with light (70~/j hours). Thereafter, a photoreaction was carried out in the same manner as in Example/, and 0.3 μt of hydrogen and 0.3 μt of oxygen were added. / J m was obtained.

手  続  補  正  書 3 補正をする名 事件どの関係  出願人 名称 (679)理化学研究所 4 代  理  人 7 補正の対象  明細式の発明の詳細な説明の欄8 
補正の内容 明細末弟り頁第乙行の0./!;、がを「0./!;p
tJと力正する。
Procedures Written amendment 3 Famous case to be amended and related Applicant name (679) RIKEN 4 Agent 7 Subject of amendment Detailed explanation of the invention in the detailed formula 8
0 on the second row of the last page of the details of the amendment. /! ;, is "0./!;p
tJ and Riki correct.

Claims (2)

【特許請求の範囲】[Claims] (1)水を光分解して水素と酸素を生成する方法におい
て、周期表のVa、Ma、■aXW 族に属する元素か
ら選ばれる元素を中心金属とするヘキ〜す”シアノ金属
錯体と周期表の■族金属のトリス(、j?IJピリノル
)金属+n) 錯体を共存させてなる水溶液に光照射す
ることを特徴とする水の光分)1j7による水素と役素
の生成法。
(1) In a method of photolyzing water to generate hydrogen and oxygen, a hexa-cyano metal complex whose central metal is an element selected from elements belonging to the Va, Ma, and aXW groups of the periodic table and A method for producing hydrogen and hydrogen by irradiating an aqueous solution containing a tris(,j?IJpyrinol)metal+n) complex of group metals 1j7 with water.
(2)水を光分解して水素と酸素を生成する方法におい
て、周期表のVa、Ma、Wa、■族に属する元素から
選ばれる元素を中心金h2とするヘキザンアノ金属りR
体と周期表の■a、■a1■及びIb  族金組の塩と
から成る混合錯体又は混合物および周期表の■族金属の
トリス(月? IJピリジル)金属1+l 錯体を共存
させてなる水溶液に光照射することを特徴とする水の光
分解による水素と酸素の生成法。
(2) In a method of photolyzing water to generate hydrogen and oxygen, a hexane anometallic compound R whose central metal h2 is an element selected from the elements belonging to Va, Ma, Wa, and Group II of the periodic table.
An aqueous solution containing a mixed complex or a mixture consisting of a metal of group ■a, ■a1■, and Ib of the periodic table, and a tris (moon? IJ pyridyl) metal 1+l complex of metal of group ■ of the periodic table. A method for producing hydrogen and oxygen by photolysis of water, which involves irradiation with light.
JP57122457A 1982-07-14 1982-07-14 Production of hydrogen and oxygen by photolysis of water Granted JPS5913601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57122457A JPS5913601A (en) 1982-07-14 1982-07-14 Production of hydrogen and oxygen by photolysis of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57122457A JPS5913601A (en) 1982-07-14 1982-07-14 Production of hydrogen and oxygen by photolysis of water

Publications (2)

Publication Number Publication Date
JPS5913601A true JPS5913601A (en) 1984-01-24
JPH0329722B2 JPH0329722B2 (en) 1991-04-25

Family

ID=14836322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57122457A Granted JPS5913601A (en) 1982-07-14 1982-07-14 Production of hydrogen and oxygen by photolysis of water

Country Status (1)

Country Link
JP (1) JPS5913601A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256864A (en) * 1986-04-30 1987-11-09 Dainippon Ink & Chem Inc Construction or repair material
JPS63137959A (en) * 1986-11-28 1988-06-09 Taisei Doro Kk Production of integrated material for normal-temperature bituminous substance pavement and device therefor
JPH051401A (en) * 1991-06-25 1993-01-08 Toyo Doro Kk Semiflexible pavement material
WO2012077765A1 (en) * 2010-12-08 2012-06-14 国立大学法人九州大学 Polynuclear platinum complex catalyst and method of artificial photosynthesis using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256864A (en) * 1986-04-30 1987-11-09 Dainippon Ink & Chem Inc Construction or repair material
JPS63137959A (en) * 1986-11-28 1988-06-09 Taisei Doro Kk Production of integrated material for normal-temperature bituminous substance pavement and device therefor
JPH051401A (en) * 1991-06-25 1993-01-08 Toyo Doro Kk Semiflexible pavement material
WO2012077765A1 (en) * 2010-12-08 2012-06-14 国立大学法人九州大学 Polynuclear platinum complex catalyst and method of artificial photosynthesis using same

Also Published As

Publication number Publication date
JPH0329722B2 (en) 1991-04-25

Similar Documents

Publication Publication Date Title
Zhang et al. Ligand design in ligand‐protected gold nanoclusters
Kalyanasundaram et al. Photosensitization and photocatalysis using inorganic and organometallic compounds
Ziessel et al. Photogeneration of Carbon Monoxide and of Hydrogen via Simultaneous Photochemical Reduction of Carbon Dioxide and Water by Visible‐Light Irradiation of Organic Solutions Containing Tris (2, 2′‐bipyridine) ruthenium (II) and Cobalt (II) Species as Homogeneous Catalysts
Ruano et al. Nanocrystalline M–MOF‐74 as Heterogeneous Catalysts in the Oxidation of Cyclohexene: Correlation of the Activity and Redox Potential
Udayabhaskararao et al. Ag7Au6: A 13‐Atom Alloy Quantum Cluster
Mann et al. Excited-state reactivity patterns of hexakisarylisocyano complexes of chromium (0), molybdenum (0), and tungsten (0)
Becker et al. METALLOPORPHYRINS. ELECTRONIC SPECTRA AND NATURE OF PERTURBATIONS. I. TRANSITION METAL ION DERIVATIVES1a
FR2464918A1 (en) METHOD AND PHOTOCHEMICAL SYSTEM FOR THE SIMULTANEOUS PRODUCTION OF HYDROGEN AND OXYGEN FROM WATER
Stiegman et al. Nonhomolytic cleavage pathways in the photochemistry of metal-metal-bonded carbonyl dimers
Kutal et al. Use of transition metal compounds to sensitize a photochemical energy storage reaction
JPS5913601A (en) Production of hydrogen and oxygen by photolysis of water
Pushkarev et al. Sensitization of NIR luminescence of Yb 3+ by Zn 2+ chromophores in heterometallic complexes with a bridging Schiff-base ligand
Ishida et al. Molecular Catalysts for CO 2 Fixation/Reduction
Busche et al. Novel RuII Complexes with Bispidine‐Based Bridging Ligands: Luminescence Sensing and Photocatalytic Properties
Mori et al. Iridium and Rhodium Complexes within a Macroreticular Acidic Resin: A Heterogeneous Photocatalyst for Visible‐light Driven H2 Production without an Electron Mediator
Polson et al. Bridging ligand planarity as a route to long-lived, near infrared emitting dinuclear ruthenium (II) complexes
Yamamoto et al. Wavelength-dependent photochemical reaction of (. mu.-tetraphenylporphinato) bis [dicarbonylrhodium (I)]. Locking of metal ion into ligand
Bösken et al. Reduction of Nitrous Oxide by Light Alcohols Catalysed by a Low‐Valent Ruthenium Diazadiene Complex
Vogler et al. Photochemistry of biologically important transition metal complexes. I. Cyanocobalamin and related corrin complexes of rhodium (III)
Shitaya et al. Light-driven catalytic hydrogenation of carbon dioxide at low-pressure by a trinuclear iridium polyhydride complex
Calligaris et al. Synthesis and crystal structure of dinuclear Rh (II) complexes with 1, 10-phenanthroline and its 4, 7-and 3, 4, 7, 8-methyl derivatives
Motornov et al. Introducing Weakly Ligated Tris (trifluoromethyl) copper (III)
Norton Jr et al. Long-range electron transfer in photoexcited cobalt (III)-copper (I) binuclear ions
Dooley et al. Photooxidation of bis (maleonitriledithiolate) complexes,[M (S2C2 (CN) 2) 2] 2-(M= Ni, Pd, Pt, Co, Cu)
Thompson et al. Anionic Cyclopentadienyl C60 Complexes of Molybdenum and Tungsten; The Strange Case of Iron