JPS59135395A - Flow changing mechanism in heat exchanger included in reactor container - Google Patents

Flow changing mechanism in heat exchanger included in reactor container

Info

Publication number
JPS59135395A
JPS59135395A JP58009710A JP971083A JPS59135395A JP S59135395 A JPS59135395 A JP S59135395A JP 58009710 A JP58009710 A JP 58009710A JP 971083 A JP971083 A JP 971083A JP S59135395 A JPS59135395 A JP S59135395A
Authority
JP
Japan
Prior art keywords
heat exchanger
skirt
gas
coolant
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58009710A
Other languages
Japanese (ja)
Inventor
中垣 正悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP58009710A priority Critical patent/JPS59135395A/en
Publication of JPS59135395A publication Critical patent/JPS59135395A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、原子炉容器内組込式熱交換器に係り、詳しく
は一次冷却材の流路変更機構を備えた熱交換器に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat exchanger built into a nuclear reactor vessel, and more particularly to a heat exchanger equipped with a primary coolant flow path changing mechanism.

原子炉容器内には、主たる熱交換器及び補助の熱交換器
が装備され、これらは−次冷却系の熱を二次冷却系又は
補助冷却系に伝える熱交換→主循環ポンプ→炉心と流れ
て循環する。原子炉運転中には主たる熱交換器に冷却材
が流れ、補助の熱交換器には冷却材が流れないようにす
る必要がある。また補助冷却系の運転時にはその冷却系
の熱交換器に冷却材が流れ、主たる熱交換器ては冷却材
が流れないようにしなければならない。
Inside the reactor vessel, a main heat exchanger and an auxiliary heat exchanger are installed. and circulate. During reactor operation, coolant must flow to the primary heat exchanger and must not flow to the auxiliary heat exchanger. Furthermore, when the auxiliary cooling system is in operation, the coolant must flow through the heat exchanger of that cooling system, but must be prevented from flowing through the main heat exchanger.

この為、主たる熱交換器及び補助の熱交換器には、流路
変更機構が設けられる。この流路変更機構の一つに液面
制御式がある。
For this reason, the main heat exchanger and the auxiliary heat exchanger are provided with a flow path changing mechanism. One of these flow path changing mechanisms is a liquid level control type.

液面制御式の流路変更機構は、第1図に示す如く熱交換
器1のシェル2に穿設された一次冷却材流入窓3の外側
に同心にスカート4を配して、その上端を熱交換器1の
支持環5で原子炉蓋6に固定し、スカート4の内部にガ
ス送入管7を連通して原子炉カバーガス8と同じガスを
送入して加圧し、それによってスカート4の内部の一次
冷却材9の液位を下げ、前記流入窓3からの冷却材9の
流入を阻止するものである。
As shown in FIG. 1, the liquid level control type flow path changing mechanism has a skirt 4 arranged concentrically on the outside of a primary coolant inflow window 3 formed in a shell 2 of a heat exchanger 1, and the upper end of the skirt 4. The support ring 5 of the heat exchanger 1 is fixed to the reactor lid 6, and the gas inlet pipe 7 is communicated with the inside of the skirt 4 to supply and pressurize the same gas as the reactor cover gas 8, whereby the skirt This is to lower the liquid level of the primary coolant 9 inside the coolant 4 and prevent the coolant 9 from flowing in through the inflow window 3.

尚6′は流出窓である。Note that 6' is an outflow window.

この液面制御式の流路変更機構は熱交換器1を運転てれ
る際の操作における信頼性が高い。
This liquid level control type flow path changing mechanism has high reliability in operation when the heat exchanger 1 is operated.

冷却材中に動的機器が無い等の長所があるが、液面が炉
内冷却材の温度変化、圧力変化に影響を受は易い為、液
面をモニタ(〜ガス圧を制御弁10で調節する必要があ
る。
Although the coolant has advantages such as the absence of dynamic equipment, the liquid level is easily affected by changes in temperature and pressure of the coolant in the furnace, so the liquid level must be monitored (~Gas pressure controlled by the control valve 10). need to be adjusted.

然し乍ら、液面の制御は、液面計の精度やガス調節系の
制御遅れなどの問題があって、常時一定に液面を維持す
ることが困難である。ガスをスカート4の内部に入れ過
ぎた場合、液面がスカート4の下端まで下がり、ガスが
スカート4の下端より炉内冷却材グ中に流出する。ガス
が流出(−でもその−11炉内冷却材の液面へ上昇し、
原子炉カバーガス8と一緒になる場合は良いが、主たる
熱交換器と補助の熱交換器が隣接l〜でいると、一方の
熱交換器から他方の熱交換器へ、ガスが巻込まれる恐れ
がある。ガスが運転中の熱交換器に巻込まれると、ガス
は炉心まで運ばれ、悪影響を及ぼすので、これを避けな
ければならない。
However, controlling the liquid level has problems such as the accuracy of the liquid level gauge and the control delay of the gas adjustment system, making it difficult to maintain a constant liquid level at all times. If too much gas is put into the inside of the skirt 4, the liquid level will drop to the lower end of the skirt 4, and the gas will flow out from the lower end of the skirt 4 into the furnace coolant. Gas leaks out (-11) and rises to the liquid level of the coolant in the reactor,
It is fine if the reactor cover gas 8 is mixed with the reactor cover gas, but if the main heat exchanger and the auxiliary heat exchanger are adjacent to each other, there is a risk of gas being drawn in from one heat exchanger to the other. There is. If gas gets caught in the heat exchanger during operation, it will be carried to the reactor core and have adverse effects, so this must be avoided.

本発明は、斯かる諸事情に鑑みなされたものであり、液
面制御式の流路変更機構のスカート内にガスを入れ過ぎ
てもガスが炉内冷却材中に流出しないようにした流路変
更機構を提供せんとするものである。
The present invention was made in view of the above circumstances, and provides a flow path that prevents gas from flowing into the furnace coolant even if too much gas is put into the skirt of the liquid level control type flow path change mechanism. It is intended to provide a change mechanism.

以下本発明による原子炉容器内組込式熱交換器に於ける
流路変更機構の一実施例を第2図によって説明する。図
中第1図と同一符号は同一物を示すので、その説明を省
略する。熱交換器1のシェル2とスカート4との間に、
ガスの逃しラインとして配管11を設け、この配管11
の上端を原子炉カバーガスB中に開口し、下端をスカー
ト4の下端より僅か上方位置に開口する。
An embodiment of the flow path changing mechanism in the heat exchanger built into the reactor vessel according to the present invention will be described below with reference to FIG. Since the same reference numerals in the figure as in FIG. 1 indicate the same parts, the explanation thereof will be omitted. Between the shell 2 and skirt 4 of the heat exchanger 1,
Piping 11 is provided as a gas relief line, and this piping 11
The upper end is opened into the reactor cover gas B, and the lower end is opened slightly above the lower end of the skirt 4.

次に他の実施例を第3図によって説明すると、前記配管
11の代りにスカート4の内側に所要の間隙12を存し
て小径のスカー)13を同心に設け、このスカート13
の下端をスカート4の下端より僅か上方に位置させ、上
端は原子炉カバーガス8のレベル位置でスカート4の内
周面に取付け、その取付位置の下側のスカート4の周方
向の複数個所に透孔14を穿設してスカート4.13間
の間隙12の上端を原子炉力・く−ガス8中に開口する
Next, another embodiment will be described with reference to FIG.
The lower end is located slightly above the lower end of the skirt 4, the upper end is attached to the inner peripheral surface of the skirt 4 at the level of the reactor cover gas 8, and the upper end is attached to the inner peripheral surface of the skirt 4 at multiple points in the circumferential direction of the skirt 4 below the attachment position. A through hole 14 is bored to open the upper end of the gap 12 between the skirts 4 and 13 into the reactor power/gas 8.

このように本発明の流路変更機構は、スカート4内にガ
スの逃しラインとして、配管11を設けたり或いはスカ
ート16を設けて二重にしたりして、配管11やスカー
)4.13間の間隙12を原子炉カバーガス8中に開口
しているので、熱交換器1内に一次冷却材が流入窓3よ
り流入するのを阻止する為に、スカート4内にガス送入
管7を通して原子炉カバーガスと同じガスを送入して加
圧し、それによってスカート4の内部の冷却材9の液位
を第2図及び第6図に於ける実線の位置に維持するが、
様々な要因によりガスがスカート4内に過剰に送入され
ても冷却材9の液位が一点鎖線に示す配管11やスカー
ト13の下端まで下がると、自動的に過剰なガスは配W
11やスカー)4.13間の間隙12を通って全て原子
炉カバーガス8中に放出きれる。従って、スカート4内
の冷却材9の液位の下限は一定に保つことができ、スカ
ート4内に送入された過剰なガスは決して炉内冷却材グ
中に流出することがない。
In this way, the flow path changing mechanism of the present invention provides the piping 11 as a gas relief line within the skirt 4, or doubles it by providing the skirt 16, thereby connecting the piping 11 and the skirt 4, 13. Since the gap 12 is open into the reactor cover gas 8, in order to prevent the primary coolant from flowing into the heat exchanger 1 through the inflow window 3, the gas inlet pipe 7 is passed through the skirt 4 to prevent the primary coolant from flowing into the heat exchanger 1 through the inflow window 3. The same gas as the furnace cover gas is fed and pressurized, thereby maintaining the liquid level of the coolant 9 inside the skirt 4 at the position indicated by the solid line in FIGS. 2 and 6.
Even if excessive gas is fed into the skirt 4 due to various factors, when the liquid level of the coolant 9 drops to the lower end of the piping 11 or the skirt 13 shown by the dashed-dotted line, the excess gas is automatically removed from the distribution W.
11 and scar) 4 and 13, and can all be released into the reactor cover gas 8. Therefore, the lower limit of the liquid level of the coolant 9 in the skirt 4 can be kept constant, and excess gas introduced into the skirt 4 will never flow out into the in-furnace coolant group.

以上の説明で判るように本発明の流路変更機構は、スカ
ート中の冷却材の液位をガスの送入加圧により下げて熱
交換器への冷却材の流入を阻止(−た際、過剰に送入さ
れたガスを原子炉カバーガス中に放出することができて
、炉内冷却材中への流出を確実に防止することができる
As can be seen from the above explanation, the flow path changing mechanism of the present invention lowers the liquid level of the coolant in the skirt by pressurizing the gas supply and prevents the coolant from flowing into the heat exchanger. Excessly fed gas can be released into the reactor cover gas, and leakage into the reactor coolant can be reliably prevented.

従って隣接の運転中の他の熱交換器にガスが巻込まれる
ことがなく、ガスが炉心まで運ばれることがないので、
原子炉の運転に於ける安全性の向上に寄与する処大なる
ものがある。
Therefore, the gas will not be drawn into other heat exchangers operating adjacently, and the gas will not be carried to the core.
There are many things that contribute to improving the safety of nuclear reactor operations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原子炉容器内組込式熱交換器に於ける在来の流
路変更機構を示す概略図、第2因は本発明の流路変更機
構の一例を示す概略図、第3図は他の例を示す概略図で
ある。 1・・・熱交換器 2・・・シェル 3・・・−次冷却
材流入窓 6′・・・−次冷却材流出窓 4・・・スカ
ート5・・・支持環 6・・・原子炉蓋 7・・・ガス
送入管8・・・原子炉カバーガス 9・・・スカート内
の冷却材 9′・・・炉内冷却材 10・・・制御弁 
11・・・配管 12・・・間隙 16・・・スカート
 14・・・透孔出願人  川崎重工業株式会社 代理人  弁理士高  雄次部1C) ′V7.す
Fig. 1 is a schematic diagram showing a conventional flow path changing mechanism in a heat exchanger built into a reactor vessel, and the second factor is a schematic diagram showing an example of the flow path changing mechanism of the present invention. is a schematic diagram showing another example. 1...Heat exchanger 2...Shell 3...Next coolant inflow window 6'...Next coolant outflow window 4...Skirt 5...Support ring 6...Reactor Lid 7... Gas feed pipe 8... Reactor cover gas 9... Coolant in skirt 9'... Coolant in reactor 10... Control valve
11...Piping 12...Gap 16...Skirt 14...Through hole Applicant Kawasaki Heavy Industries Co., Ltd. Agent Patent Attorney Takashi Yujibe 1C) 'V7. vinegar

Claims (1)

【特許請求の範囲】[Claims] 原子炉容器内に組込まれる主たる熱交換器及び補助の熱
交換器に於いて、該各熱交換器の一次冷却材流入窓の外
側に同心にスカートを設け、スカート内の上部にガス送
入管を連通1/ 、各熱交換器とスカートとの間隙内に
下端がスカートの下端より僅かに高い位置で開口し上端
が原子炉カバーガス中に開口するガスの逃しラインを設
けて成る流路変更機構。
In the main heat exchanger and the auxiliary heat exchanger built into the reactor vessel, a skirt is provided concentrically outside the primary coolant inlet window of each heat exchanger, and a gas inlet pipe is installed in the upper part of the skirt. 1/, the flow path is changed by providing a gas relief line in the gap between each heat exchanger and the skirt, the lower end of which opens at a position slightly higher than the lower end of the skirt, and the upper end of which opens into the reactor cover gas. mechanism.
JP58009710A 1983-01-24 1983-01-24 Flow changing mechanism in heat exchanger included in reactor container Pending JPS59135395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58009710A JPS59135395A (en) 1983-01-24 1983-01-24 Flow changing mechanism in heat exchanger included in reactor container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58009710A JPS59135395A (en) 1983-01-24 1983-01-24 Flow changing mechanism in heat exchanger included in reactor container

Publications (1)

Publication Number Publication Date
JPS59135395A true JPS59135395A (en) 1984-08-03

Family

ID=11727802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58009710A Pending JPS59135395A (en) 1983-01-24 1983-01-24 Flow changing mechanism in heat exchanger included in reactor container

Country Status (1)

Country Link
JP (1) JPS59135395A (en)

Similar Documents

Publication Publication Date Title
US4367194A (en) Emergency core cooling system
US4762667A (en) Passive reactor auxiliary cooling system
GB2098786A (en) Nuclear reactor plant
US4848774A (en) Reactor coolant pump hydrostatic sealing assembly with externally pressurized hydraulic balance chamber
JPS63223591A (en) Method and device for controlling output from natural circulation type reactor
JPS59135395A (en) Flow changing mechanism in heat exchanger included in reactor container
US4127444A (en) Device for thermal protection of a nuclear reactor vessel
US4401619A (en) Nuclear reactor sealing system
JPH03221893A (en) High temperature gas furnace
US4341732A (en) Nuclear reactor dip seal
JPS6176986A (en) Facility containing atomic nuclear reactor
US2956553A (en) Gas sealing arrangement for pressurized liquid systems
US5289511A (en) Liquid-metal cooled nuclear reactor
US7120219B2 (en) Reactor pressure vessel
US4557891A (en) Pressurized water reactor flow arrangement
GB1582107A (en) Nuclear reactor
GB2225476A (en) Nuclear reactor
JPS645672B2 (en)
JPH0633966B2 (en) Flow control mechanism of heat exchanger
JPS6111394B2 (en)
DE2019156C (en) Thermal nuclear reactor
JPS6055796B2 (en) pressure tube reactor
JPS59114494A (en) Lmfbr type reactor
JPS60235092A (en) Emergency core cooling device for nuclear reactor
JPS60178391A (en) Method of operating heat exchanger for cooling auxiliary core of fast breeder reactor