JPS5913472B2 - Ceramic sintered body with glass window and manufacturing method thereof - Google Patents

Ceramic sintered body with glass window and manufacturing method thereof

Info

Publication number
JPS5913472B2
JPS5913472B2 JP8557677A JP8557677A JPS5913472B2 JP S5913472 B2 JPS5913472 B2 JP S5913472B2 JP 8557677 A JP8557677 A JP 8557677A JP 8557677 A JP8557677 A JP 8557677A JP S5913472 B2 JPS5913472 B2 JP S5913472B2
Authority
JP
Japan
Prior art keywords
glass
sintered body
ceramic sintered
window
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8557677A
Other languages
Japanese (ja)
Other versions
JPS5421406A (en
Inventor
昭雄 高見
和夫 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP8557677A priority Critical patent/JPS5913472B2/en
Publication of JPS5421406A publication Critical patent/JPS5421406A/en
Publication of JPS5913472B2 publication Critical patent/JPS5913472B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は耐熱衝撃性を有する窓ガラス付セラミック焼結
体及びその製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ceramic sintered body with a window glass having thermal shock resistance and a method for manufacturing the same.

更に詳しく5 は電子回路用セラミックパッケージのキ
ャップとして用いる紫外線透過ガラスの窓を有するセラ
ミック板状焼結体に係る。この種紫外線透過性キャップ
は、紫外線消去方式の半導体不揮発性メモリー素子の収
納パッケージのキャップとして重要な10ものである。
従来かゝる紫外線消去方式半導体メモリー収納パッケー
ジのキャップとしては、紫外線透過ガラスを金属コバー
ルの中央窓に溶着するタイプ、或いは紫外線透過用材料
、例えばサファイア、ルカ15C]′ノクス、石英ガラ
スをそのまゝキャップとして用いるタイプがある。
More specifically, No. 5 relates to a ceramic plate-shaped sintered body having an ultraviolet-transparent glass window used as a cap of a ceramic package for an electronic circuit. This type of UV-transparent cap is an important cap for a storage package for a semiconductor non-volatile memory device that uses UV-erasing technology.
Conventionally, caps for semiconductor memory storage packages using ultraviolet erasing methods are of the type in which UV-transparent glass is welded to the center window of metal Kovar, or UV-transparent materials such as sapphire, Luca 15C]'nox, and quartz glass are used as they are. There is a type that is used as a cap.

前者のタイプは、コバールとuv透過用ガラスとの溶着
部から熱衝撃テストの際リークが生じ、その気密性が問
題であつた。後者のタイプの中、サファイア、ルカロツ
クスを20そのまゝキャップとして使用する場合には、
熱衝撃の特性値については問題はないが、価格的に高価
であるという欠点を有する。また石英ガラスについては
やはり気密性の問題と割れ易いという問題がある。25
本発明は上記の欠点を除去することを目的とするもので
ある。
In the former type, leakage occurred during a thermal shock test from the welded part of Kovar and UV transmission glass, and the airtightness was a problem. Of the latter type, when using sapphire and lukarox as a cap,
Although there is no problem with the thermal shock characteristic value, it has the disadvantage of being expensive. Furthermore, quartz glass still has problems with airtightness and breakage. 25
The present invention aims to eliminate the above-mentioned drawbacks.

本発明はキャップ本体の基板としては公知のセラミック
焼結体を用い、該焼結体に開口部(窓)を配設し、該窓
にガラスを溶着せしめて成り、この際に溶着ガラスはそ
の固着温度以30下において一定の加圧圧縮状態に保持
されるものである。即ち本発明によるガラス窓付セラミ
ック焼結体は、窓を有するセラミック焼結体にその熱膨
脹係数より3〜35×10−“℃−”低い熱膨脹係数を
有するガラスを溶着して成るものであり、35またその
製造方法を提供するものである。以下本発明について詳
述する。本発明に用いるセラミック焼結体は、アルミナ
ステアタイト、ムライト、フオルステライト、ベリリア
、ジルコニア等から成る焼結体を用いることができる。
The present invention uses a known ceramic sintered body as the substrate of the cap body, an opening (window) is provided in the sintered body, and glass is welded to the window. It is maintained in a constant pressure and compression state at 30 degrees below the fixation temperature. That is, the ceramic sintered body with a glass window according to the present invention is made by welding glass having a coefficient of thermal expansion 3 to 35 × 10 °C lower than that of the ceramic sintered body having a window, 35, and also provides a manufacturing method thereof. The present invention will be explained in detail below. As the ceramic sintered body used in the present invention, a sintered body made of alumina steatite, mullite, forsterite, beryllia, zirconia, etc. can be used.

例えばアルミナ質セラミツク焼結体はテープキヤステイ
ング法、又はプレス法等の公知の方法により1500〜
1600℃に焼結して製造する。この形状は板状(第2
図)ないし周縁部に連続した帯状浮上り段付部を有する
凹状体(第5図)として形成することができ、夫々その
中心部に好ましくは円形の開口窓を形成する。この焼結
体の窓に所定の性質を有するガラスを熔着する。この際
ガラスは常温時においてセラミツク焼結体の窓に破損又
は欠損のないよう無理なく嵌合する。その後所定の温度
、少くとも軟化点以上好ましくは通常ガラスの屈服点以
上の温度において熔着する。本発明に用いることのでき
るガラスは紫外線透過ガラスの外、紫外線吸収、赤外線
透過又は吸収ガラス、電子線、放射線等の透過又は吸収
ガラス、光学ガラスその他公知のガラスである。本発明
の一実施態様としては、紫外線透過ガラスを用いて紫外
線透過窓付セラミツクキヤツプを得ることができる。本
発明の特徴は、このガラスをセラミツク焼結体に単に熔
着したことにあるのではなく、その際セラミツク焼結体
とガラスとの間に存すべき物性上の関係を明らかにした
ことにある。
For example, an alumina ceramic sintered body can be produced by a known method such as tape casting or pressing.
Manufactured by sintering at 1600°C. This shape is plate-like (second
(Fig. 5) or as a concave body (Fig. 5) having a continuous band-like raised stepped portion on the periphery, each having a preferably circular opening window formed in its center. Glass having predetermined properties is welded to the window of this sintered body. At this time, the glass fits smoothly into the window of the ceramic sintered body at room temperature without being damaged or chipped. Thereafter, they are fused at a predetermined temperature, at least the softening point or higher, preferably at a temperature higher than the bending point of the glass. Glasses that can be used in the present invention include ultraviolet-transmitting glass, ultraviolet-absorbing glass, infrared-transmitting or absorbing glass, electron beam, radiation-transmitting or absorbing glass, optical glass, and other known glasses. In one embodiment of the present invention, a ceramic cap with an ultraviolet-transparent window can be obtained using ultraviolet-transparent glass. The feature of the present invention is not that this glass is simply welded to a ceramic sintered body, but that the physical property relationship that should exist between the ceramic sintered body and the glass at that time has been clarified. be.

即ち、本発明によれば、ガラスの熱膨脹係数はセラミツ
ク焼結体よりも3〜35×10−7℃−1、好ましくは
5〜30×17℃−1の範囲だけ低いものとする。この
範囲の熱膨脹係数の差に基き、ガラスはその熔着後、固
着温度を経て常温にまで冷却されると、適度な加圧圧縮
歪みをセラミツク焼結体から受けることになる。この加
圧圧縮状態によりガラスとセラミツク焼結体間の密着状
態を例えばMIL−STD−883−1011−C(−
65150℃繰返し15回、液中)という熱衝撃テスト
にも耐えるものとすることができる。ガラスとセラミツ
タ焼結体の熱膨脹率(自由状態)を一般的にグラフ化す
ると第1図の如くであり、例えば本実施例のAガラスは
実線2に示される。
That is, according to the invention, the coefficient of thermal expansion of the glass is lower than that of the ceramic sintered body by a range of 3 to 35.times.10@-7 DEG C.-1, preferably 5 to 30.times.17 DEG C.-1. Based on the difference in coefficient of thermal expansion within this range, after glass is fused and cooled down to room temperature after passing through the fixing temperature, it will be subjected to appropriate compressive strain from the ceramic sintered body. This pressurized state improves the adhesion between the glass and the ceramic sintered body, for example, MIL-STD-883-1011-C (-
It can also withstand a thermal shock test of 65150°C (15 times in liquid). The thermal expansion coefficients (free state) of glass and ceramic ivy sintered bodies are generally graphed as shown in FIG. 1, and for example, the A glass of this example is shown by solid line 2.

これに対し本実施例に用いたアルミナ質セラミツク焼結
体の熱膨脹曲線は実線1によつて表わされる0これらの
二つの物体間には、第1図に示す如く熱膨脹率差が存し
加熱に際し当初セラミツク焼結体はガラスよりもや\高
い率で膨脹するが、やがてガラスの膨脹率曲線2と交わ
る。この交点Kを越えて更に加熱するとガラスは屈服点
Mgを経て逆に収縮を開始するが、実際にはこれ以上の
温度ではガラスは自己の自重又は加重により横に拡がり
セラミツクス焼結体との隙間を埋めて熔着を開始する。
この熔着を完全にするために更に数百度℃以上高温に加
熱することもできる。完全に均一熔着が生じた後徐冷す
るξ、セラミツク焼結体はまた曲線に従つて収縮するが
、この際ガラスはその固着温度Tmまでは焼結体の収縮
に応じて自由に変形しうるので何ら特別な内部応力を生
ずることなく変形(収縮)する。しかし固着点Tmより
も温度が下降すると、その直後転移点Tgまでを除いて
一般にガラスはもはや自由なる変形はできないが、周囲
のセラミツク焼結体に囲撓されて外形的にはセラミツク
焼結体の曲線1に従つて収縮を余儀なくされる。ここに
、本発明によればガラスAの膨脹率はその固着温度以下
においてはセラミツク焼結体のそれよりも低い一定範囲
内にあるので、固着温度Tmに下降して以後、セラミツ
ク焼結体よりもわずかしか収縮しない。固着温度以下の
ガラスの自由収縮曲線は点線3により仮想的に与えられ
る。従つて常温時にはガラスには圧縮歪みΔIAが生じ
、それに基いて圧縮歪み応力が生じて、ガラス窓中心部
からセラミツク焼結体壁(外方)へ向う反撥力となり、
これに従つてガラスはセラミツク焼結体に対し一定の押
圧力をもつて熔着されることになる。この押圧力は適度
であることが耐熱衝撃性付与のために必要であり、その
範囲は、大きすぎても小さすぎても十分な耐熱衝撃性を
得ることができないことが本発明により顕らかとなつた
。即ちその範囲は前述の如く熱膨脹率が3〜35X10
−7℃−1だけセラミツク焼結体より少い場合の圧縮歪
みに対応した圧縮歪み応力において有効にガラスの熔着
は熱衝撃試験に耐えることが出来る。この膨脹率の範囲
はセラミツク焼結体の膨脹率曲線1に対しては図式的に
示すと曲線4を上限とし、同5を下限とする範囲となる
。即ち曲線4はセラミツク焼結体との膨脹率差が3×1
0−7℃−1を示し、同5は膨脹率差35×10−7℃
−1を示す。ここに、ガラスの絶対的熱膨脹率は、用い
るセラミツク焼結体のそれに応じて、上記の範囲内のも
のを選択し、逆に一定の絶対膨脹率を有するガラスを必
要とするとき、そのガラスよりも上記範囲の数値だけ高
い膨脹率のセラミツク焼結体用いることにより、極めて
広い範囲、用途に亘る種々の組合せが可能である。
On the other hand, the thermal expansion curve of the alumina ceramic sintered body used in this example is represented by the solid line 1.0 There is a difference in the coefficient of thermal expansion between these two bodies as shown in Figure 1, and there is a difference in the coefficient of thermal expansion during heating. Initially, the ceramic sintered body expands at a rate slightly higher than that of glass, but it eventually intersects the expansion rate curve 2 of glass. When heated further beyond this intersection K, the glass passes through the bending point Mg and begins to shrink; however, in reality, at temperatures higher than this, the glass expands laterally due to its own weight or load, forming a gap between the glass and the ceramic sintered body. Fill in and start welding.
In order to complete this welding, it is also possible to further heat the material to a high temperature of several hundred degrees Celsius or more. After completely uniform welding occurs, the ceramic sintered body is slowly cooled ξ, and the ceramic sintered body contracts again according to the curve, but at this time, the glass deforms freely according to the contraction of the sintered body until its fixation temperature Tm. It deforms (shrinks) without producing any special internal stress. However, when the temperature drops below the fixation point Tm, the glass is generally no longer able to deform freely except immediately after that until the transition point Tg, but it is surrounded by the surrounding ceramic sintered body and the external shape becomes a ceramic sintered body. is forced to contract according to curve 1. According to the present invention, the expansion rate of the glass A is within a certain range lower than that of the ceramic sintered body below its fixing temperature, so that after the temperature drops to the fixing temperature Tm, the expansion rate of the glass A is lower than that of the ceramic sintered body below its fixing temperature. It also shrinks only slightly. The free shrinkage curve of the glass below the fixing temperature is virtually given by the dotted line 3. Therefore, at room temperature, compressive strain ΔIA occurs in the glass, and compressive strain stress is generated based on this, resulting in a repulsive force from the center of the glass window toward the ceramic sintered body wall (outward).
Accordingly, the glass is welded to the ceramic sintered body with a constant pressing force. It is clear from the present invention that this pressing force is required to be moderate in order to impart thermal shock resistance, and that if the range is too large or too small, sufficient thermal shock resistance cannot be obtained. Summer. That is, the range is as mentioned above, the coefficient of thermal expansion is 3 to 35 x 10
A glass weld can effectively withstand a thermal shock test at a compressive strain stress corresponding to a compressive strain that is -7 DEG C.-1 less than that of a ceramic sintered body. Diagrammatically, the range of this expansion rate is a range with curve 4 as the upper limit and curve 5 as the lower limit for expansion rate curve 1 of the ceramic sintered body. In other words, curve 4 has an expansion rate difference of 3×1 with respect to the ceramic sintered body.
0-7℃-1, and 5 shows an expansion rate difference of 35×10-7℃
-1 is shown. Here, the absolute coefficient of thermal expansion of the glass is selected within the above range depending on that of the ceramic sintered body used, and conversely, when a glass with a constant absolute coefficient of expansion is required, By using a ceramic sintered body having an expansion coefficient as high as the numerical value in the above range, various combinations can be made over an extremely wide range of applications.

ここに、本発明の一実施例たる電子回路用セラミツクパ
ツケージキヤツプとして用いるセラミツク焼結体として
は公知のアルミナ、ステアタイト又はムライト系等を用
いることができ、その場合熱膨脹係数は約55〜90×
10−70C−1の範囲にある。それに対しガラスとし
ては紫外波長2537八透過率50%以上のもので、例
えば第2表に示す硼珪酸塩系ガラス(4)、リン酸塩系
ガラス(B)でその膨脹率は夫々α−39,52,×1
0−7℃4のものを用いた場合MIL−STD−883
−1011−Cの熱衝撃試験に合格する(第1表参照)
。しかし例えばリン酸塩系ガラス(Oα=98×10−
7℃−1を用いるときは、膨脹率の差Δαはマイナスと
なつて逆転しこの場合にはテストにより、破損、又はリ
ークを生ずることになる。以下に本発明の実施例を説明
する。
Here, the ceramic sintered body used as the ceramic package cap for electronic circuits, which is an embodiment of the present invention, may be a publicly known alumina, steatite, or mullite type material, and in that case, the thermal expansion coefficient is approximately 55 to 90×.
It is in the range of 10-70C-1. On the other hand, the glass has an ultraviolet wavelength of 2537 8 and a transmittance of 50% or more.For example, the borosilicate glass (4) and phosphate glass (B) shown in Table 2 have an expansion rate of α-39. ,52,×1
When using 0-7℃4 MIL-STD-883
-1011-C thermal shock test (see Table 1)
. However, for example, phosphate glass (Oα=98×10−
When using a temperature of 7° C.-1, the difference in expansion rate Δα becomes negative and reverses, and in this case, the test results in damage or leakage. Examples of the present invention will be described below.

実施例1、厚さ1m111辺20m7!11の正方形の
中心に直径10mmφの孔を有するセラミツク焼結オ体
(第2図)をアルミナ ムライト、ステアタイト、フオ
ルステライトにより製造し、夫々第2表に示す硼珪酸ガ
ラス(4)α=39X10−70C−1、転移点Tg4
2『C1リン酸塩系ガラス(B)(α=52×10−7
℃−1Tg57『C)を用いて厚さ約17n71L直径
10m71Lφ孔の体積に対し1.08〜1.2のガラ
ス体積のガラス円板を作製し、夫々Δα=6,10,2
5,28×10−70C−1として該ガラス円板をセラ
ミツク板の孔に注意深く嵌合した後、夫々軟化点より約
300℃上まで加熱してカーボン荷重下に熔着させた。
Example 1 Ceramic sintered bodies (Fig. 2) having a hole with a diameter of 10 mm in the center of a square with a thickness of 1 m, 111 sides, and 20 m7!11 were manufactured from aluminite, steatite, and forsterite, and the results are shown in Table 2, respectively. Borosilicate glass (4) α=39X10-70C-1, transition point Tg4
2'C1 phosphate glass (B) (α=52×10-7
A glass disk with a glass volume of 1.08 to 1.2 for the volume of a hole with a thickness of approximately 17n71L and a diameter of 10m71Lφ was prepared using ℃-1Tg57 "C", and Δα=6, 10, 2, respectively.
After carefully fitting the glass discs into the holes of the ceramic plates at a temperature of 5.28 x 10-70C-1, they were heated to about 300°C above their respective softening points and welded under a carbon load.

その後徐冷して窓ガラス付セラミツク焼結体を得た。そ
の試料を耐熱衝撃テストMIL−STD−883−10
11−Cとした結果を第1表の試料番号1〜5に示す。
対照例1、実施例1と同様のセラミツク焼結体に実施例
1に用いたガラス(A),(B)の他リン酸塩系ガラス
(0α−98×10−7℃−1Tg−470℃を用いて
、夫々Δα=0、−32、−40、41X10−7℃−
1として実施例1と同様の工程におい÷窓ガラス付セラ
ミツク焼結体を得た。
Thereafter, it was slowly cooled to obtain a ceramic sintered body with a window glass. The sample was subjected to thermal shock resistance test MIL-STD-883-10.
The results of 11-C are shown in sample numbers 1 to 5 in Table 1.
In addition to the glasses (A) and (B) used in Example 1, phosphate-based glass (0α-98×10-7℃-1Tg-470℃ Using Δα=0, -32, -40, 41X10-7℃-
As Example 1, a ceramic sintered body with a window glass was obtained in the same process as in Example 1.

その試料番号6〜9の耐熱衝撃テスト結果を第1表に示
すが、いずれも不合格であつた。ることにより良好な耐
熱衝撃性を有する窓ガラス付セラミツク焼結体を提供す
るものである。
Table 1 shows the thermal shock resistance test results for Samples Nos. 6 to 9, and all of them failed. This provides a ceramic sintered body with a window glass having good thermal shock resistance.

しかし、セラミツク基材に限らず、ガラスとの間に同様
な膨脹差を有する他の公知物質にももちろん適用可能で
ある。
However, it is of course applicable not only to ceramic substrates but also to other known materials having a similar expansion difference with glass.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はセラミツク焼結体とガラスの熱膨脹率曲線を示
す。 横軸は温度、縦軸は熱膨脹率を示す。1・・・・・・ア
ルミナセラミツク焼結体の膨脹率曲線、2・・・・・・
ガラスの膨脹曲線(4)、3・・・・・・熔着後のガラ
ス(4)の仮想自由収縮曲線、Tg・・・・・・転移点
、Tm・・・・・・固着温度、Mg・・・・・・屈服点
、第2図は本発明によるガラス窓付セラミツク焼結体(
キヤツプ)の断面を示し、第3図はその平面図を示す。 第4図は第2図及び第3図に示すものに更にシールガラ
ス層又はメタライズNiメツキ及びAuメツキ8を設け
た実施例の断面を示す。第5図はキヤツプ外縁に段付部
を有する実施例の断面を示す。6・・・・・・セラミツ
ク焼結体、7・・・・・・ガラス、8・・・・・・シー
ルガラス又はメタライズNiメツキ及びAuメツキ、9
・・・・・・段付部。
FIG. 1 shows the thermal expansion coefficient curves of a ceramic sintered body and a glass. The horizontal axis shows temperature, and the vertical axis shows coefficient of thermal expansion. 1... Expansion rate curve of alumina ceramic sintered body, 2...
Glass expansion curve (4), 3...Virtual free contraction curve of glass (4) after welding, Tg...Transition point, Tm...Fixing temperature, Mg・・・・・・The bending point, FIG. 2 shows the ceramic sintered body with a glass window according to the present invention (
Fig. 3 shows a plan view thereof. FIG. 4 shows a cross section of an embodiment in which a sealing glass layer or metallized Ni plating and Au plating 8 is further added to the structure shown in FIGS. 2 and 3. FIG. 5 shows a cross section of an embodiment having a stepped portion on the outer edge of the cap. 6...Ceramic sintered body, 7...Glass, 8...Seal glass or metallized Ni plating and Au plating, 9
・・・・・・Stepped part.

Claims (1)

【特許請求の範囲】 1 窓を有するセラミック焼結体にその熱膨脹係数より
3〜35×10^−^7℃^−^1低い熱膨脹係数を有
するガラスを熔着して成るガラス窓付セラミック焼結体
。 2 前記ガラスがその転移点以下の温度において前記セ
ラミック焼結体により加圧圧縮状態にあることを特徴と
する特許請求の範囲第1項記載のガラス窓付セラミック
焼結体。 3 前記ガラスとして紫外線透過又は吸収ガラス、赤外
線吸収ガラス等のフィルターガラス、光学ガラスその他
公知のガラスを用いることを特徴とする特許請求の範囲
第1項記載のガラス窓付セラミック焼結体。 4 前記窓を有するセラミック焼結体が板状又は外縁部
に浮上り段付を有する板状であることを特徴とする特許
請求の範囲第1項記載のガラス窓付セラミック焼結体。 5 窓を有するセラミック焼結体にその熱膨脹係数より
3〜35×10^−^7℃^−^1低い熱膨脹係数を有
するガラスを熔着することを特徴とするガラス窓付セラ
ミック焼結体の製造方法。
[Claims] 1. A ceramic sintered body with a glass window, which is formed by welding glass having a coefficient of thermal expansion 3 to 35 x 10^-^7°C^-^1 lower than that of the ceramic sintered body having a window. Concretion. 2. The ceramic sintered body with a glass window according to claim 1, wherein the glass is compressed under pressure by the ceramic sintered body at a temperature below its transition point. 3. The ceramic sintered body with a glass window according to claim 1, wherein the glass is a filter glass such as an ultraviolet transmitting or absorbing glass, an infrared absorbing glass, an optical glass, or other known glass. 4. The ceramic sintered body with a glass window according to claim 1, wherein the ceramic sintered body having the window is plate-shaped or plate-shaped with raised steps on the outer edge. 5. A ceramic sintered body with a glass window, characterized in that a glass having a coefficient of thermal expansion 3 to 35 x 10^-^7°C^-^1 lower than the coefficient of thermal expansion of the ceramic sintered body with a window is welded to the ceramic sintered body with a window. Production method.
JP8557677A 1977-07-19 1977-07-19 Ceramic sintered body with glass window and manufacturing method thereof Expired JPS5913472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8557677A JPS5913472B2 (en) 1977-07-19 1977-07-19 Ceramic sintered body with glass window and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8557677A JPS5913472B2 (en) 1977-07-19 1977-07-19 Ceramic sintered body with glass window and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS5421406A JPS5421406A (en) 1979-02-17
JPS5913472B2 true JPS5913472B2 (en) 1984-03-29

Family

ID=13862629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8557677A Expired JPS5913472B2 (en) 1977-07-19 1977-07-19 Ceramic sintered body with glass window and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPS5913472B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641260Y2 (en) * 1986-02-07 1989-01-12

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641260Y2 (en) * 1986-02-07 1989-01-12

Also Published As

Publication number Publication date
JPS5421406A (en) 1979-02-17

Similar Documents

Publication Publication Date Title
US4326214A (en) Thermal shock resistant package having an ultraviolet light transmitting window for a semiconductor chip
US4400870A (en) Method of hermetically encapsulating a semiconductor device by laser irradiation
WO2019020708A1 (en) Mems mirror assembly and method for producing a mems mirror assembly
US3924246A (en) Ultraviolet-transmitting window
US9988302B2 (en) Frits for use in vacuum insulating glass (VIG) units, and/or associated methods
US20150268267A1 (en) Resonating beam accelerometer
US6406578B1 (en) Seal and method of making same for gas laser
US4612647A (en) High performance laser and method of making same
JPH01119548A (en) Double-layer glass preparatory molded article for compression airtight sealing of glass and metal
US4008945A (en) Ultraviolet-transmitting window for a PROM
JPS63123841A (en) Composite preform
JPS5913472B2 (en) Ceramic sintered body with glass window and manufacturing method thereof
US3347651A (en) Method for forming a lens on a metal ring
JPS59155976A (en) Gas laser and method of producing same
CN86103124A (en) Low cost ring laser angular rate sensor
US5009690A (en) Method of bonding single crystal quartz by field-assisted bonding
JPS60193389A (en) Method of producing fluid sealing capable of stoving metal article on glass ceramic material
KR19980024968A (en) Glass seal and its manufacturing method
JP2845043B2 (en) Hermetically sealed structure of optical fiber introduction section
US3374076A (en) Method for producing hermetic glass to metal seals
JPS60132347A (en) Manufacture of semiconductor device
JPS6081844A (en) Semiconductor device
JPS5823611B2 (en) Method of forming glass package
JPH0293621A (en) Manufacture of acoustooptical element
CA1255381A (en) High performance laser and method of making same