JPS5913482B2 - Method for producing olefin from aldehyde - Google Patents

Method for producing olefin from aldehyde

Info

Publication number
JPS5913482B2
JPS5913482B2 JP50123185A JP12318575A JPS5913482B2 JP S5913482 B2 JPS5913482 B2 JP S5913482B2 JP 50123185 A JP50123185 A JP 50123185A JP 12318575 A JP12318575 A JP 12318575A JP S5913482 B2 JPS5913482 B2 JP S5913482B2
Authority
JP
Japan
Prior art keywords
alumina
reaction
isobutyraldehyde
catalyst
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50123185A
Other languages
Japanese (ja)
Other versions
JPS5248603A (en
Inventor
勝三 金子
寛 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP50123185A priority Critical patent/JPS5913482B2/en
Publication of JPS5248603A publication Critical patent/JPS5248603A/en
Publication of JPS5913482B2 publication Critical patent/JPS5913482B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、イソブチルアルデヒドの接触的変換によりイ
ソブテンを高収率で得る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for obtaining isobutene in high yields by catalytic conversion of isobutyraldehyde.

イソブチルアィレデヒドの接触的変換法としては、数多
くの試みがなされている。
Many attempts have been made to catalytically convert isobutyl aredehyde.

例えば(1)、白金(pt)またはロジウム(Rh)を
担持したアル 。ミナ触媒上でプロピレン、一酸化炭素
および水素に分解する方法(「・・イドロカーボン プ
ロセシング」 11月号、1971、166頁)、(2
)、水蒸気または酸素の存在下で、水素および二酸化炭
素に完全ガス化する方法(特公昭49−45475、号
公報、同49−45476号公報)などが提案されてい
るが、これらは触媒が高価であることや、高温・高圧を
要する等反応条件が厳しいなどのため、必ずしも経済的
に有利な方法ではない。またアルミナに酸化マンガン(
MnO2)を担持した触媒を用いることによりイソブチ
ルアルデヒドから5 イソブテンが得られることが見出
されている(「ジャーナル オブ ケミカルソサイエテ
イケミカル コミュニケーション」1969、461頁
)が、この方法は加圧下550℃と高温を要し工業的な
実施は困難である。10本発明者らは、プロピレンのオ
キソ反応等で少なからず副生するイソブチルアルデヒド
をさらに高付加価値製品に変換すべく種々研究した結果
、モリブデン等の遷移金属元素を主体とする触媒系を使
用し、高温でイソブチルアルデヒドをこれと15接触さ
せることによりオレフィン、特にイソブテンが高収率で
得られることを見出し本発明に到達した。
For example, (1) Al supported on platinum (pt) or rhodium (Rh). A method for decomposing propylene, carbon monoxide and hydrogen over a Mina catalyst ("Idrocarbon Processing" November issue, 1971, p. 166), (2
), a method of completely gasifying hydrogen and carbon dioxide in the presence of water vapor or oxygen (Japanese Patent Publication No. 49-45475, Publication No. 49-45476), but these methods require expensive catalysts. It is not necessarily an economically advantageous method because it requires severe reaction conditions such as high temperature and high pressure. Also, manganese oxide (
It has been discovered that 5-isobutene can be obtained from isobutyraldehyde by using a catalyst supported on MnO2 (Journal of Chemical Society Chemical Communications, 1969, p. 461), but this method requires heating at 550°C under pressure. This method requires high temperatures and is difficult to implement industrially. 10 The present inventors have conducted various studies in order to convert isobutyraldehyde, which is a considerable by-product in propylene oxo reactions, etc., into higher value-added products. They discovered that olefins, especially isobutene, can be obtained in high yield by contacting isobutyraldehyde with isobutyraldehyde at high temperatures for 15 minutes, and the present invention was achieved based on this discovery.

すなわち、本発明はイソブチルアルデヒドを水素の存在
下または不存在下、高温で、モリブデン、ノ0 クロム
、鉄、コバルトまたはニッケルを含むアルミナ、シリカ
−アルミナまたはシリカからなる触媒と接触させること
を特徴とするイソブテンの製造方法をその要旨とするも
のである。
That is, the present invention is characterized in that isobutyraldehyde is brought into contact with a catalyst made of alumina, silica-alumina, or silica containing molybdenum, chromium, iron, cobalt, or nickel at high temperature in the presence or absence of hydrogen. The gist of this paper is a method for producing isobutene.

本発明において有効な触媒は、周期律表第■族ク5aの
モリブデン、クロムや第■族の鉄、コバルト、ニッケル
などの金属酸、該金属酸のアンモニウム塩、硝酸塩、酢
酸塩などのカルボン酸塩を通常の担持法、例えば含浸法
等によりアルミナ、シリカ−アルミナまたはシリカに担
持し、乾燥してから■01400〜500℃で焼成する
ことにより調製され”る。
Catalysts that are effective in the present invention include metal acids such as molybdenum, chromium, iron, cobalt, and nickel in Group I of the Periodic Table, and carboxylic acids such as ammonium salts, nitrates, and acetates of the metal acids. It is prepared by supporting a salt on alumina, silica-alumina, or silica by a conventional supporting method, such as an impregnation method, drying it, and then calcining it at a temperature of 0.1400 to 500°C.

シリカ−アルミナ複合酸化物を用いる場合にはアルミナ
が7〜40重量%の割合のものが好ましい。さらに本触
媒の使用に際しては、水素気流中400〜500’Cで
還元処理して活性化するのノ5 が望ましい。本発明に
おけるアルミナ、シリカ−アルミナまたはシリカは、通
常高表面積を有し、中性ないし酸性を示し、いずれも本
発明に有効で、あるが、これらのうちでも特にアルミナ
を使用することにより、最良の結果が得られる。そして
、これらアルミナ、シリカ−アルミナまたはシリカへの
前記金属の担持量は、種々の条件の変化により変わり一
概に規定できないが、アルミナ、シリカ−アルミナまた
はシリカ100重量部に対して、金属として1〜10重
量部になるようにするのが望ましい。本発明のアルデヒ
ドからオレフインへの変換反応は、上記の方法により調
製された触媒とイソブチルアルデヒドを接触させること
によりなされるが、その反応型式は、両者の円滑な接触
が達成されるならばどのような型式でもよいが、通常は
、固定床式、流動床式等を採用する。
When using a silica-alumina composite oxide, it is preferable that the alumina content be 7 to 40% by weight. Furthermore, when using this catalyst, it is preferable to activate it by reduction treatment at 400 to 500'C in a hydrogen stream. Alumina, silica in the present invention - Alumina or silica usually has a high surface area and is neutral to acidic, and any of them are effective in the present invention, but among these, the use of alumina in particular provides the best The result is obtained. The amount of the metal supported on these alumina, silica-alumina or silica varies depending on changes in various conditions and cannot be unconditionally defined, but the amount of the metal supported on 100 parts by weight of alumina, silica-alumina or silica is 1 to 1. It is desirable that the amount is 10 parts by weight. The conversion reaction from aldehyde to olefin of the present invention is carried out by bringing the catalyst prepared by the above method into contact with isobutyraldehyde. Although any type may be used, fixed bed type, fluidized bed type, etc. are usually adopted.

本発明における反応温度、空間速度等の反応条件は、反
応温度としては、300〜600℃が適当であるが、分
解などの副反応を少なくし、イソブチルアルデヒドを高
転化率で転化し、高選択率で1イソブテンを得るには、
400〜500℃が特に効果的である。
Regarding the reaction conditions such as reaction temperature and space velocity in the present invention, a suitable reaction temperature is 300 to 600°C, but it is possible to reduce side reactions such as decomposition, convert isobutyraldehyde at a high conversion rate, and achieve high selectivity. To obtain 1 isobutene at a rate of
A temperature of 400 to 500°C is particularly effective.

また、空間速度(SV)としては、500〜10000
hr−1、好ましくは1000〜5000hr−1の範
囲で行うのが最も実用的で、かつ好結果が得られる。本
発明はイソブチルアルデヒドと前記の触媒を高温で接触
させることにより目的を達成することができるが、この
接触反応系に水素を存在させると、さらに好結果をもた
らす。
In addition, the space velocity (SV) is 500 to 10,000.
hr-1, preferably in the range of 1,000 to 5,000 hr-1, is most practical and yields good results. Although the objects of the present invention can be achieved by contacting isobutyraldehyde with the above catalyst at high temperatures, the presence of hydrogen in this contact reaction system provides even better results.

水素存在の効果は触媒活性の維持および向上に顕著であ
るが、その存在量も或る最適範囲が存在する。反応系中
の水素の分圧を余り高くすると、イソブチルアルデヒド
の低級炭化水素への分解を促進し、またオレフイン類の
水素添加等を伴うので、水素/イソブチルアルデヒド(
モル比)は1〜20、好ましくは5〜10の範囲が適当
である。反応に消費される水素は僅かであり、大部分は
循環使用できる。本発明において使用される触媒は、コ
ーク生成反応等によりその触媒活性が経時的に低下する
傾向を示すが、空気または酸素含有ガスで焼成処理する
ことにより、触媒活性はほぼ完全に回復するので、本発
明の方法は工業的実施も可能であり、極めて有用な発明
ということができる。本発明は、イソブチルアルデヒド
からイソブテンが50〜80%という高転化率、60〜
75%という高選択率で生成し、その他プロピレン、ブ
テン、ブタジエン等のオレフイン類も生成するが、これ
らは現行のオレフイン分離、精製技術により容易に高純
度のオレフインとすることができる。
The effect of the presence of hydrogen is remarkable in maintaining and improving catalyst activity, but there is also a certain optimum range for the amount of hydrogen present. If the partial pressure of hydrogen in the reaction system is too high, it will promote the decomposition of isobutyraldehyde into lower hydrocarbons and will also involve hydrogenation of olefins, so hydrogen/isobutyraldehyde (
The molar ratio) is suitably in the range of 1 to 20, preferably 5 to 10. Only a small amount of hydrogen is consumed in the reaction, and most of it can be recycled. The catalyst used in the present invention shows a tendency for its catalytic activity to decrease over time due to coke formation reactions, etc., but the catalytic activity can be almost completely recovered by calcination treatment with air or oxygen-containing gas. The method of the present invention can be implemented industrially and can be said to be an extremely useful invention. The present invention has a high conversion rate of 50 to 80% from isobutyraldehyde to isobutene, and a high conversion rate of 60 to 80%.
It is produced with a high selectivity of 75%, and other olefins such as propylene, butene, and butadiene are also produced, and these can be easily converted into high-purity olefins using current olefin separation and purification techniques.

本発明は、以上のようにイソブチルアルデヒドを工業的
に容易に実施可能な触媒と反応条件下でイソプテンを主
とするオレフインに変換する方法であり、工業的に貢献
するところ大である。以下本発明を実施例により詳細に
説明するが、本発明はこれらに限定されるものではない
。実施例 1七モリブデン酸アンモニウム 〔(NH4)6M07024・4H20〕9.17を5
0m1の水に加え、アンモニア水5m1を添加して完全
に溶解させる。
As described above, the present invention is a method for converting isobutyraldehyde into an olefin mainly composed of isoptenes using a catalyst and reaction conditions that can be easily carried out industrially, and thus makes a great contribution to the industry. EXAMPLES The present invention will be explained in detail below with reference to Examples, but the present invention is not limited thereto. Example 1 Ammonium heptamolybdate [(NH4)6M07024・4H20] 9.17 to 5
In addition to 0 ml of water, add 5 ml of ammonia water to completely dissolve.

この溶液に市販のγ−アルミナ(表面積150イ/7、
37!Tmφペレツト)100yを加えて、溶液をほぼ
完全に吸収させた。次いで100℃で乾燥させた後、空
気中500℃の温度で3時間焼成した。かくしてr−ア
ルミナ100重量部に対してモリブデン金属として5重
量部を含む酸化モリブテン/γ−アルミナ触媒が得られ
た。この触媒10m1を内径151Emφのステンレス
製反応器に充填し、外部電気炉により加熱、昇温せしめ
、450℃において水素を100m1/分の速度で流し
て触媒を還元処理し活性化した後、反応を行つた。反応
はイソブチルアルデヒド:水素:窒素−1:10:4(
容量比)の混合ガスを反応温度450℃、SV36OO
hr−1、で常圧下前記触媒と接触させて行なつた。そ
の結果を表1に示した。した比較例として、酸化モリブ
デンを含まないγ−アルミナのみを用いて同様に反応を
行い(比較例1)、その結果を同じく表1に示したが、
本発明の酸化モリブデン/γ−アルミナ触媒はイソブチ
ルアルデヒドの転化率、イソブテンへの選択率共に優れ
ていることが分る。実施例 2 実施例1において水素を用いない外は実施例1と同様に
して反応を行いその結果を表1に示した。
Add commercially available γ-alumina (surface area 150 I/7,
37! 100 y of Tmφ pellets were added until the solution was almost completely absorbed. Then, after drying at 100°C, it was fired in air at a temperature of 500°C for 3 hours. In this way, a molybdenum oxide/γ-alumina catalyst containing 5 parts by weight of molybdenum metal per 100 parts by weight of r-alumina was obtained. 10 ml of this catalyst was packed into a stainless steel reactor with an inner diameter of 151 Emφ, heated and raised in an external electric furnace, and hydrogen was flowed at a rate of 100 ml/min at 450°C to reduce and activate the catalyst, and then the reaction was started. I went. The reaction is isobutyraldehyde: hydrogen: nitrogen - 1:10:4 (
(volume ratio) mixed gas at reaction temperature 450℃, SV36OO
The reaction was carried out by contacting the catalyst with the catalyst under normal pressure at hr-1. The results are shown in Table 1. As a comparative example, a similar reaction was carried out using only γ-alumina containing no molybdenum oxide (Comparative Example 1), and the results are also shown in Table 1.
It can be seen that the molybdenum oxide/γ-alumina catalyst of the present invention is excellent in both the conversion rate of isobutyraldehyde and the selectivity to isobutene. Example 2 A reaction was carried out in the same manner as in Example 1 except that hydrogen was not used in Example 1, and the results are shown in Table 1.

また比較例として、酸化モリブデンを含まないγ一アル
ミナのみを用いて同様に反応を行い(比較例2)、その
結果を表1に示したが、実施例1同様本発明に係わる触
媒の優れていることが分る。実施例 3〜6実施例1と
全く同様にしてクロム、鉄、コバルトおよびニツケルの
硝酸塩から、それぞれ金属酸化物/γ−アルミナ触媒を
調製し(γ−アルミナ100重量部に対してそれぞれ金
属として5重量部を含む)、実施例1と同様に反応を行
つた。
As a comparative example, a similar reaction was carried out using only γ-alumina containing no molybdenum oxide (Comparative Example 2), and the results are shown in Table 1. I know that there is. Examples 3 to 6 Metal oxide/γ-alumina catalysts were prepared from nitrates of chromium, iron, cobalt, and nickel in exactly the same manner as in Example 1 (5 parts by weight of each metal was added to 100 parts by weight of γ-alumina). (including parts by weight), the reaction was carried out in the same manner as in Example 1.

その結果を表2に示した。実施例 7〜8 担体としてγ−アルミナの代りにη−アルミナ(表面積
285イ/7、3m1φペレツト)およびシリカ−アル
ミナ(アルミナ含有量14重量%、表面積450m7V
、粉末状)を使用する以外は実施例1と全く同様にして
反応を行つた。
The results are shown in Table 2. Examples 7-8 Instead of γ-alumina, η-alumina (surface area 285 I/7, 3 m 1 φ pellet) and silica-alumina (alumina content 14% by weight, surface area 450 m 7 V) were used as carriers.
The reaction was carried out in exactly the same manner as in Example 1, except for using the following:

その結果を表3に示した。実施例 9〜11 実施例1において反応温度を変えた以外は、実施例1と
全く同様にして反応を行つた。
The results are shown in Table 3. Examples 9 to 11 The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was changed.

その結果を表4に示した。比較例 3〜4 実施例1と全く同様にして硝酸マンガン(11)を用い
てMnO2/r−アルミナ触媒を調製し(γ−アルミナ
100重量部に対してマンガンとして5重量%を含む)
、実施例1および実施例2と同様に反応を行つた。
The results are shown in Table 4. Comparative Examples 3 to 4 A MnO2/r-alumina catalyst was prepared using manganese nitrate (11) in exactly the same manner as in Example 1 (containing 5% by weight of manganese based on 100 parts by weight of γ-alumina).
The reaction was carried out in the same manner as in Example 1 and Example 2.

Claims (1)

【特許請求の範囲】[Claims] 1 イソブチルアルデヒドを水素の存在下または不存在
下、高温でモリブデン、クロム、鉄、コバルトまたはニ
ッケルを含むアルミナ、シリカ−アルミナまたはシリカ
からなる触媒と接触させることを特徴とするイソブテン
の製造方法。
1. A method for producing isobutene, which comprises contacting isobutyraldehyde with a catalyst made of alumina, silica-alumina or silica containing molybdenum, chromium, iron, cobalt or nickel at high temperature in the presence or absence of hydrogen.
JP50123185A 1975-10-15 1975-10-15 Method for producing olefin from aldehyde Expired JPS5913482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50123185A JPS5913482B2 (en) 1975-10-15 1975-10-15 Method for producing olefin from aldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50123185A JPS5913482B2 (en) 1975-10-15 1975-10-15 Method for producing olefin from aldehyde

Publications (2)

Publication Number Publication Date
JPS5248603A JPS5248603A (en) 1977-04-18
JPS5913482B2 true JPS5913482B2 (en) 1984-03-30

Family

ID=14854283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50123185A Expired JPS5913482B2 (en) 1975-10-15 1975-10-15 Method for producing olefin from aldehyde

Country Status (1)

Country Link
JP (1) JPS5913482B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010069384A (en) * 2008-09-17 2010-04-02 Idemitsu Kosan Co Ltd Olefin production catalyst and method of producing the same
JP6361578B2 (en) 2015-05-22 2018-07-25 トヨタ自動車株式会社 Process for producing hydrocarbons
CN114426443B (en) * 2020-10-15 2024-07-23 中国石油化工股份有限公司 Method and system for preparing low-carbon olefin by oxygen-containing compound

Also Published As

Publication number Publication date
JPS5248603A (en) 1977-04-18

Similar Documents

Publication Publication Date Title
US4780552A (en) Preparation of furan by decarbonylation of furfural
US4065507A (en) Preparation of methacrylic derivatives from tertiary butyl-containing compounds
US2627527A (en) Oxidation of olefins to alkenals
JPH0557251B2 (en)
US5928983A (en) Process for the preparation of high activity carbon monoxide hydrogenation catalysts and the catalyst compositions
EP2493837B1 (en) Hydrocarbon selective oxidation with heterogenous gold catalysts
US4182907A (en) Process for the oxidation of olefins to aldehydes and acids
EP0101645B1 (en) Catalytic process for the production of methanol
US3644509A (en) Oxidation of unsaturated aldehydes to the corresponding acids
US4323703A (en) Process for the oxidation of olefins to aldehydes and acids
US4009194A (en) Catalytic ammoxidation of olefins to nitriles
CA1045106A (en) Catalyst with mo, v, ti and process for preparing unsaturated acids
US4046833A (en) Dehydrogenation of paraffins
JPS5913482B2 (en) Method for producing olefin from aldehyde
US4826803A (en) Process for the production of a syngas conversion catalyst
US4323520A (en) Preparation of methacrylic derivatives from tertiary-butyl-containing compounds
Murakami et al. Partial oxidation of ethane over boron oxide added catalysts.
JPS58128327A (en) Manufacture of olefin
KR100752418B1 (en) Catalysts for dehydrogenation of ethylbenzene into styrene, process thereof and preparation method for styrene monomer employing them
US4200589A (en) Process for preparing acetone from isobutyraldehyde
JP2001353443A (en) Rhenium oxide-based catalyst for selective oxidization
US5118891A (en) Syngas conversion catalyst, production and use thereof
US4619947A (en) Chemical process
JP4025502B2 (en) Catalyst for producing aldehyde from lower hydrocarbon and method for producing aldehyde using carbon dioxide as oxidizing agent
Obana et al. Selective oxidation of isobutane to methacrolein by the combined oxide catalysts, Ni2P2O7 for oxidative dehydrogenation of alkanes and Bi-Mo-Oxide