JPS5913510A - Guiding device for introducing cooling fluid - Google Patents

Guiding device for introducing cooling fluid

Info

Publication number
JPS5913510A
JPS5913510A JP12364382A JP12364382A JPS5913510A JP S5913510 A JPS5913510 A JP S5913510A JP 12364382 A JP12364382 A JP 12364382A JP 12364382 A JP12364382 A JP 12364382A JP S5913510 A JPS5913510 A JP S5913510A
Authority
JP
Japan
Prior art keywords
guide
slit
cone
wheel
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12364382A
Other languages
Japanese (ja)
Other versions
JPS6254563B2 (en
Inventor
Hiroaki Shimada
島田 浩顕
Shizuka Chiba
千葉 静
Tatsuro Ebihara
海老原 達郎
Junji Nishino
淳二 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Kotobuki Sangyo KK
Original Assignee
Nippon Steel Corp
Kotobuki Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Kotobuki Sangyo KK filed Critical Nippon Steel Corp
Priority to JP12364382A priority Critical patent/JPS5913510A/en
Publication of JPS5913510A publication Critical patent/JPS5913510A/en
Publication of JPS6254563B2 publication Critical patent/JPS6254563B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B39/00Arrangements for moving, supporting, or positioning work, or controlling its movement, combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B39/14Guiding, positioning or aligning work
    • B21B39/16Guiding, positioning or aligning work immediately before entering or after leaving the pass
    • B21B39/165Guides or guide rollers for rods, bars, rounds, tubes ; Aligning guides

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Transmission Devices (AREA)

Abstract

PURPOSE:To perform rolling in a balanced state of temperature throughout the whole length of a material to be rolled, and to improve the accuracy of roundness of a product and the yield of it, by forming a slit for jetting cooling fluid by arranging a receiving guide and a slit-forming part of a cone-guide oppositely and closely to each other, and also adjusting optionally the width of the slit. CONSTITUTION:When a screw-rear pinion 6 is turned by a pinion shaft 61 with the aid of an external force, a screw-gear wheel 7 is turned at a reduced speed around a screwed part 22 engaging with the wheel 7 by screw. At this time, a tubular sleeve 2 is fixed, and only the wheel 7 moves along the screwed part 22. And then, a cone-guide 4 connected in one body to a shifting disk 101 which is held by a shifter 9 between the shifter 9 and the wheel 7, is moved back and forth in its axial direction. Thus, because of such a driving mechanism, the width of an annular conical gap (t), which is formed by arranging a receiving guide 3 and the guide 4 oppositely to each other, is steplessly adjusted, without the change of their positions caused by an external force acting from the side of the guide 4.

Description

【発明の詳細な説明】 大発明は、鋼材等の圧延において圧延材の温度を制御す
るための冷却機能な備えた誘導案内装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a guiding device having a cooling function for controlling the temperature of a rolled material during rolling of steel materials.

従来から、熱間圧延における圧延材の温度を制御する冷
却装置として、例えば、特公昭42−15450号、あ
るいは特公昭56−37001号等種々0ものが知ら引
ている。
Conventionally, various cooling devices have been known for controlling the temperature of a rolled material during hot rolling, such as Japanese Patent Publication No. 42-15450 or Japanese Patent Publication No. 56-37001.

特に環状円筒間隙部(リングスリット)を形成したこの
種の冷却装置においては、間隙形成体積が一定に固定化
されているので、冷却流体の圧力調整にのみ頼った流量
調節をしなければならないから流量精度がばらついて、
不安定となる不都合を生じたり、あるいはこの圧力と流
量流速の釣合いを調整するために−即ち間隙形成体積を
可変するための手段として、シム調整や、ねじ回動調整
、カム調整、などの可変固定方式機1%!(固定を緩め
て可変調節後再び固定の繰返し操作)が用いられている
が、こhらの操作はしばしば圧延作業を中断しながら繰
返し再調整を必要とする不便があるほか、調整精度ひい
ては冷却流量制御精度も悪い欠点があった。
In particular, in this type of cooling device that has an annular cylindrical gap (ring slit), the volume of the gap is fixed, so the flow rate must be adjusted only by adjusting the pressure of the cooling fluid. Flow rate accuracy varies,
In order to prevent the inconvenience of instability or to adjust the balance between this pressure and the flow velocity, in other words, as a means to vary the gap formation volume, variable adjustment such as shim adjustment, screw rotation adjustment, cam adjustment, etc. Fixed method machine 1%! (loosening the fixing, making variable adjustments, and then fixing again) is used, but these operations often have the inconvenience of requiring repeated readjustments while interrupting the rolling operation, as well as the adjustment accuracy and cooling. It also had the disadvantage of poor flow rate control accuracy.

大発明は、圧延材の温度に対応し速やかに冷却剤流量を
変化せしめて、圧延ライン内での温度制御を精度よく行
なうことを可能としたものであり、圧延終了後の圧延材
の温度を任意に調節できるほか、複数の圧延機で行なわ
れる連続圧延においては、それらの圧延途中に設けるこ
とにより、圧延材の温度か制御しながら圧延9行なう、
コンドロールド圧延も可能とするものである。また、冷
却剤流量の高精度迅速制御を行なうことにより圧延材の
長さ方向における断続的温度不均衡部分に対応せしめて
、圧延材の全長全域にわたる温度均衡化圧延を行なうこ
とができ、成品の真円精度や歩留−品質の向上が達成さ
れるものである。
The great invention was to quickly change the coolant flow rate in response to the temperature of the rolled material, making it possible to accurately control the temperature within the rolling line. In addition to being able to adjust it arbitrarily, in continuous rolling performed with multiple rolling mills, by providing it in the middle of rolling, it is possible to perform nine rolling operations while controlling the temperature of the rolled material.
Condominated rolling is also possible. In addition, by controlling the coolant flow rate with high precision and quickly, it is possible to respond to intermittent temperature imbalances in the length direction of the rolled material and perform temperature-balanced rolling over the entire length of the rolled material. This improves roundness accuracy and yield/quality.

次に図面を参照しながら、大発明の構成を詳述する。Next, the configuration of the great invention will be explained in detail with reference to the drawings.

第1図は大発明の構成を示す断面図で、1は圧延材の誘
導案内装置を収納するガイドボックス、2はガイドボッ
クス1内に装着さゎたチュせしめる駆動機構である。第
2図は第1図のA−に断面を示す断面図である。すなわ
ち、圧延ニーブラースリーブ(中空軸)2が挿入され、
ガイドボックス1外側から押ねじ15にて不動に固定さ
れ、更にチューブラ−スリーブ(中空軸)2の中心にレ
シービングガイド(固定ガイド)3と、コーンガイド(
可動ガイド)4が相互の軸心を直列に対向して装着さh
て三重軸的VC構成される。そこで、この上記三重構成
は、ガイドボックス1の内面に流体充満室11  (A
lジャケット)とチューブラ−スリーブ(中空軸)2の
内面に流体均圧室21 (扁2ジャケット)がそれぞれ
設けられていて、ガイドボックス1上部のγAf、体入
口13から供給された冷却流体の充満圧力保持と圧力均
等保持分配の二重流通室が形成されて、圧延条材に対す
る均等なる環状傘形流体噴射層が得らり、るように形成
されている・レシービングガイド(固定ガイド)3σ)
一方の後端は圧延ロール出口直後のカリバー内に内接す
るように設けられ、延出圧延条材の飛び出しなどミスロ
ールを防止しながら受は入れるための導入先端構造を持
ち、他端(前端すなわち圧延材先進方向の出側)は、環
状円錐内面状に形成されていて、冷却剤流体を噴出せし
めるスリットtを形成するためのスリット形成部31を
有している。このガイドはロールに近接した適当な取合
いで、チューブラ−スリーブ(中空軸2と押ねじ15に
て不動に固定される。コーンガイド(可動ガイド)4は
、後端(圧延材の受入側)に截頭円錐外面状に形成され
たスリント形成部41を有しており、前記レシービング
ガイド(固定ガイド)3とパスラインP、Lに同一軸線
上K iM列に配置されている。コーンガイド4はチュ
ーブラ−スリーブ2内において前記軸線方向に移動可能
に取付けておく。従って。
FIG. 1 is a cross-sectional view showing the structure of the present invention, in which numeral 1 represents a guide box that houses a rolling material guiding device, and numeral 2 represents a drive mechanism that is installed in the guide box 1. FIG. 2 is a sectional view taken along line A- in FIG. 1. That is, the rolled nibbler sleeve (hollow shaft) 2 is inserted,
A receiving guide (fixed guide) 3 and a cone guide (
Movable guides) 4 are installed with their axes facing each other in series.
A triple-axis VC is constructed. Therefore, in this triple configuration, the fluid-filled chamber 11 (A
A fluid pressure equalizing chamber 21 (flat 2 jacket) is provided on the inner surface of the tubular sleeve (hollow shaft) 2 and γAf at the upper part of the guide box 1, and is filled with cooling fluid supplied from the body inlet 13. A double flow chamber for pressure maintenance and pressure equalization maintenance and distribution is formed to obtain an even annular umbrella-shaped fluid injection layer for the rolled strip. Receiving guide (fixed guide) 3σ)
One rear end is provided so as to be inscribed in the caliber immediately after the exit of the rolling roll, and has an introduction tip structure for inserting the receiver while preventing misrolls such as the ejection of the extended rolled strip. The exit side (in the forward direction of the material) is formed into an annular conical inner surface, and has a slit forming portion 31 for forming a slit t through which the coolant fluid is jetted out. This guide is fixed immovably by a tubular sleeve (hollow shaft 2 and set screw 15) in a suitable position close to the roll.A cone guide (movable guide) 4 is located at the rear end (receiving side of the rolled material). It has a slint forming part 41 formed in the shape of a truncated conical outer surface, and is arranged in rows K iM on the same axis as the receiving guide (fixed guide) 3 and the pass lines P and L. It is mounted movably in the axial direction within the tubular sleeve 2. Therefore.

レシービングガイド3とコーンガイド40両者の対向ス
リット形成部31.41を近接させることによって環状
円錐間隙部、すなわちスリットtが形成され一圧延材に
対する冷却剤流体噴射口を構成することになる。
By bringing the facing slit forming portions 31, 41 of both the receiving guide 3 and the cone guide 40 close to each other, an annular conical gap portion, that is, a slit t is formed, and constitutes a coolant fluid injection port for one rolled material.

次に−コーンガイド4を移動させるための駆動機!*5
について述べる。第1図および第2図はその一例を示す
もので、まずチューブラ−スリーブ(中空軸)2に挿入
されたコーンガイド(可動ガイド)4のそhぞh両者か
植込キー8にて回転方向の回動を固定し、軸方向にσ)
み移動を可能に結合する。チューブラ−スリーブ(中空
軸)2の条材出側一端外周にねじ部22をうち、ねじ歯
車ホイール7シねじ部22に螺合して、これに噛み合う
ねじ歯車ビニオン6がガイドボックス1と一体作りのビ
ニオンブラケット12にビニオンシャフト61で回転自
在に軸側からの外力による逆転は防止される。コーンガ
イド冒可動ガイド)4の条材出側端部にシフトデスク1
01と一体のシフトリング10がボルト91にて一体的
に取付けられてその外周部σ)シフトデスク101をね
じ歯車ホイール7の(l11面とシフタ−9内面に挾接
して、ねじ歯車ホイール7の回転摺動を妨げない嵌合度
にシフター9をボルト92で固定して、ねじ歯車ホイー
ル7を一体的回動可能に結合する。
Next - the drive for moving the cone guide 4! *5
Let's talk about. FIGS. 1 and 2 show an example of this. First, a cone guide (movable guide) 4 inserted into a tubular sleeve (hollow shaft) 2 is rotated in the rotating direction using an implant key 8. fix the rotation of and σ in the axial direction)
Combine to enable movement. A threaded portion 22 is formed on the outer periphery of one end of the strip exit side of the tubular sleeve (hollow shaft) 2, and is screwed into the threaded portion 22 of the threaded gear wheel 7. A threaded gear pinion 6 that meshes with this threaded gear wheel is integrally formed with the guide box 1. The pinion shaft 61 is attached to the pinion bracket 12 so that the pinion shaft 61 can freely rotate and is prevented from being reversed due to external force from the shaft side. Shift desk 1 is installed at the end of the cone guide (movable guide) 4 on the strip material exit side.
A shift ring 10 integrated with 01 is integrally attached with bolts 91, and its outer peripheral portion σ) is sandwiched between the (l11 surface of the screw gear wheel 7 and the inner surface of the shifter 9), The shifter 9 is fixed with bolts 92 to a degree of fit that does not hinder rotational sliding, and the screw gear wheel 7 is coupled so as to be integrally rotatable.

このようにして構成された駆動機構においては、適宜の
外力によりピニオンシャフト61を回動操作してねじ歯
車ビニオン6を左右伺わか回転させると−噛み合うねじ
歯車ホイール7が螺合ねじ部22周囲を減速回転する。
In the drive mechanism configured in this manner, when the pinion shaft 61 is rotated by an appropriate external force and the screw gear pinion 6 is rotated from side to side, the engaged screw gear wheel 7 moves around the screw portion 22. Rotate at a reduced speed.

このとき、チューブラ−スリーブ(中空軸)2は固定さ
れて不動であるから、ねじ歯車ホイール7のみ、ねじ部
22を螺せん移動することになり、シフター9で挾接さ
れたシフトデスク101から一体的に結合されたコーン
ガイド(可動ガイド)4が植込キー8の直進案内を介し
て軸方向前後にのみ移動が行われる。このような駆動機
構であるためガイド側からの外力によって位鴬が変わる
ことなく、安定して設定できる。このようにして、レシ
ービングガイド(固定ガイド)3とコーンガイド(可動
ガイド)4が対向して構成している環状弁座形の環状円
錐間隙部(リングコーンスリット)tの幅すなわち体積
を無段階に可変で六るので、環状円錐弁座を通過する冷
却流体の微細な調節流量を精度よくワンタッチ操作で任
意に制御できることになる。
At this time, since the tubular sleeve (hollow shaft) 2 is fixed and immovable, only the threaded gear wheel 7 moves by screwing the threaded part 22, and is integrally moved from the shift desk 101 clamped by the shifter 9. The cone guide (movable guide) 4 coupled to the cone guide 4 is moved only back and forth in the axial direction via the linear guide of the implanted key 8. With such a drive mechanism, the position can be stably set without changing the position due to external force from the guide side. In this way, the width or volume of the annular valve seat-shaped annular cone gap (ring cone slit) t formed by the receiving guide (fixed guide) 3 and cone guide (movable guide) 4 facing each other can be adjusted steplessly. Since the valve seat is variable, the minute flow rate of the cooling fluid passing through the annular conical valve seat can be precisely controlled arbitrarily with one-touch operation.

次に駆動機構の構成が異なる他の例を述べる。Next, another example in which the configuration of the drive mechanism is different will be described.

第3図は本発明の他の構成例な示す断面図で、第4図は
第3図のB−B線断面を示す断面図である。
FIG. 3 is a sectional view showing another configuration example of the present invention, and FIG. 4 is a sectional view taken along the line B--B in FIG.

レシービングガイド3およびコーンガイド4の基本的機
能は第2図に示した例と同一である。
The basic functions of the receiving guide 3 and the cone guide 4 are the same as in the example shown in FIG.

同一符号は同一機能をあられす。中空軸2の前部内面上
方にラックキー摺動溝52を軸長手方向に設ける。可動
ガイド4の前部外周上部に、軸長手方向にラック歯55
tf有するラックキー51を嵌着固設して、上記中空軸
2Vcラツクキー51を嵌合させて二重に軸装する。可
動ガイド4は、ラックキー51によって円周方向の回動
を固定して軸方向にのみ摺動可能に運動を規制する。中
空軸2の前方上部に一組のねじ歯車減速機構を搭載して
、ラックキー51に噛合わせて可動ガイド4の往復運動
を伝達する。
Identical symbols represent the same function. A rack key sliding groove 52 is provided above the front inner surface of the hollow shaft 2 in the longitudinal direction of the shaft. Rack teeth 55 are provided on the upper outer circumference of the front part of the movable guide 4 in the longitudinal direction of the shaft.
The rack key 51 having the tf is fitted and fixed, and the hollow shaft 2Vc rack key 51 is fitted to provide double shaft mounting. The movable guide 4 is fixed in rotation in the circumferential direction by a rack key 51 and restricted in its movement so as to be slidable only in the axial direction. A set of screw gear reduction mechanisms are mounted on the front upper part of the hollow shaft 2 and mesh with the rack keys 51 to transmit the reciprocating motion of the movable guide 4.

ねじ歯車減速機構は、軸角を直角に組合せた一組のねじ
歯車ビニオン6と歯車ホイル53をそれぞれピニオンシ
ャフト61とホイルシャフト71によってギヤーケーシ
ング71゛ニ軸装して格納されて、減速微調節と逆転防
止の機能を併せ持って構成される。中空軸2のラックキ
ー摺動溝52の上方に切欠穴56を設けて、上記搭載の
ねじ歯車ホイール7の外周が半月状に挿通して、ラック
キー51のラック歯55に噛ミ合って、可動ガイド4の
軸長手方向の歯車減速ラック摺動機構を構成する。中空
軸2内面下部にベアリング溝104゛を設けて、フラッ
トケージローラーベアリング104を収納して、可動ガ
イド4の下部を移動自在に当接させる。十記ねじ歯車減
速機構を作動したとき、ねじ粛正ホイル53とラックキ
ー51の噛合い摺動時の下方偏向荷Xttローラーベア
リング104で受けて、摺動摩擦を軽減する機能である
。前記ラックキー摺動152部とベアリング溝114′
摺動部の機能を長期に維持するため中空軸2前部端面円
周に密閉カバー103を取付ける。更に内装Oリング1
05と他方側嵌装円周部の密閉0リング106の密閉効
果により外部からのスケールや冷却流体の侵入を防止す
る。固定ガイド3には前端にスリット形成部31が設け
らhでおり、また、可動ガイド4には前端にスリット形
成部41が設けられている。第3図例示の駆動機構は第
1図および第2図例示の駆動機はと異なるが、冷却剤流
体を噴出して、かつ−その量を調節する機能は両者全く
同一である。冷却剤流体の噴射方向とコーンガイド(可
動ガイド)4の作動速度が異なるほかは、同一目的を達
成する。スリットtの調整は適宜の外力により、ビニオ
ン〜〜シャフト61を回動せしめて作動させる。すなわ
ち、ねじ歯爪ビニオン6が回転されることにより、り 歯車ホイル53が回転し、その回転力はう・ンーキ51
Vc伝達され、ラックキーと一体に形成されたコーンガ
イド4がパスライン(P、L)  と同一方向に移動す
る。この場合、その移動量は。
The screw gear reduction mechanism includes a pair of screw gear binions 6 and gear wheels 53 whose shaft angles are set at right angles, and which are housed in a gear casing 71 through a pinion shaft 61 and a wheel shaft 71, respectively, and are housed in a gear casing 71 for fine reduction adjustment. It is configured with both a reverse rotation prevention function and a reverse rotation prevention function. A cutout hole 56 is provided above the rack key sliding groove 52 of the hollow shaft 2, through which the outer periphery of the mounted screw gear wheel 7 is inserted in a half-moon shape and meshed with the rack teeth 55 of the rack key 51. This constitutes a gear reduction rack sliding mechanism in the longitudinal direction of the axis of the movable guide 4. A bearing groove 104' is provided in the lower part of the inner surface of the hollow shaft 2 to accommodate a flat cage roller bearing 104, and the lower part of the movable guide 4 is movably brought into contact therewith. This function is to reduce sliding friction by receiving the downward deflection load Xtt roller bearing 104 when the screw correction wheel 53 and the rack key 51 mesh and slide when the screw gear reduction mechanism is operated. The rack key sliding part 152 and the bearing groove 114'
In order to maintain the function of the sliding part for a long period of time, a sealing cover 103 is attached to the circumference of the front end face of the hollow shaft 2. Furthermore, internal O-ring 1
05 and the sealing effect of the sealing O-ring 106 on the other side fitting circumferential portion prevents scale and cooling fluid from entering from the outside. The fixed guide 3 is provided with a slit forming part 31 at its front end, and the movable guide 4 is provided with a slit forming part 41 at its front end. Although the drive mechanism illustrated in FIG. 3 is different from the drive mechanism illustrated in FIGS. 1 and 2, the function of ejecting and regulating the amount of coolant fluid is identical in both. The same purpose is achieved except that the direction of injection of the coolant fluid and the operating speed of the cone guide (movable guide) 4 are different. The adjustment of the slit t is performed by rotating the pinion shaft 61 using an appropriate external force. That is, by rotating the screw tooth claw pinion 6, the gear wheel 53 rotates, and the rotational force is
Vc is transmitted, and the cone guide 4 formed integrally with the rack key moves in the same direction as the pass line (P, L). In this case, the amount of movement is.

ねじ歯車ビニオンによる歯送りされた量がそのまt直接
的にコーンガイド4の移動量となるので、コーンガイド
の移動は極めて速やかである。
Since the amount of tooth feeding by the screw gear pinion directly becomes the amount of movement of the cone guide 4, the movement of the cone guide is extremely rapid.

以上のようにコーンガイド(可動ガイド)4の移動によ
り、レシービングガイド(固定ガイド)3との対向部間
にそれぞれ設けたスリット形成部31.41により環状
円筒間隙即ちスリン)1が形成され、その間隙の程度即
ち幅な任意自在に設定することがで^る。前述の駆動機
構(第1図、第2図例示)と上述駆動機1i(第3図例
示)によるコーンガイド(可動ガイド)4の移動性能即
ち作動速度を比較したとき、後者(8g3図例示)σ)
機構は、ワンタッチ迅速操作が容易で急速移動性能を特
長としたものである。上記二機構何ハの場合でもスリッ
ト幅tの調整と冷却流体の設定制御操作は随時可能であ
って、この設定値と状態は、冷却流体の噴出圧力や圧延
材の通過衝接摩擦力などによる他の外力によって少しも
変動することなく、不動のスリット幅tを保って安定し
た流量制御を行うことができる。
As described above, by the movement of the cone guide (movable guide) 4, an annular cylindrical gap (slin) 1 is formed by the slit forming portions 31 and 41 provided between the opposing portions of the receiving guide (fixed guide) 3. The degree of the gap, that is, the width, can be set as desired. When comparing the movement performance, that is, the operating speed, of the cone guide (movable guide) 4 by the above-mentioned drive mechanism (illustrated in FIGS. 1 and 2) and the above-mentioned drive machine 1i (illustrated in FIG. 3), the latter (illustrated in 8g3) is found. σ)
The mechanism features easy one-touch operation and rapid movement performance. In any of the above two mechanisms, the adjustment of the slit width t and the setting control operation of the cooling fluid can be performed at any time, and the setting value and state are determined by the jetting pressure of the cooling fluid, the frictional force of the passing of the rolled material, etc. Stable flow control can be performed by maintaining an immovable slit width t without any fluctuation due to other external forces.

以上のように本発明は構成されているので一刀イドボッ
クス1の上部の冷却流体人口13から供給された冷却流
体は、先ず流体充満室11に充満して高圧力を保持しな
がら、チューブラ−スリーブ(中空軸)2に設けた流通
路14 (円周数ケ所に設けた小穴)から次の流体均圧
室21へ流入して圧力均等に充満する。あらかじめ設定
したスリットから、環状の均等噴射流を形成した冷却水
がパスライン中心に向けて集中的に噴射される。圧延材
がこれらガイドの中心を通過すれば、噴射された冷却水
に応じた冷却度で冷却されることになる。本装置は圧延
ラインに多数設けることができる。オだ、圧延材の温度
を調節しようとすれば、前述の操作によりコーンガイド
を移動せしめてスリット幅を調整し、冷却水の噴出量を
制御する。
Since the present invention is constructed as described above, the cooling fluid supplied from the cooling fluid port 13 at the upper part of the single-width box 1 first fills the fluid-filled chamber 11, maintains a high pressure, and then flows through the tubular sleeve. The fluid flows into the next pressure equalization chamber 21 through the flow path 14 (small holes provided at several places around the circumference) provided in the (hollow shaft) 2 and is filled with equal pressure. Cooling water forming an annular uniform jet stream is intensively jetted toward the center of the pass line from preset slits. If the rolled material passes through the center of these guides, it will be cooled at a cooling degree that depends on the injected cooling water. A large number of this device can be installed in a rolling line. If the temperature of the rolled material is to be adjusted, the cone guide is moved by the operation described above to adjust the slit width and control the amount of cooling water jetted out.

本発明によれば、この制御は極めて容易に行なうことが
で弘、また精度もよく、圧延を中断することなく行なう
ことができる。更にスリットtの締切りも行なうことが
できるので、圧延材の冷却制御の範囲は極めて広範囲な
ものである。このことは、圧延材温度の均一化および適
度な冷却によるコンドロールド圧延あるいは組織を良好
にする低温圧延等を能率よく行なうことができることを
示し、産業上極めて有益なもル、62はスプリングビン
、111は圧延ロール、112は圧延条材、tは環状円
筒間隙(リングスリッ)1./は円錐面対向距離、Pは
環状傘形噴流集中点、Qは環状円錐頂角をそれぞり、示
す。
According to the present invention, this control is extremely easy and accurate, and can be performed without interrupting rolling. Furthermore, since the slit t can be closed off, the range of cooling control of the rolled material is extremely wide. This shows that it is possible to efficiently carry out chondral rolling by uniformizing the temperature of the rolled material and appropriate cooling, or low-temperature rolling to improve the structure, and is extremely useful in industry. 1 is a rolling roll, 112 is a rolled strip, and t is an annular cylindrical gap (ring slit). / indicates the distance between the conical surfaces, P indicates the annular umbrella-shaped jet concentration point, and Q indicates the apex angle of the annular cone.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本願のものの1実施例を示すもので、M1図は本
発明の構成を示す断面図、第2図は第1図のAA線断面
図、第3図は本発明の他の構成例を示す断面図、第4図
は第3図のB−B線断面図である。 306.レシービングガイド、4.、、  コーンガイ
ド、581.駆動機構、31.41.、、  スリット
形成部。 特許 出願人   寿産業株式会社
The drawings show one embodiment of the present invention, and FIG. M1 is a sectional view showing the configuration of the present invention, FIG. 2 is a sectional view taken along the line AA of FIG. 1, and FIG. The sectional view shown in FIG. 4 is a sectional view taken along the line BB in FIG. 3. 306. Receiving guide, 4. ,, Cone Guide, 581. Drive mechanism, 31.41. ,, Slit forming part. Patent applicant Kotobuki Sangyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 曲端にスリット形成部を有し圧延材を誘導するレシービ
ングガイドと、該レシービングガイドと直列に配設さh
同−軸線士を移動可能で後端にスリット形成部を有する
コーンガイドと、該コーンガイドを外力により任意の位
置に移動して設定せしめる逆転防止機能を有する駆動機
構トからなり、前記レシービングガイドのスリット形成
部とコーンガイドのスリット形成部を対向近設させて圧
延材に冷却剤流体を噴出せしめるスリン)&形成すると
共に2前記駆動機構によりスリット幅か任意に調整して
圧延材への冷却剤流体噴射量を制御せしめるよ5VC構
成したことを特徴とする冷却誘導案内装置。
a receiving guide having a slit forming part at a curved end for guiding the rolled material; and a receiving guide disposed in series with the receiving guide.
It consists of a cone guide that can move the coaxial liner and has a slit forming part at the rear end, and a drive mechanism that has a reversal prevention function that moves and sets the cone guide to an arbitrary position by external force, and the receiving guide The slit forming part and the slit forming part of the cone guide are placed opposite to each other so that coolant fluid is ejected onto the rolled material. A cooling guidance device characterized by having a 5VC configuration to control the amount of fluid injection.
JP12364382A 1982-07-14 1982-07-14 Guiding device for introducing cooling fluid Granted JPS5913510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12364382A JPS5913510A (en) 1982-07-14 1982-07-14 Guiding device for introducing cooling fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12364382A JPS5913510A (en) 1982-07-14 1982-07-14 Guiding device for introducing cooling fluid

Publications (2)

Publication Number Publication Date
JPS5913510A true JPS5913510A (en) 1984-01-24
JPS6254563B2 JPS6254563B2 (en) 1987-11-16

Family

ID=14865666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12364382A Granted JPS5913510A (en) 1982-07-14 1982-07-14 Guiding device for introducing cooling fluid

Country Status (1)

Country Link
JP (1) JPS5913510A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4579854A (en) * 1983-12-24 1986-04-01 Tanabe Seiyaku Co., Ltd. Bronchodilating 8-hydroxy-5-{(1R)-1-hydroxy-2-[N-((1R)-2-(p-methoxyphenyl)-1-methylethyl)-amino]ethyl} carbostyril
CN103736753A (en) * 2013-11-15 2014-04-23 合肥市百胜科技发展股份有限公司 Guiding and guarding device
CN106623479A (en) * 2016-12-27 2017-05-10 重庆优盾焊接材料有限公司 Material guide device of circle rolling machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4579854A (en) * 1983-12-24 1986-04-01 Tanabe Seiyaku Co., Ltd. Bronchodilating 8-hydroxy-5-{(1R)-1-hydroxy-2-[N-((1R)-2-(p-methoxyphenyl)-1-methylethyl)-amino]ethyl} carbostyril
USRE33024E (en) * 1983-12-24 1989-08-15 Tanabe Seiyaku Co. Ltd. Bronchodilating 8-hydroxy-5-(1R)-1-hydroxy-2-(N-((1R)-2-(p-methoxyphenyl)-1-methylethyl)-amino)ethyl) carbostyril and intermediates thereof
CN103736753A (en) * 2013-11-15 2014-04-23 合肥市百胜科技发展股份有限公司 Guiding and guarding device
CN106623479A (en) * 2016-12-27 2017-05-10 重庆优盾焊接材料有限公司 Material guide device of circle rolling machine

Also Published As

Publication number Publication date
JPS6254563B2 (en) 1987-11-16

Similar Documents

Publication Publication Date Title
JP2553939Y2 (en) Flow control device for fluid ejection device
DE2341364C2 (en) Drive device for a belt
DE60223664T2 (en) SPINDLE DEVICE OF A TOOL MACHINE
US20070111841A1 (en) Axle assembly bearing positioning and preload adjustment tool and method of implementing same
GB1003408A (en) Improvements in or relating to fluid pressure means for controlling the movement of a body
JPS5813209A (en) Hydraulic controller
JPS5913510A (en) Guiding device for introducing cooling fluid
US2367555A (en) Mechanism to obtain and control motion transverse to axis of rotation
DE2914906C2 (en)
US4051765A (en) Electric-hydraulic pulse motor having an improved rotary guide valve means
US4219516A (en) Method for controlling flow of molten polymer to multiple extrusion die orifices
US3999432A (en) Flowmeter
JPH08257609A (en) Device for inclinedly rolling tube-or rod-form material to be rolled
US2359540A (en) Variable speed transmission
US4170450A (en) Flow distribution valve system for control of extrusion from multiple die orifices
CH496194A (en) Hydrodynamically balanced rotary control valve
GB1599237A (en) Flow distribution valve
CA1041043A (en) Self-compensating die
DE10049633C2 (en) Device for the mechanical cleaning of workpieces using air and gas flows
US2989617A (en) Cutting and gouging torch head
JPH01138012A (en) Heat transfer method and device
DE3116596A1 (en) Tool carrier for the internal peeling of pipes
US4234018A (en) Flow distribution valve system for control of extrusion from multiple die orifices
JPS63163075A (en) Flow adjusting valve
US6206031B1 (en) Reduced length pressure compensating liquid flow regulator