JPS59134613A - Fine-adjustable grooving cutter - Google Patents

Fine-adjustable grooving cutter

Info

Publication number
JPS59134613A
JPS59134613A JP774683A JP774683A JPS59134613A JP S59134613 A JPS59134613 A JP S59134613A JP 774683 A JP774683 A JP 774683A JP 774683 A JP774683 A JP 774683A JP S59134613 A JPS59134613 A JP S59134613A
Authority
JP
Japan
Prior art keywords
cutter
grooves
shaft
groove
cutter shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP774683A
Other languages
Japanese (ja)
Inventor
Akira Sakama
坂間 暁
Takeshi Kanemoto
金元 猛
Chukei Araki
荒木 忠敬
Hideo Kawai
河井 秀夫
Toshio Kunikiyo
国清 敏雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP774683A priority Critical patent/JPS59134613A/en
Publication of JPS59134613A publication Critical patent/JPS59134613A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/007Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor for internal turning

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)

Abstract

PURPOSE:To provide a grooving cutter for cutting a groove in the bore of a hole with possibility of fine adjustment by equipping a cutter shaft installed eccentric to the drive shaft and a cutter to be fitted on this cutter shaft separably with respective specified numbers of grooves, and by connecting the two by a pin. CONSTITUTION:A cutter 3 is fitted separably on a cutter shaft 2, which is installed eccentric to the drive shaft 1. At the fit surface with the cutter shaft 2, the cutter 3 is provided with spline 4 in the axial direction by dividing the circumference into eleven equally, while five grooves 5 are formed in the periphery of said cutter shaft 2 in the axial direction at a constant pitche. A key- shaped roll pin 6 is inserted in these two 4, 5 in their positions in which the spline 4 and groove 5 face each other, and the cutter 3 is fastened by a bolt 7. If the number of grooves 5 is represented by N in this arrangement, a fine adjustement of 1/N as much as that of any conventional grooving cutter can be obtained.

Description

【発明の詳細な説明】 本発明は穴の内周面に溝を加工するだめのグルービング
カツタの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a grooving cutter for cutting grooves on the inner peripheral surface of a hole.

前記のグル−ビングカツタは概ね第1図に示すような構
成をなしており、駆動軸Olの軸心Aとカツタ03の取
付軸02の軸心Bとは図のように偏心量δを有し、被加
工材の穴Cの軸心と駆動軸01の軸心Aとは一致してい
て、穴C内に挿入されたカツタ03が駆動軸01によっ
て軸心A回りに回転を始めると、案内08と進角溝09
によってカツタ03は予め設定された一定角度だけ回っ
て穴Cの内周に喰込みながら回転して内周にリング状の
溝を加工するようになっている。
The above-mentioned grooving cutter generally has a configuration as shown in FIG. , the axis of the hole C in the workpiece coincides with the axis A of the drive shaft 01, and when the cutter 03 inserted into the hole C starts rotating around the axis A by the drive shaft 01, the guide 08 and advance groove 09
Accordingly, the cutter 03 rotates by a predetermined angle and cuts into the inner periphery of the hole C, thereby machining a ring-shaped groove on the inner periphery.

ところが、従来のグルービングカツタは、取付軸02と
カツタ03とが第2図に示すように取付軸02とカツタ
03との両方に一致して刻設されたセレーション04に
よって噛合う取付けとなっていたので、駆動軸01の軸
心Aとカツタ03の刃先との距離γ(回転半径に相邑)
の長さを調整のため、取付軸02回わりにカツタ03の
角度を変えようとすると、その最小変更単位がセレーシ
ョンの1ピッチとなるので、それに応じる量以Eには距
離γを細かく調整できず、従って加工すペき溝の深さの
精度が低くメなるという欠点を有していた。なお、加工
溝は概ね、ベアリングのリテーナ、Oリングその他の止
め溝等が主で、その深さは非常に浅く、深浅の精度が大
きく影響するので高い精度が要求されるものである。
However, in the conventional grooving cutter, the mounting shaft 02 and the cutter 03 are mounted so that they mesh with each other through the serrations 04, which are carved in alignment with both the mounting shaft 02 and the cutter 03, as shown in Fig. 2. Therefore, the distance γ between the axis A of the drive shaft 01 and the cutting edge of the cutter 03 (corresponding to the rotation radius)
If you try to change the angle of the cutter 03 around the mounting shaft 02 to adjust the length, the minimum unit of change will be one pitch of the serrations, so you will not be able to finely adjust the distance γ beyond that amount. Therefore, the accuracy of the depth of the groove to be machined is low, which is disadvantageous. Note that the machined grooves are generally used for retaining retainers of bearings, O-rings, and other retaining grooves, and the depth thereof is very shallow, and the accuracy of depth and shallowness has a large effect, so high accuracy is required.

本発明は上記のような欠点を解消することを目的とする
もので、その構成とするところは、駆動軸に対して偏心
して設けられたカッタ軸と、同カッタ軸に着脱可能に嵌
合されたカッタと、前記カッタ軸とカッタとの嵌合面の
何れか一方に、軸に沿って刻設された、円周を等分割す
る複数条の溝と、他方に軸に沿って、その全数もしくは
全数から1を減じた数の溝が等ピッチを保って刻設され
た複数条の溝と、前記カッタ軸の溝と、カッタの溝とが
対向する位置で双方の溝に共通して挿入されたキー状の
ピンとよりなることを特徴とする微調整グルービングカ
ッタであって本発明は上記のように構成するので、カッ
タ軸の溝とカッタの溝とが1個所で対向している以外は
、他のすべての個所で等差的にズレを生じさせることが
でき、そのズレは、たとえばカッタの溝を円周上等分割
に刻設しておけば、カッタ軸に刻設した溝の数、たとえ
ばN個で、上記カッタの溝の1ピツチを均等に分割した
量とすることができるので従来のグルービングカッタに
比し、それの1/Nの微細な調整を行えるという利点を
有する。即ち、従来のカッタ取付部のセレーションの数
をn個とした場合、その最小調整角度は360γnであ
ったのに対し、本発明では360°/nXNの微小角度
とすることができる。
The present invention aims to eliminate the above-mentioned drawbacks, and has a structure including a cutter shaft provided eccentrically with respect to the drive shaft, and a cutter shaft that is removably fitted to the cutter shaft. a cutter, a plurality of grooves carved along the shaft on one side of the fitting surface of the cutter shaft and the cutter, dividing the circumference equally; Or, insert a plurality of grooves in which the number of grooves equal to the total number minus 1 are carved at an equal pitch, and the grooves of the cutter shaft and the groove of the cutter are inserted in common at a position where they face each other. The present invention is a fine-adjustment grooving cutter characterized by a key-shaped pin, which is configured as described above, except that the groove of the cutter shaft and the groove of the cutter face each other at one point. , it is possible to create a misalignment at all other locations, and for example, if the cutter grooves are carved evenly on the circumference, the number of grooves carved on the cutter shaft can be reduced. For example, one pitch of the groove of the cutter can be equally divided into N pieces, which has the advantage that fine adjustment can be made by 1/N compared to the conventional grooving cutter. That is, when the number of serrations in the conventional cutter attachment part is n, the minimum adjustment angle is 360[gamma]n, whereas in the present invention, it can be adjusted to a minute angle of 360[deg.]/nXN.

次に本発明の一実施例について第3図乃至第6図により
説明する。これらの図において1は後述のカッタ3を回
転駆動させるための駆動軸、2は駆動軸1に対し、偏心
して設けられているカッタ軸、3はカッタ軸2に着脱可
能に嵌合されたカッタ、4はカッタ軸2とカッタ3との
嵌合面のカッタ3側に軸に沿って刻設された円周を11
等分する11条のスプライン(溝)、5はカッタ軸2と
カッタ3との嵌合面のカッタ軸2側に、軸に沿って全数
等ピッチを保って刻設された5条の溝、6はスプライン
4と溝5とが対向する位置で、スプライン4.!:溝5
とに共通して挿入されたキー状のロールピン、7はカッ
タ3が脱落しないようカッタ軸2の端部に設けられたメ
スネジにネジ込まれてその座面でカッタ3をカッタ軸2
に締付けた止メボルトである。
Next, one embodiment of the present invention will be described with reference to FIGS. 3 to 6. In these figures, 1 is a drive shaft for rotationally driving a cutter 3, which will be described later, 2 is a cutter shaft provided eccentrically with respect to the drive shaft 1, and 3 is a cutter detachably fitted to the cutter shaft 2. , 4 is the circumference carved along the shaft on the cutter 3 side of the fitting surface of the cutter shaft 2 and cutter 3.
11 equally divided splines (grooves), 5 are 5 grooves carved on the cutter shaft 2 side of the fitting surface between the cutter shaft 2 and the cutter 3, keeping the same pitch along the shaft; 6 is a position where the spline 4 and the groove 5 face each other, and the spline 4. ! :Groove 5
A key-shaped roll pin 7 inserted in common with the cutter shaft 2 is screwed into a female screw provided at the end of the cutter shaft 2 to prevent the cutter 3 from falling off.
This is a locking bolt that has been tightened.

次に上記実施例の作用効果について説明する。Next, the effects of the above embodiment will be explained.

第7図は第4図のスプライン4と溝5との関係をロール
ピン6の挿入された位置を基準(0)にして時計回りに
展長して示(〜だ説明図である。図において嵌合面とし
て示した線の上側の目盛はスプライン4の各中心線を、
下側の目盛は溝5の各中心線をそれぞれ宍わしている。
FIG. 7 shows the relationship between the spline 4 and the groove 5 in FIG. The scale above the line shown as the mating surface indicates each center line of the spline 4,
The lower scale marks each center line of the groove 5.

スプライン数nを溝数Nで除した値1115は2.2で
あるから、スプライン4の第2条目、第4条目と2条づ
つ増してゆく毎に2.2の剰余部分である0、2の倍数
が図のδ、2δ・・・で示すようにスプライン4と溝5
とのズレとなって現われる。
Since the value 1115 obtained by dividing the number of splines n by the number of grooves N is 2.2, each time the second and fourth threads of spline 4 are increased, the remainder of 2.2 is 0, 2. The spline 4 and the groove 5 are multiples of δ, 2δ, etc. in the figure.
It appears as a gap between the two.

従ってもし、カッタ軸2に対し、カッタ3を第4図にお
いてたとえば反時計回わりに今少し微調整したい場合は
、ロールピン6を抜き、カッタ3を回わせはスプライン
のピッチ1に対し、02回転したところでスプライン4
の第2条と溝5の第1条が、04回転したところでスプ
ライン4の第4条と溝5の第2条が合致する。以下、順
次、0.6 、0.8回転毎に合致するので所望の位置
にロールピン6を挿入すればスプライン4のピッチの更
に115の精度でカッタ4の取付角度を調整することが
できる。因みに上記スプラインの数11条で、従来通り
のカッタの取付けを行なえば、その最小調整角度は36
0’/11中327°に留まるのに対し、本実施例の場
合は360°/IIX S中65°と微細な調整ができ
る。カッタを時計回わシに回転しても同様の結果を得る
Therefore, if you want to slightly adjust the cutter 3 in relation to the cutter shaft 2, for example counterclockwise in Fig. 4, remove the roll pin 6 and rotate the cutter 3 by 02 turns relative to the spline pitch 1. By the way, spline 4
When the second article of the spline 4 and the first article of the groove 5 have rotated 04 times, the fourth article of the spline 4 and the second article of the groove 5 match. Thereafter, the rotations are sequentially matched every 0.6 and 0.8 rotations, so by inserting the roll pin 6 at a desired position, the mounting angle of the cutter 4 can be adjusted with an accuracy of 115 times the pitch of the spline 4. By the way, if the cutter is installed in the conventional manner with the number 11 splines mentioned above, the minimum adjustment angle is 36.
While it stays at 327° in 0'/11, in this example it can be finely adjusted to 360°/65° in IIX S. Similar results can be obtained by rotating the cutter clockwise.

上記実施例はスプライン4の数口を11条、溝5の数N
を5条とした例をもって示したが、それらn、Hの選択
は以下に説明する溝(スプライン、セレーション、溝そ
の他同目的のものを含む)の数n、Nの望ましい条件の
下に任意である。
In the above embodiment, the number of splines 4 is 11, and the number of grooves 5 is N.
The selection of n and H can be made arbitrarily under the desirable conditions of the number n and N of grooves (including splines, serrations, grooves, and other grooves for the same purpose) as explained below. be.

即ち、カッタ及びカッタ軸の望ましい溝の条件としては
、カッタの最小調整角度が1/n−Nに依存するところ
から、強度等、取付条件の許す限り、溝の相互の数は大
きいことが望ましいが、後述する通り、それら相互が公
約数を持つと一方の溝の全数をその公約数で除した数の
溝のみが微調整に寄与するのと同等の結果を生じ、期待
される1/n−Nの精度は(公約数)/n−Nに低下す
るので、たとえば、ロールピンの数を増して強度を維持
することが、精度の維持に優先するような場合以外は公
約数を含まないことが肝要である。でないと溝の数を大
きくする意味が薄れる。以下にその理由及び双方の溝の
数n、N(以下単にn、Nという)によって精度の定ま
る機構について説明する。
In other words, as a desirable condition for the grooves on the cutter and the cutter shaft, since the minimum adjustment angle of the cutter depends on 1/n-N, it is desirable that the number of mutual grooves be large as long as the installation conditions such as strength allow. However, as will be explained later, if they each have a common divisor, a result equivalent to only the number of grooves that contribute to fine adjustment by dividing the total number of grooves on one side by that common divisor will be produced, and the expected 1/n The accuracy of -N decreases to (common divisor)/n-N, so do not include a common divisor unless, for example, maintaining strength by increasing the number of roll pins has priority over maintaining accuracy. is essential. Otherwise, there is no point in increasing the number of grooves. The reason for this and the mechanism in which the accuracy is determined by the numbers n and N of both grooves (hereinafter simply referred to as n and N) will be explained below.

先ず、仮りに、カッタ軸側をn、カッタ側をNとして考
えると、第7図及び上の実施例の説明からも明らかなよ
うにカッタが1/n−Nの微小角で調整できるためには
Nの溝は図の0以外の位置で同時にnのスプラインに一
致してはならない。即ち、Nの溝は0以外ではすべてn
のスプラインの中間にくることが要件となる。このこと
はnをNで除した商が、必ず剰余(小数)部分を持つと
同時に、その商を1倍、2倍・・・・・・(N−1)倍
した値がすべて剰余部分を持たなければならないことを
意味する。
First, assuming that the cutter shaft side is n and the cutter side is N, as is clear from Fig. 7 and the explanation of the embodiment above, the cutter can be adjusted at a minute angle of 1/n-N The N grooves must not coincide with the n splines at a position other than 0 in the diagram at the same time. In other words, all N grooves other than 0 are n.
The requirement is that it be in the middle of the splines. This means that the quotient obtained by dividing n by N always has a remainder (decimal) part, and at the same time, the values obtained by multiplying that quotient by 1, 2, etc. (N-1) all have a remainder part. means you have to have it.

このような条件を満たすn、Nを一般値でみると、n/
Nは当然に剰余を持つ組合わせを選ぶとして、その値を
1倍Ci:1,2.3・・・(N−1)) した値が更
に剰余を持つためにはユ1において、nとNが公約数を
持ってはならないということである。何故ならもし、公
約数を持つとnもNもその公約数によって整除(整数と
して割り切れること)され、分母はNより小さくなるの
で、それに相当する1が分子に現われたときn・i/N
は整除され、1が(N71)に達する前にカッタとカッ
タ軸とは0以外でも一致する溝を有することになり條件
を満たさない。従って、nとNとは公約数を含まないこ
とが条件となる。
Looking at general values of n and N that satisfy these conditions, n/
Assuming that N naturally chooses a combination that has a remainder, in order for the value obtained by multiplying that value by 1 Ci: 1, 2.3...(N-1)) to have a remainder, in U1, n and This means that N must not have a common divisor. This is because if they have a common divisor, both n and N will be divisible by that common divisor (divisible as an integer), and the denominator will be smaller than N, so when the corresponding 1 appears in the numerator, n・i/N
is evenly divided, and before 1 reaches (N71), the cutter and the cutter axis have grooves that match even if it is not 0, so the condition is not satisfied. Therefore, the condition is that n and N do not include a common divisor.

もし、n、:Nとが公約数を持つとたとえば公約数によ
って成る整数群に分割されるから、11も等ピッチ(等
分割)、Nも等ピッチという条件下では、これらの群は
相互に全く同等となり、たとえば成る一群の溝の一つが
n側の溝に一致しているとき、他の群の溝の一つも同様
に一致していることは勿論であるが、それら一致した溝
の隣れる溝がn側の溝に対してズしている量も各群で同
じであり、更にその隣れる溝についても同様のことが言
え、結局、一群以外の群はすべて無用となり、N/(公
約数)の溝のみが役立つと七になるので、期待されるカ
ッタの調整角度1/n−Nは(公約数)/、−Nに低下
する。
If n, :N has a common divisor, it is divided into a group of integers formed by the common divisor, so under the condition that 11 is equally pitched (equally divided) and N is also equally pitched, these groups are mutually For example, when one of the grooves in a group of grooves matches the n-side groove, it goes without saying that one of the grooves in the other groups also matches, but the grooves next to those matching grooves also match. The amount by which the groove on the n side is offset from the groove on the n side is the same for each group, and the same can be said for the adjacent grooves.In the end, all groups other than the first group become useless, and N/( If only the grooves of (common divisor) are useful, the expected cutter adjustment angle 1/n-N decreases to (common divisor)/, -N.

これを避けるためには公約数を持たないn、Nを選択す
ればよい。
In order to avoid this, it is sufficient to select n and N that do not have a common divisor.

次にこのようにして選んだn、!:Nの溝が全周で1個
所で一致している以外、他のすべての個所でズレを生じ
ているとしても、それらのズレがn側の1ピツチをN等
分した量づつ等差的にズしているか、特にn/Nの商の
剰余が大きくて、荒く変化する場合でも、細かく変化す
る場合と同様、1/n−Nの調整量を保てるか、等の懸
念についてそのような不具合の生じないことを説明する
Next, I selected n,! : Even if there are deviations at all other points except for the N grooves being aligned at one point around the entire circumference, the deviations are arithmetically equal to the amount that one pitch on the n side is divided into N equal parts. In particular, if the remainder of the quotient of n/N is large and changes roughly, it is possible to maintain the amount of adjustment of 1/n-N as in the case of fine changes. Explain that no problems will occur.

n7mの商の剰余部分δは −N δ −□ であるから、たとえば第7図における基準(01がら1
番目の剰余は1δ 1、δ−n −N 、 、、、、、、、0.、、、、、
、、、、(1゜[:i:L2,3・・・(N−1) 〕
で表わされる。式の右辺はi以外は定数であるから、l
・δは1に依存することになり、等差級数となる。1・
δが1を越えたときはその越えた量が新たな剰余となる
Since the remainder δ of the quotient of n7m is −N δ −□, for example, the standard (01 to 1
The th remainder is 1δ 1, δ−n −N , , , , , 0. ,,,,,,
,,,, (1゜[:i:L2,3...(N-1)]
It is expressed as Since the right side of the equation is constant except for i, l
・δ depends on 1 and becomes an arithmetic series. 1・
When δ exceeds 1, the excess amount becomes the new remainder.

1を越える前後でも等差性は破れないから、その部位の
N側の溝に対し、新たな剰余は、1を越える前の1・δ
とその溝との差分、たとえばSだけδより小さい剰余と
なり、以降に続く剰余は1を越える前の剰余より、何れ
もSだけ小さい。次に再び1を越える剰余は更に小さく
なり以下同様にして剰余がOになったところで溝は1巡
して元に戻る。このようにして、δがたとえ大きくても
、その太きは倒れかのN側の溝の位置で循環的に小刻み
にされ、全周でみれば、結局、最小調整量は1/n−N
に落着く。第8図はこの状況を説明した図で、” + 
N2 、 N3・・・に対応した剰余はδ、2δ、3δ
・・・となるが、3δは実はN3のところでP(=1)
を越えてN4に対し、新たな剰余δ1を生じる。δ1は
δに比し、Sだけ小さいが、このことはnlに対し、P
の間隔を有するN、 、 N2がSだけ近づいたと同等
の状況を・n4に対しN3゜N4が再現していることに
なるから、δ++2δ1はδ。
Since the arithmetic property is not broken even before and after exceeding 1, the new remainder for the groove on the N side of that part is 1・δ before exceeding 1.
The difference between δ and the groove, for example, becomes a remainder smaller than δ by S, and subsequent remainders are all smaller by S than the remainder before exceeding 1. Next, the remainder that exceeds 1 again becomes smaller, and in the same manner, when the remainder reaches O, the groove makes one round and returns to its original state. In this way, even if δ is large, its thickness is cyclically reduced in small increments at the position of the groove on the N side of the tilted edge, and when viewed over the entire circumference, the minimum adjustment amount is 1/n-N.
I settled on. Figure 8 is a diagram explaining this situation.
The remainders corresponding to N2, N3... are δ, 2δ, 3δ
...but 3δ is actually P (=1) at N3
, a new remainder δ1 is generated for N4. δ1 is smaller than δ by S, but this means that for nl, P
Since N3°N4 is reproducing the situation where N2, which has an interval of , N2 is closer by S, to n4, δ++2δ1 is δ.

2δに比し各Sだけ小さい。以下、同様にして仮想され
るδ2,2δ2は更に小さく、δXがOKなる位置、即
ち1巡したNoの位置まで続く。従ってδ。
Each S is smaller than 2δ. Hereinafter, similarly, δ2 and 2δ2 are assumed to be even smaller, and continue until the position where δX is OK, that is, the No position after one round. Therefore δ.

2δ、δ1,2δ1.δ2・・・に同値は存在せず、か
つ、確実に等差性を有してN個存在するのであるから順
序は別としてN個はp(=1)/N、2P/N、3P/
N・・・NP/N(−0P/N)の集合となり、結局は
たとえば第7図の場合のように剰余がδ、2δ、・・・
1と最後迄1を越えない場合走間等のズレが得られ、同
様な調整効果を得られる。
2δ, δ1, 2δ1. There is no equivalent value for δ2..., and there are definitely N values with homogeneity, so regardless of the order, N values are p(=1)/N, 2P/N, 3P/
N...NP/N (-0P/N), and in the end the remainders are δ, 2δ, . . . as in the case of Figure 7.
1 and if it does not exceed 1 until the end, a difference in running distance, etc. will be obtained, and the same adjustment effect will be obtained.

次に実施例によって説明する。Next, an example will be explained.

式(1)より 1δ−二上1−ゼ1−41 55 ・°・11δ−415X1= 415  、’・剰余4
1512δ−415X2= 815    II  3
1513δ−415X3=1215  .11 215
14δ−415X4=1615    a  I15即
ち、ズレはN側の第1番目の溝におけるものが最大で以
降は順次的に/ノ・さくなってゆく。
From formula (1), 1δ-2 1-ze1-41 55 ・°・11δ-415X1= 415 ,'・Remainder 4
1512δ−415X2= 815 II 3
1513δ-415X3=1215. 11 215
14δ - 415

その差は115づつとなっている。The difference is 115 points.

117N−11/7の例 上に同じく 、δ−几二7..=4、 7 、’、jlδ−4/7X1= 477  、’、剰余4
/712δ−477×2−8/7〃1/7 13δ−4/7X3=12/7    //  5/7
鵞4δ−477× 4−16/7       〃  
2/715δ−4/7X5=20/7    //  
6/716δ−4/7X6=24/7   1/  3
/7即ち、ズレはN側の第1番目の溝におけるものが4
77で以降は間歇的に循環して大きくなってゆく。その
差は1/7づつとなっている。
117N-11/7 Same as above, δ-Rinji 7. .. =4, 7,', jlδ-4/7X1=477,', remainder 4
/712δ-477×2-8/7〃1/7 13δ-4/7X3=12/7 // 5/7
Goose 4δ-477× 4-16/7 〃
2/715δ-4/7X5=20/7 //
6/716δ-4/7X6=24/7 1/3
/7 In other words, the deviation in the first groove on the N side is 4.
From 77 onwards, it circulates intermittently and grows larger. The difference is 1/7.

なお、以上から明らかなように、たとえば第7図のよう
にズレ(剰余)を順次的に整然と生じさせるには、N又
はその倍数とnとの差を1にしておけばよい。なお、n
OO側の溝とのズレが等差的に増してゆくということは
反対側の溝とのズレが等差的に減ってゆくことであるか
ら、0位置に対し、カッタを時計、反時計側れの方向に
回わして、n、Nの溝の合致点を探るのもその有用度は
同等である。このことは0位置を中心にしてすべてのズ
レは左右対称に生ずることからも言える。n、Nの関係
は相対的なものであるから、倒れの側がカッタ又はカッ
タ軸であってもよい。
As is clear from the above, in order to generate the deviations (remainder) sequentially and orderly as shown in FIG. 7, for example, the difference between N or its multiple and n should be set to 1. In addition, n
If the deviation with the groove on the OO side increases arithmetically, it means that the deviation with the groove on the opposite side decreases arithmetically. Therefore, with respect to the 0 position, move the cutter clockwise or counterclockwise. It is equally useful to turn the screw in either direction and find a matching point between the grooves n and N. This can also be said from the fact that all deviations occur symmetrically with respect to the 0 position. Since the relationship between n and N is relative, the side of the tilt may be the cutter or the cutter shaft.

以上はn、N双方が等ピッチの場合の例について説明し
だが、次にn、Nの他方の側の全数から1を減じた数の
溝が等ピンチを保って刻設される実施例について説明す
る。
The above describes an example in which both n and N have equal pitches, but next we will discuss an example in which grooves with a number equal to the total number on the other side of n and N minus 1 are carved with equal pitches. explain.

第9図は第7図に倣ってn側とN側を展長して示しだ図
である。この図においてnは全周等ピッチPの溝9条、
NはNoの溝からN6迄の7条の溝の6個の間隔はすべ
てPなる等ピッチであるがN6とNoの間隔Pxは格別
の精度の対象にせずに、いわば加工の都合に応じて他動
的に決まる値の1\としである。NのピッチPは単にn
のピッチPにl/N即ち1/7をδとして加えた量のみ
で決められている。このようにしても剰余はO2δ、2
δ、3δ・・・6δと等差的に7個揃っているので第7
図の例と同じ調整効果が得られ、カッタの最小調整角度
はl/n−Nとなる。実施例では理解を容易にするため
、n側のPを溝のピッチとしたがたとえば2条の溝毎、
或は3条の溝毎を1単位としてδを加えても或は減じて
も効果は全く同様である。先の実施例ではn、Nの一方
の側が他方の側と公約数を持たないこと、そのためには
他方の側の溝数の選択範囲をより広くするという意味で
一方の溝数は素数が望ましいとと擲、留意事項が伴うが
、本実施例ではそれらの留意を必要させず、一方の溝の
ピッチにのみ着目して、それに1/N又は17nの剰余
を加えたもの又は減じたものを等ピッチ部分のピッチと
すればよいという利点がある。
FIG. 9 is an enlarged view of the n-side and the N-side following FIG. 7. In this figure, n is 9 grooves with equal pitch P all around the circumference,
For N, the intervals between the six grooves of the seven grooves from the No groove to N6 are all P, which is the same pitch, but the interval Px between N6 and No is not subject to particular accuracy, and is set according to the convenience of processing. The value is 1\ which is determined passively. The pitch P of N is simply n
It is determined only by the sum of the pitch P and l/N, that is, 1/7, as δ. Even in this way, the remainder is O2δ, 2
δ, 3δ...6δ, so there are 7 pieces arithmetic, so the 7th
The same adjustment effect as in the example shown is obtained, and the minimum adjustment angle of the cutter is l/n-N. In the example, in order to facilitate understanding, P on the n side is the pitch of the grooves, but for example, every two grooves,
Alternatively, even if δ is added or subtracted with each three grooves as one unit, the effect is exactly the same. In the previous example, one side of n and N does not have a common divisor with the other side, and for this purpose, the number of grooves on one side is preferably a prime number in the sense that the selection range of the number of grooves on the other side is wider. Although there are some things to keep in mind, this example does not require these considerations, and focuses only on the pitch of one groove, and adds or subtracts a surplus of 1/N or 17n to it. There is an advantage that the pitch can be set at equal pitch portions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般のグルービングカックの軸に沿った縦断面
、第2図は第1図の■−■矢線に沿って見た従来のカッ
タの取付図、第3図は本発明の一実施例の側面図、第4
図は第3図の■−バ矢線に沿って見たカッタの取付部を
示す図、第5図は第3図のカッタ軸の先端部を示す図、
第6図はその側面図、第7図、第8図は本発明の一実施
例の説明図、第9図は本発明の他の実施例の説明図であ
る。 1・・・駆動軸、2・・・カッタ軸、3・・・カッタ4
・・7 フッイン、5・・・溝、6・ロールビン謔 t
rA ■ 謔2図 羊3図 菓4周 萬6匿    累5に
Fig. 1 is a vertical cross-section along the axis of a general grooving cutter, Fig. 2 is an installation diagram of a conventional cutter seen along the -■ arrow line in Fig. 1, and Fig. 3 is an embodiment of the present invention. Example side view, 4th
The figure shows the attachment part of the cutter seen along the ■--bar arrow line in Fig. 3, and Fig. 5 shows the tip of the cutter shaft in Fig. 3.
FIG. 6 is a side view thereof, FIGS. 7 and 8 are explanatory diagrams of one embodiment of the present invention, and FIG. 9 is an explanatory diagram of another embodiment of the present invention. 1... Drive shaft, 2... Cutter axis, 3... Cutter 4
...7 Fuin, 5...groove, 6. Roll bottle t
rA ■ 謔 2 图 3 ツ カ 4 Shuman 6 站 5

Claims (1)

【特許請求の範囲】[Claims] 駆動軸に対して偏心して設けられたカソタ軸と、同カツ
タ軸に着脱可能に嵌合されたカッタと、前記カツタ軸と
カツタとの嵌合面の何れか一方に、軸に沿って刻設され
た円周を等分割する複数条の溝と、他方に、軸に沿って
、その全数もしくは全数から1を減じた数の溝が等ピッ
チを保って刻設された複数条の溝と、前記カッタ軸の溝
と、カツタの溝とが対向する位置で双.方の溝に共通し
て挿入されたキー状のピンとよ9なることを特徴とする
微調整グルービングカツタ。
A cutter shaft provided eccentrically with respect to the drive shaft, a cutter removably fitted to the cutter shaft, and an engraving along the shaft on one of the fitting surfaces of the cutter shaft and the cutter. A plurality of grooves equally dividing the circumference of the circumference, and on the other hand, a plurality of grooves in which the total number or the number of grooves subtracted by one from the total number are carved at an equal pitch along the axis; At the position where the groove of the cutter shaft and the groove of the cutter face each other, A fine adjustment grooving cutter characterized by a key-shaped pin commonly inserted into both grooves.
JP774683A 1983-01-20 1983-01-20 Fine-adjustable grooving cutter Pending JPS59134613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP774683A JPS59134613A (en) 1983-01-20 1983-01-20 Fine-adjustable grooving cutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP774683A JPS59134613A (en) 1983-01-20 1983-01-20 Fine-adjustable grooving cutter

Publications (1)

Publication Number Publication Date
JPS59134613A true JPS59134613A (en) 1984-08-02

Family

ID=11674258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP774683A Pending JPS59134613A (en) 1983-01-20 1983-01-20 Fine-adjustable grooving cutter

Country Status (1)

Country Link
JP (1) JPS59134613A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100828794B1 (en) * 2006-12-11 2008-05-09 현대자동차주식회사 Groove forming tool of a connecting rod
DE102007060500A1 (en) * 2007-12-06 2009-06-10 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG Tool for manufacturing or machining radial groove in surface area of bore in workpiece, has coupling section having central axis and pivot axis, and shaft is pivotable and coincided with central axis of coupling section
CN101890527A (en) * 2010-07-02 2010-11-24 湖南江滨机器(集团)有限责任公司 Processing method and processing device of ring slot in non-centrosymmetric workpiece
WO2013153548A1 (en) * 2012-04-10 2013-10-17 Iscar Ltd. Left-handed and right-handed cutting tool

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100828794B1 (en) * 2006-12-11 2008-05-09 현대자동차주식회사 Groove forming tool of a connecting rod
DE102007060500A1 (en) * 2007-12-06 2009-06-10 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG Tool for manufacturing or machining radial groove in surface area of bore in workpiece, has coupling section having central axis and pivot axis, and shaft is pivotable and coincided with central axis of coupling section
DE102007060500B4 (en) * 2007-12-06 2010-01-07 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG Tool, tool system and method for producing or machining a groove
CN101890527A (en) * 2010-07-02 2010-11-24 湖南江滨机器(集团)有限责任公司 Processing method and processing device of ring slot in non-centrosymmetric workpiece
WO2013153548A1 (en) * 2012-04-10 2013-10-17 Iscar Ltd. Left-handed and right-handed cutting tool
US8708613B2 (en) 2012-04-10 2014-04-29 Iscar, Ltd. Left-handed and right-handed cutting tool
JP2015512798A (en) * 2012-04-10 2015-04-30 イスカル リミテッド Left-handed and right-handed cutting tools

Similar Documents

Publication Publication Date Title
US6004078A (en) Cutting tool for toothed articles
US6379090B1 (en) Force balanced irregular pitch reamer and associated reaming method
CN208565223U (en) A kind of thread connector for preventing from loosening
US6301405B1 (en) Multi-channel fiber-optic rotary joint
CN108443300A (en) A kind of thread connector for preventing from loosening
BRPI0718017A2 (en) DIFFERENTIAL DRAW COMPLETE WITH HYBRID GEAR.
JPS59134613A (en) Fine-adjustable grooving cutter
US11980958B2 (en) Power skiving tool
KR20110050632A (en) Cutting tool having a bidirectional adjustment mechanism
US20070248427A1 (en) Method for milling splines
US3203072A (en) Milling cutters
KR950013502B1 (en) Boring bar
US4063837A (en) Preselected releasable threaded coupling member
US10654119B2 (en) Hobbing tool with replaceable cutting inserts
US1393818A (en) Rectified-tooth hob
JPH01228718A (en) Variable addendum hob
JPH0839385A (en) Spiral movement fine regulation device for table, etc., in various kinds of working machine
JP3395266B2 (en) Face hob cutter for gear cutting
US2491720A (en) Involute generating spur gear milling cutter
US3268981A (en) Inserted blade face mill cutter
JP2002054720A (en) Driving device for helical gear toothed belt
DE4420225C1 (en) Method for tooth flank profile grinding or milling of outer inclined toothed workpieces
FI63820C (en) LAOSNINGSSYSTEM
SU1530353A1 (en) Hob cutter
JP2825007B2 (en) Differential gear assembly and assembly method thereof