JPS59133983A - Laser working device - Google Patents

Laser working device

Info

Publication number
JPS59133983A
JPS59133983A JP58005917A JP591783A JPS59133983A JP S59133983 A JPS59133983 A JP S59133983A JP 58005917 A JP58005917 A JP 58005917A JP 591783 A JP591783 A JP 591783A JP S59133983 A JPS59133983 A JP S59133983A
Authority
JP
Japan
Prior art keywords
gas
laser
plasma
laser oscillator
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58005917A
Other languages
Japanese (ja)
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP58005917A priority Critical patent/JPS59133983A/en
Publication of JPS59133983A publication Critical patent/JPS59133983A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/1476Features inside the nozzle for feeding the fluid stream through the nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor

Abstract

PURPOSE:To avoid waste of gas and to reduce operation expenses of a working device by utilizing it effectively in a working device which uses jointly the laser oscillator and the plasma generating device by using a discharged gas of a laser oscillator as a part of a plasma gas of a plasma generating device. CONSTITUTION:A laser gas is fed by a feed pipe 6 from a feed device 5 into a laser tube 2 of a laser oscillator 1, and a laser light is generated by discharge by an electrode 3, its direction is changed to 90 deg. by a reflection mirror 10, it is condensed by a lens 11, passes through in an electrode 14 of a plasma generating device 13, it is focused to a working part of an object 12 to be worked, and working such as cutting, etc. is executed. In this case, a laser gas is collected by a pipe 6', and a part of said gas passes through a feed pipe 7 and is fed to a plasma torch nozzle 15 together with a plasma gas fed from a gas feed device 8. A part of the laser gas is used as the plasma gas, therefore, the quantity of use of gas is reduced as a whole.

Description

【発明の詳細な説明】 本発明はレーザ8振器とプラズマ発生装置を併用して加
工するレーザ加工装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a laser processing apparatus that uses a laser oscillator and a plasma generator in combination.

気体レーザには、He −N eレーカ、Arレーザ、
CO2レーザなどがあり、そのレーザ発振器は、C02
レーザを例にとると、CO2、N 0%He、N2等の
混合気体をレーザガスとして用いて、これをレーザ管内
に封じて気体放電を行い、レーザビームを発振させるも
のである。
Gas lasers include He-N e laser, Ar laser,
There are CO2 lasers, etc., and the laser oscillator is CO2
Taking a laser as an example, a gas mixture of CO2, N0% He, N2, etc. is used as a laser gas, and this is sealed in a laser tube to generate a gas discharge and oscillate a laser beam.

このとき、レーザガスの温度が一定温度(200℃)を
超えると、効率よく発振しなくなるため、レーザ管内に
レーザガスを高速で流し、これをレーザガス供給装置に
よって循環させて冷却すると共に、その一部を排出し、
新たなガスを常時供給している。
At this time, if the temperature of the laser gas exceeds a certain temperature (200°C), it will not oscillate efficiently, so the laser gas is flowed into the laser tube at high speed and is circulated by a laser gas supply device to cool it down. drain,
New gas is constantly supplied.

また、プラズマ発生装置は、電源装置によって電極間に
電圧を印加し、アーク放電を発生させ、この周囲にプラ
ズマガスを供給して、プラズマを発生させるものであり
、一般に、プラズマ加工では運転コストに占めるガス化
の割合は80%以上である。
In addition, plasma generators use a power supply to apply voltage between electrodes to generate arc discharge, supplying plasma gas to the surrounding area to generate plasma, and in general, plasma processing requires low operating costs. Gasification accounts for more than 80%.

ここで、レーザ発振器とプラズマ発生装置を併用して加
工する場合、従来公知の装置に於ては、レーザガスとプ
ラズマガスは別途の系統から供給され、レーザ発振器の
排出ガスは外部に捨てられており、またプラズマガスの
消費量は多い上、加工用ガス、遮蔽ガス等の供給が必要
なため、運転経費にはガス化が大部分を占め、不経済で
あった。
When processing using a laser oscillator and a plasma generator together, in conventionally known equipment, the laser gas and plasma gas are supplied from separate systems, and the exhaust gas from the laser oscillator is disposed of outside. In addition, the consumption of plasma gas is large, and it is necessary to supply processing gas, shielding gas, etc., so gasification accounts for the majority of operating costs, making it uneconomical.

本発明は叙上の観点に立ってなされたものであり、その
目的とするところは、加工効率が高く、運転経費が安価
なレーザ加工装置を提供することにある。
The present invention has been made based on the above-mentioned viewpoints, and its purpose is to provide a laser processing apparatus with high processing efficiency and low operating costs.

而して、その要旨とするところは、レーザ発振器の排出
ガスをプラズマ発生装置のプラズマガスの一部として用
いることにより、ガスの無駄を無くすと共に、レーザガ
スの冷却装置を省略若しくは簡略化することにある。
The gist of this is that by using the exhaust gas of the laser oscillator as part of the plasma gas of the plasma generator, waste of gas can be eliminated and the cooling device for the laser gas can be omitted or simplified. be.

以下、図面に基づいて本発明の構成の詳細を説明するー
The details of the configuration of the present invention will be explained below based on the drawings.

第1図は本発明にかかるレーザ加工装置の一実施例を示
す説明図、第2図は本発明の他の一実施例を示す説明図
である。
FIG. 1 is an explanatory diagram showing one embodiment of a laser processing apparatus according to the present invention, and FIG. 2 is an explanatory diagram showing another embodiment of the present invention.

第1図中、1はレーザ発振器、2はレーザ管、3は放電
電極、4.41はレーザ発振器1の反射鏡、5はレーザ
ガス供給装置、6.6′はレーザガス供給管、7はレー
ザ発振器1からの排出ガスを引き込み、プラズマ発生装
置に送るガス供給管、8はガス供給装置、9はケーシン
グ、10はレーザ光の反射板、11は集束レンズ、12
は被加工島、13はプラズマ発生装置、14はプラズマ
発生用の一方の電極、15はプラズマトーチノズル、1
5aはノズル15の先端に設けた孔、16はプラズマ発
生用の電縣装置、17は抵抗である。
In Figure 1, 1 is a laser oscillator, 2 is a laser tube, 3 is a discharge electrode, 4.41 is a reflecting mirror of laser oscillator 1, 5 is a laser gas supply device, 6.6' is a laser gas supply tube, and 7 is a laser oscillator. 1 is a gas supply pipe that draws the exhaust gas from 1 and sends it to the plasma generator; 8 is a gas supply device; 9 is a casing; 10 is a laser beam reflection plate; 11 is a focusing lens; 12
1 is an island to be processed, 13 is a plasma generator, 14 is one electrode for plasma generation, 15 is a plasma torch nozzle, 1
5a is a hole provided at the tip of the nozzle 15, 16 is an electric wire device for generating plasma, and 17 is a resistor.

本実施例では、レーザ発振器1のレーザ管2は一本の直
線状のものを用いであるが、管長を増して出力を増大さ
せるために適宜の反射鏡を用いてレーザ光の光路を変更
させ、レーザ管を複数個設けてもよい。又、レーザ管2
外の冷却水ジャケット等詳細は省略しである。
In this embodiment, a single straight laser tube 2 of the laser oscillator 1 is used, but in order to increase the tube length and increase the output, an appropriate reflecting mirror is used to change the optical path of the laser beam. , a plurality of laser tubes may be provided. Also, laser tube 2
Details such as the external cooling water jacket are omitted.

放電電極3はレーザ管2内のレーザガスに放電を行いレ
ーザガスの粒子を励起して、レーザ光を発生させる。
The discharge electrode 3 discharges the laser gas within the laser tube 2 to excite the particles of the laser gas and generate laser light.

反射鏡4はレーザ管2に発生するレーザ光を全反射し、
反射鏡41は半透明でレーザ光の一部を透過する。
The reflecting mirror 4 totally reflects the laser light generated in the laser tube 2,
The reflecting mirror 41 is semi-transparent and transmits a portion of the laser beam.

レーザガス供給装置5はレーザ管2内にレーザガス供給
管6からレーザガスを送り、これをレーザ管2内に高速
で流し、レーザガス供給管6′からこれを回収し、冷却
して循環させる。
The laser gas supply device 5 sends laser gas into the laser tube 2 from a laser gas supply tube 6, causes it to flow inside the laser tube 2 at high speed, recovers it from the laser gas supply tube 6', cools it, and circulates it.

このとき、レーザガス供給装置5は回収したレーザガス
の内、例えば5分の2を排出ガスとしてガス供給管7に
送り、5分の3を循環するよう構成する。また、排出さ
れた不足分はレーザガス供給装置5によって新たに供給
される。
At this time, the laser gas supply device 5 is configured to send, for example, two-fifths of the collected laser gas to the gas supply pipe 7 as exhaust gas, and circulate three-fifths of the collected laser gas. Further, the discharged insufficient amount is newly supplied by the laser gas supply device 5.

排出ガスの量はレーザ発振器が大型となるほど多くなる
ので大型のレーザ発振器に於てはこれを利用することは
非常に有利となる。
Since the amount of exhaust gas increases as the laser oscillator becomes larger, it is very advantageous to utilize this in large laser oscillators.

レーザガスの組成はプラズマガスの組成と異なると共に
、レーザ発振器からの排出ガスの量はプラズマガスの消
費量に比べて少ないので、(実験によれば、1.2kW
のレーザ発振器1の排出ガスは約1’00 # /’h
であるのに対し、1.5kWのプラズマ発生装置のプラ
ズマガスは約800β/hである。)これをプラズマガ
スとして用いるためはガスの組成を変えると同時に、不
足するガスを供給しなければならない。
The composition of the laser gas is different from that of the plasma gas, and the amount of exhaust gas from the laser oscillator is small compared to the consumption of plasma gas (according to experiments, 1.2 kW
The exhaust gas of the laser oscillator 1 is approximately 1'00 #/'h
On the other hand, the plasma gas of a 1.5 kW plasma generator is approximately 800β/h. ) In order to use this as a plasma gas, the composition of the gas must be changed and at the same time, the insufficient gas must be supplied.

以下にレーザガスとプラズマガスの体積比組成の一例を
示すと、 レーザガス; Ar :He :CO2:N2 #O〜0.5 : 9
.:1.: 3プラズマガス; Ar :He :CO2:N2 L=、0.5〜1 :
 3 : 1 : 3である。
An example of the volume ratio composition of laser gas and plasma gas is shown below: Laser gas; Ar:He:CO2:N2 #O~0.5:9
.. :1. : 3 plasma gas; Ar :He :CO2:N2 L=, 0.5~1 :
The ratio is 3:1:3.

ガス供給装置8は適宜の割合で不足するガスを供給し、
レーザ発振器1からの排出ガスはこれと混合されて゛プ
ラズマガスに適した組成及び量として、プラズマ発生装
置に送られる。
The gas supply device 8 supplies the insufficient gas at an appropriate rate,
The exhaust gas from the laser oscillator 1 is mixed with this and sent to the plasma generator as a composition and amount suitable for plasma gas.

反射板10はケーシング9に取り付けられ、レーザ発振
器1から発振されたレーザ光を反射して光路変更させる
The reflecting plate 10 is attached to the casing 9 and reflects the laser light emitted from the laser oscillator 1 to change the optical path.

レンズ11はケーシング9内に管軸方向に摺動制御移動
により位置決め自在に取り付けられ、反射板10に反射
したレーザ光を集束して被加工物12の加工点に集める
The lens 11 is mounted in the casing 9 so as to be freely positionable by sliding control movement in the tube axis direction, and focuses the laser light reflected on the reflector plate 10 to a processing point on the workpiece 12 .

電源装置16はプラズマ発生装置13の電極14(陰極
)と電極ノズル15 (陽極)及び被加工物12(陽極
)との間に充分放電が起動し発生する程度の電圧を印加
する。この場合、ノズル15(陽極)及び被加工物12
(陽極)との間には抵抗17によって適宜の電位差が与
えら−れている。
The power supply device 16 applies a voltage sufficient to start and generate a discharge between the electrode 14 (cathode) of the plasma generator 13, the electrode nozzle 15 (anode), and the workpiece 12 (anode). In this case, the nozzle 15 (anode) and the workpiece 12
(anode), a suitable potential difference is applied by a resistor 17.

プラズマ発生装置13はレーザ光の光軸と同軸に設けら
れ、ガス供給管7からの混合されたプラズマガスの供給
と、電源装置16による電圧の印加によってプラズマを
発生し、このプラズマはレーザ光の照射点に向けて照射
される。
The plasma generator 13 is provided coaxially with the optical axis of the laser beam, and generates plasma by supplying mixed plasma gas from the gas supply pipe 7 and applying voltage by the power supply device 16, and this plasma is generated by the laser beam. Irradiation is directed towards the irradiation point.

被加工物12は数値制御装置(図示せず)に接続された
クロステーブル(図示せず)の載物台に取付けられてお
り、載物台は数値制御装置の指令によって2次元的に移
iする。
The workpiece 12 is attached to a workpiece of a cross table (not shown) connected to a numerical control device (not shown), and the workpiece is two-dimensionally moved according to commands from the numerical control device. do.

レーザ発振器1のレーザ管2内のレーザガスの粒子は放
電電極3がらの放電によって励起されて一レーザ光を発
生し、これは次々と誘導放射を起こし、反射鏡4と反射
鏡4/の間で共振して強度を増大し、反射鏡41を透過
してビーム状のレーザ光として送り出される。
Laser gas particles in the laser tube 2 of the laser oscillator 1 are excited by the discharge from the discharge electrode 3 and generate one laser beam, which successively causes stimulated radiation and is emitted between the reflector 4 and the reflector 4/. The laser beam resonates to increase its intensity, transmits through the reflecting mirror 41, and is sent out as a beam of laser light.

このとき、レーザ管2内を流れるレーザガスはレーザガ
ス供給装置5に回収され、その一部は排出ガスとしてガ
ス供給管7に導かれ、ガス供給装置8からの適宜のガス
と混合されてプラズマ発生装置13に送られ、プラズマ
ガスとして使用される。
At this time, the laser gas flowing through the laser tube 2 is recovered by the laser gas supply device 5, and a part of it is guided as exhaust gas to the gas supply tube 7, where it is mixed with an appropriate gas from the gas supply device 8 and is used to generate a plasma generator. 13 and used as plasma gas.

レーザ発振器1から発振されたレーザ光は反射板10に
反射して光路変更された後、レンズ11によって集束さ
れて被加工物12の加工点に集まる。
A laser beam emitted from a laser oscillator 1 is reflected by a reflection plate 10 to change its optical path, and then is focused by a lens 11 and collected at a processing point on a workpiece 12.

一方、プラズマ発生装置工3は電源装置16によって電
圧を印加されてアーク放電を起こし、混合されたプラズ
マガスが供給されてプラズマを発生する。
On the other hand, a voltage is applied to the plasma generator 3 by the power supply device 16 to cause arc discharge, and the mixed plasma gas is supplied to generate plasma.

このプラズマは被加工物12のレーザ光の照射点に集る
よう構成されているから、レーザ光の照射点には高エネ
ルギ密度の衝撃が与えられ、溶接、切断、溶断等の加工
を行うことができる。
Since this plasma is configured to gather at the laser beam irradiation point of the workpiece 12, a high energy density impact is applied to the laser beam irradiation point, and processing such as welding, cutting, fusing, etc. I can do it.

被加工物12が取付けられたクロステーブル(図示せず
)の載物台は数値制御装置(図示せず)の指令によって
2次元的に移動するので、被加工物12は所望の位置及
び輪廓で加工が行われる。
The workpiece 12 of the cross table (not shown) to which the workpiece 12 is attached is moved two-dimensionally by commands from a numerical control device (not shown), so the workpiece 12 can be positioned at a desired position and at the desired circumference. Processing is performed.

本発明の一実施例を用いた実験によると、プラズマ発生
装置として400 Wのものを用い、レーザ発振器にl
k、Wのものを用いたとき、レーザ発振器からの排出ガ
スに約200j2/hのガスを加えることによってナラ
ズマガスとして利用することができた。
According to an experiment using an embodiment of the present invention, a 400 W plasma generator was used, and the laser oscillator was
When a gas of K and W was used, it could be used as a Narazuma gas by adding about 200j2/h of gas to the exhaust gas from the laser oscillator.

また、特別にレーザガスの冷却を行わなくてもレーザ発
振が妨げられることが−ないので、装置及び運転のコス
トを引き下げることができた。
Furthermore, since laser oscillation is not hindered even if the laser gas is not specially cooled, costs for the apparatus and operation can be reduced.

第2図はプラズマ発生装置のノズルの先端に磁界コイル
を設けた本発明の一実施例を示す説明図である。
FIG. 2 is an explanatory diagram showing an embodiment of the present invention in which a magnetic field coil is provided at the tip of a nozzle of a plasma generator.

第2図中、9.11〜16は第1図に示すものと同一の
構成要素を示し、】8は磁界コイルである。
In FIG. 2, 9.11 to 16 indicate the same components as shown in FIG. 1, and 8 is a magnetic field coil.

磁界コイル18はノズル15の先端部の孔15aの内壁
に沿って、孔15a′の軸を中心として放射状に設けら
れ、その磁極は発生するプラズマの周囲を囲むよう構成
されており、図示しない電源装置によって電圧を印加さ
れて孔15aの中心に向かう磁界を発生させる。
The magnetic field coils 18 are provided radially along the inner wall of the hole 15a at the tip of the nozzle 15, centered on the axis of the hole 15a', and have magnetic poles configured to surround the generated plasma. A voltage is applied by the device to generate a magnetic field directed toward the center of the hole 15a.

また、磁界コイル18は孔15aの軸に対して巻回する
ように同軸に設けて レーザビーム及びプラズマと略同
軸の磁界を発生させるようにしても良い。
Further, the magnetic field coil 18 may be provided coaxially so as to be wound around the axis of the hole 15a to generate a magnetic field substantially coaxial with the laser beam and plasma.

発生したプラズマはこの磁界によって絞られて断面積が
小さくなり、電気密度を増して高温高圧のプラズマとし
て噴射する。
The generated plasma is constricted by this magnetic field, its cross-sectional area becomes smaller, its electrical density increases, and it is ejected as high-temperature, high-pressure plasma.

一般に、プラズマ発生装置は、中心の棒状電極(陰極)
とノズル(陽極)或いは被加工物(陽極)との間に電圧
を印加してアーク放電を発生させ、このアークの周囲に
プラズマガスをノズルの先端から流出するよう流し、ア
ークの周囲を冷却すると共に電気抵抗を大きくしてアー
クを絞り、アーク中の電気密度を増大させて高温高圧の
プラズマを発生させるものである。
Generally, a plasma generator has a central rod-shaped electrode (cathode).
A voltage is applied between the nozzle (anode) or the workpiece (anode) to generate an arc discharge, and plasma gas flows around the arc to flow out from the tip of the nozzle to cool the area around the arc. At the same time, the electrical resistance is increased to narrow the arc, increasing the electrical density in the arc and generating high-temperature, high-pressure plasma.

このとき、アークを絞って断面積を小さくするほど電気
密度が増して高温高圧のプラズマを発生させることがで
きるので、ガス流による冷却の他にガスの解離による熱
吸収を利用している。
At this time, as the arc is narrowed to reduce its cross-sectional area, the electric density increases and high-temperature, high-pressure plasma can be generated, so in addition to cooling by gas flow, heat absorption by gas dissociation is utilized.

本実施例に於ては、プラズマ発生装置のノズルの先端に
磁界コイルを設けて磁界を発生させ、この磁界によって
プラズマを絞って電気密度を増大させて、より高温高圧
のプラズマを発生させるものである。
In this example, a magnetic field coil is provided at the tip of the nozzle of the plasma generator to generate a magnetic field, and this magnetic field narrows the plasma to increase the electric density and generate higher temperature and higher pressure plasma. be.

図示していないが、前記の実施例と同様に、レーザ発振
器のレーザ管内を流れるレーザガスはレーザガス供給装
置に回収され、その一部は排出ガスとしてガス供給管7
に導かれ、ガス供給装置からの適宜のガスと混合されて
プラズマ発生装置13に送られ、プラズマガスとして使
用される。
Although not shown, similarly to the previous embodiment, the laser gas flowing in the laser tube of the laser oscillator is collected by the laser gas supply device, and a portion of it is collected as exhaust gas by the gas supply tube 7.
The gas is mixed with an appropriate gas from the gas supply device, sent to the plasma generator 13, and used as a plasma gas.

本発明は紙上の如く構成されるから、本発明によるとき
は、レーザ発振器の排出ガスをプラズマ発生装置のプラ
ズマガスの一部として使用するので、加工効率が高く、
運転経費が快価なレーザ加工装置を提供することができ
る。
Since the present invention is configured as described on paper, the exhaust gas of the laser oscillator is used as part of the plasma gas of the plasma generator, so the processing efficiency is high.
A laser processing device with low operating costs can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にがかるレーザ加工装置の一実施例を示
す説明図、第2図は本発明の他の一実施例を示す説明図
である。 1−・−一−−−−−−−−−−−レーザ発振器5 −
−−−−−−− −−−−レーザガス供給装置7−−−
−−−−−−−−−−−−ガス供給管8−・−−−一−
−−−−−−−−・−−−一−−ガス供給装置12−・
−−一一−−−−−−−−−−−−−−−・被加工物1
3−−−一・−−一−−−−−−−−−−−プラズマ発
生装置18−−−−−m−−−−−−−−・=磁界コイ
ル特許出願人 株式会社井上ジャ)<ツクス研究所代理
人(7524)最上正太部
FIG. 1 is an explanatory diagram showing one embodiment of a laser processing apparatus according to the present invention, and FIG. 2 is an explanatory diagram showing another embodiment of the present invention. 1−・−1−−−−−−−−−−Laser oscillator 5 −
----------- --- Laser gas supply device 7 ---
−−−−−−−−−−−Gas supply pipe 8−・−−−1−
------------・----1--Gas supply device 12-・
−−11−−−−−−−−−−−−−・Workpiece 1
3---1. <Tukusu Research Institute Agent (7524) Shotabe Mogami

Claims (2)

【特許請求の範囲】[Claims] (1)レーザ発振器とプラスマ発生装置とを併用して加
工するレーザ加工装置に於て、上記レーザ発振器のレー
デガスの排出管を、プラズマ発生装置用ガス供給管に接
続し、レーザ発振器の排出ガスをプラズマガスの一部と
して利用することを特徴とする上記のレーザ加工装置。
(1) In a laser processing device that uses both a laser oscillator and a plasma generator for processing, connect the laser oscillator's lede gas exhaust pipe to the plasma generator gas supply pipe to remove the exhaust gas from the laser oscillator. The above laser processing device is characterized in that it is used as part of plasma gas.
(2)プラスマ発生装置のノズル先皓部に磁界コイルが
設けられた特許請求の範囲第1項記載のレーザ加工装置
(2) The laser processing device according to claim 1, wherein a magnetic field coil is provided at the nozzle tip of the plasma generator.
JP58005917A 1983-01-19 1983-01-19 Laser working device Pending JPS59133983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58005917A JPS59133983A (en) 1983-01-19 1983-01-19 Laser working device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58005917A JPS59133983A (en) 1983-01-19 1983-01-19 Laser working device

Publications (1)

Publication Number Publication Date
JPS59133983A true JPS59133983A (en) 1984-08-01

Family

ID=11624243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58005917A Pending JPS59133983A (en) 1983-01-19 1983-01-19 Laser working device

Country Status (1)

Country Link
JP (1) JPS59133983A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011029462A1 (en) 2009-09-14 2011-03-17 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Method and device for processing workpieces by means of a laser apparatus and an arc apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011029462A1 (en) 2009-09-14 2011-03-17 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Method and device for processing workpieces by means of a laser apparatus and an arc apparatus
CN102695577A (en) * 2009-09-14 2012-09-26 通快机床两合公司 Method and device for processing workpieces by means of a laser apparatus and an arc apparatus
CN102695577B (en) * 2009-09-14 2016-08-03 通快机床两合公司 Utilize the method and apparatus of laser equipment and device of arc processing workpiece

Similar Documents

Publication Publication Date Title
US6388227B1 (en) Combined laser and plasma-arc processing torch and method
US6894298B2 (en) Arrangement for generating extreme ultraviolet (EUV) radiation based on a gas discharge
US20080116400A1 (en) Method and Device for Producing Extreme Ultraviolet Radiation or Soft X-Ray Radiation
US6984941B2 (en) Extreme UV radiation source and semiconductor exposure device
Rousse et al. Production of a keV X-ray beam from synchrotron radiation in relativistic laser-plasma interaction
US4630274A (en) Method and apparatus for generating short intensive pulses of electromagnetic radiation in the wavelength range below about 100 nm
JP5073146B2 (en) X-ray generation method and apparatus
US5705785A (en) Combined laser and plasma arc welding torch
JP2014160670A (en) Lpp euv light source drive laser system
EP0919321A2 (en) Hybrid welding apparatus
US3872279A (en) Laser-radio frequency energy beam system
JP2009500796A (en) LPP, EUV light source drive laser system
US8259771B1 (en) Initiating laser-sustained plasma
US3947653A (en) Method of spray coating using laser-energy beam
JP2004504706A (en) Method for generating short wavelength radiation from gas discharge plasma and apparatus therefor
US4689466A (en) Laser-beam operated machining apparatus
US3947654A (en) Method of generating laser-radio beam
JPS59133983A (en) Laser working device
US6940036B2 (en) Laser-plasma hybrid welding method
JP3061268B1 (en) Melt processing equipment using laser light and arc
Hartmann et al. Homogeneous cylindrical plasma source for short‐wavelength laser experiments
US3548336A (en) Method and apparatus for producing continuous wave laser energy
EP0325583A4 (en) Laser sustained plasma torch and method for using same.
Lyabin Noncavity copper vapor laser generating high-quality radiation
JP2001096365A (en) Composite welding process by laser and arc