JPS59132938A - Vanadium-phosphorus oxide catalyst intermediate and preparation of maleic anhydride preparing catalyst by using same - Google Patents

Vanadium-phosphorus oxide catalyst intermediate and preparation of maleic anhydride preparing catalyst by using same

Info

Publication number
JPS59132938A
JPS59132938A JP58005836A JP583683A JPS59132938A JP S59132938 A JPS59132938 A JP S59132938A JP 58005836 A JP58005836 A JP 58005836A JP 583683 A JP583683 A JP 583683A JP S59132938 A JPS59132938 A JP S59132938A
Authority
JP
Japan
Prior art keywords
catalyst
vanadium
precipitate
phosphorus
organic medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58005836A
Other languages
Japanese (ja)
Inventor
Osamu Kaieda
修 海江田
Masaru Awashima
粟嶋 優
Tomoaki Nakamura
智明 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP58005836A priority Critical patent/JPS59132938A/en
Publication of JPS59132938A publication Critical patent/JPS59132938A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Furan Compounds (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide a catalyst having high activity and high selectivity and keeping initial capacities for a long period of time, obtained by using substance wherein the diffraction angle of an X-ray diffraction spectrum has a specific peak as a vanadium-phosphorus oxide catalyst intermediate. CONSTITUTION:As a vanadium-phosphorus oxide catalyst intermediate used in preparing maleic anhydride due to the gas phase oxidiation of 4c hydrocarbon, substance wherein the diffraction angle 2theta in an X-ray diffraction spectrum has a main peak at 10.7 deg., 13.1 deg., 21.4 deg., 24.6 deg., 28.4 deg. and 29.5 deg. is used. This catalyst shows high activity and high selectivity even if corrosive gas such as hydrogen chloride is not used and keeps initial capacities for a long period of time.

Description

【発明の詳細な説明】 本発明は炭素数4の炭化水素類の気相酸化による無水マ
レイン酸製造の為の触媒の中間体として有用なバナジウ
ム−リン系酸化物及びこの酸化物を中間体として用いる
バナジウム−リン酸化物触媒の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vanadium-phosphorous oxide useful as an intermediate for a catalyst for producing maleic anhydride by gas phase oxidation of hydrocarbons having 4 carbon atoms, and a method for producing a vanadium-phosphorus oxide as an intermediate. The present invention relates to a method for producing a vanadium-phosphorus oxide catalyst to be used.

バナジウム−リン酸化物がブタン、ブテン、ブタジェン
などの炭素数4の炭化水素(以下C4炭化水素とする。
Vanadium-phosphorus oxide is a hydrocarbon having 4 carbon atoms (hereinafter referred to as C4 hydrocarbon) such as butane, butene, butadiene.

)の気相酸化による無水マレイン酸製造の為の触媒とし
て有効なことは良く知られており、その有効な触媒の調
製において有用な中間体あるいは先駆体のバナジウム−
リン酸化物を特定するためのX線回折パターンが種々発
表されている(特開昭5l−(15990号、特開昭5
2−156193号、特開昭54−146287号、特
開昭56−41816号、特開昭57−135706号
各公報)0そして、当該バーナジウムーリン酸化物触媒
の製造方法についても多くの方法が提案されている。
) is well known to be effective as a catalyst for the production of maleic anhydride by gas phase oxidation, and vanadium-
Various X-ray diffraction patterns for identifying phosphorous oxides have been published (Japanese Patent Application Laid-open No. 51-15990,
2-156193, JP-A-54-146287, JP-A-56-41816, JP-A-57-135706) 0 There are also many methods for manufacturing the vernadium-phosphorus oxide catalyst. is proposed.

たとえば、一般的な製造方法は、5価のバナジウム化合
物およびリン化合物を水性媒体中あるいは有機媒体中で
還元剤の存在下において反応させてバナジウム−リン化
合物の先駆体をえ、その触媒先駆体を焼成して触媒にす
る方法であり、このうち、水性媒体中での製造では還元
剤として濃塩酸(特開昭48−63982号、特開昭5
1−95990号公報等)、ヒドラジン(特開昭54=
146287号、特開昭54−161594号公報)等
を使用して加熱還流させるか、亜リン酸を使ってオート
クレーブ中自然発生下の圧力のもとて約15(Icで反
応させる(特開昭49−126587号、特開昭52−
156193号公報)方法等が提案されている。
For example, a common manufacturing method involves reacting a pentavalent vanadium compound and a phosphorus compound in an aqueous or organic medium in the presence of a reducing agent to obtain a vanadium-phosphorus compound precursor; It is a method of baking to make a catalyst. Of these, in the production in an aqueous medium, concentrated hydrochloric acid (JP-A-48-63982, JP-A-5
1-95990, etc.), hydrazine (Japanese Unexamined Patent Application Publication No. 1983/1983)
146287, JP-A-54-161594), or react with phosphorous acid under naturally occurring pressure in an autoclave at about 15 Ic (JP-A-Sho 54-161594). No. 49-126587, Japanese Unexamined Patent Publication No. 1983-
156193) method, etc. have been proposed.

しかしこれらは工業的触媒製造において濃塩酸を使う場
合腐蝕性の問題があり、ヒドラジンの場合製造工程ノ;
複雑化することが避けられず、亜リン酸の場合には、目
的とする先駆体をつくるのに反応速度が遅く長時間を要
する欠点がある。また、これらの方法によって製造され
た触媒は、無水マレイン酸製造の工業的実施において反
応温度が高い、無水マレイン酸の選択性が低い等、性能
面でまだ不充分であり、その上長期間連続で使用した場
合性能の劣化が著るしく初期の性能を保ち得ないという
欠点を共通して有している。
However, when using concentrated hydrochloric acid in industrial catalyst production, there is a problem of corrosion, and in the case of hydrazine, there are problems in the production process.
Complications are unavoidable, and in the case of phosphorous acid, the reaction rate is slow and it takes a long time to produce the desired precursor. In addition, the catalysts produced by these methods still have insufficient performance in industrial implementation of maleic anhydride production, such as high reaction temperature and low selectivity for maleic anhydride. They have the common drawback that when used in

一方、有機媒体中での製造の場合、例えばインブチルア
ルコールのように有機媒体として還元作用をもつものが
使用され、有機媒体それ自身を還元剤として作用させる
(特開昭53−91100号、特開昭56−16883
7号、特開昭57−130552号公報)か、あるいは
ガス状塩化水素(特開昭50−35088号、特開昭5
3−61588号、特開昭56−2850号公報)、亜
リン酸(特開昭56−141840号公報)のような他
の還元剤を併用し、還流下で反応を行う方法が提案され
ている。水性媒体中の方法に比べ無水マレイン酸触媒の
性能としては、反応温度が低く、無水マレイン酸の選択
性が良いという傾向を有する。しかし依然として工業的
実施において長期間使用した場合性能の劣化が認められ
、初期の性能を保ち得ない。この場合にも最も一般的な
方法としては腐蝕性の塩化水素を使うということになり
、工業的触媒製造法上の欠点となっている。又、塩化水
素ガスを使わない場合でも触媒調製工程における反応時
間が長い等の欠点をもっている。
On the other hand, in the case of production in an organic medium, an organic medium that has a reducing effect, such as inbutyl alcohol, is used, and the organic medium itself acts as a reducing agent (Japanese Patent Laid-Open No. 53-91100, Kaisho 56-16883
7, JP-A-57-130552) or gaseous hydrogen chloride (JP-A-50-35088, JP-A-5
A method has been proposed in which the reaction is carried out under reflux by using other reducing agents such as phosphorous acid (Japanese Patent Application Laid-open No. 56-141840). There is. Compared to methods in an aqueous medium, maleic anhydride catalysts tend to have lower reaction temperatures and better selectivity to maleic anhydride. However, deterioration of performance is still observed when used for a long period of time in industrial practice, and initial performance cannot be maintained. In this case as well, the most common method is to use corrosive hydrogen chloride, which is a disadvantage in industrial catalyst production methods. Furthermore, even when hydrogen chloride gas is not used, there are drawbacks such as a long reaction time in the catalyst preparation process.

このように、従来提案された製造法はいずれも種々の欠
点をもっており、工業的実施だおいてまだ不充分な方法
といえる。
As described above, all of the production methods proposed so far have various drawbacks, and they are still insufficient for industrial implementation.

本発明者らは、これらの欠点を改良するために鋭意検討
した結果、水性媒体中でバナジウム化合物とリン化合物
および還元剤であるヒドラジンを反応させてバナジウム
平均原子価が3.9〜4.4の範囲内にちり、下記表1
のX線回折ピークを有する従来にないバナジウム−リン
結晶性酸化物を沈殿させた媒中量体とし、その後沈殿物
を水性媒体中よシ取出し、続いて有機媒体中に加え、そ
の際リン化合物を追加して50〜200℃、好ましくは
60〜160℃の温度で熱処理して触媒先駆体に変え、
これを250〜550℃の温度で焼成して触媒を調製す
る本発明の方法を開発し、この触媒が04炭化水素気相
酸化による無水マレイン酸の製造において塩化水素のよ
うな腐蝕性ガスを使わないでも高活性、高選択性でしか
も長期間初期の性能を保ち得る触媒となるととを見い出
し本発明を完成させた。
As a result of intensive studies to improve these drawbacks, the inventors of the present invention discovered that the average valence of vanadium was 3.9 to 4.4 by reacting a vanadium compound with a phosphorus compound and hydrazine as a reducing agent in an aqueous medium. Dust within the range of Table 1 below
An unconventional vanadium-phosphorous crystalline oxide with an X-ray diffraction peak of is added and heat treated at a temperature of 50 to 200°C, preferably 60 to 160°C to convert it into a catalyst precursor,
We have developed the method of the present invention to prepare a catalyst by calcining this at a temperature of 250 to 550 °C, and this catalyst uses corrosive gases such as hydrogen chloride in the production of maleic anhydride by 04 hydrocarbon gas phase oxidation. The inventors have discovered that it is possible to create a catalyst that has high activity and high selectivity, and can maintain its initial performance for a long period of time, even if the catalyst is not used, and has completed the present invention.

本発明を以下更に詳#l建説明する。The present invention will be explained in more detail below.

本発明におけるバナジウム−リン酸化物触媒の中間体を
水性媒体中で調製する際の原料としてのバナジウム化合
物は五酸化バナジウム、メタバナジン酸、ピロバナジン
酸等5価のバナジウムを含有する化合物が使用される。
As the vanadium compound used as a raw material for preparing the vanadium-phosphorus oxide catalyst intermediate in the present invention in an aqueous medium, compounds containing pentavalent vanadium such as vanadium pentoxide, metavanadate, and pyrovanadate are used.

この中に4価または3価のバナジウム化合物が一部含ま
れても良い。
A portion of a tetravalent or trivalent vanadium compound may be included in this.

しかし、このうちでは五酸化バナジウムを原料とするの
が好ましい。又同じくバナジウム−リン酸化物触媒の中
間体を調製する際の原料としてリン化合物はオルトリン
酸、ピロリン酸、トリポリリン酸、五酸化リンなどの5
価の1ノンの酸化物あるい。これらのリンとバナジウム
の原子比は0.7〜1.25 : 1の範囲が良好であ
り、特にリン過剰にする方が、触媒中間体を容易に生成
させることができるので1.00〜1.20 : 1の
範囲が好ましい。
However, among these, it is preferable to use vanadium pentoxide as the raw material. Similarly, phosphorus compounds used as raw materials for preparing vanadium-phosphorus oxide catalyst intermediates include orthophosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, phosphorus pentoxide, etc.
An oxide with a valence of 1. The atomic ratio of these phosphorus and vanadium is preferably in the range of 0.7 to 1.25:1, and in particular, it is easier to generate the catalyst intermediate when there is an excess of phosphorus, so the atomic ratio is 1.00 to 1. A range of .20:1 is preferred.

還元剤として使用されるヒドラジンは5価のノくナジウ
ム原料を3.9〜4.4の原子価に還元するだめの化学
量論量で充分であり通常は、その量の90〜120 %
の範囲で使用される。
The stoichiometric amount of hydrazine used as a reducing agent is sufficient to reduce the pentavalent nadium raw material to a valence of 3.9 to 4.4, and usually 90 to 120% of that amount.
used within the range.

本発明によるバナジウム−リン酸化物中間体の調製方法
は、バナジウム化合物を水に懸濁させ、そこへヒドラジ
ン及びリン化合物の水溶液を滴下方式で添加して反応さ
せても良いし、又は・くナジウム化合物及びリン化合物
を含む水性媒体中にヒドラジンを滴下方式で加えてもよ
い。又これらとは異なる他の添加順序も採用できる。反
応温度は50〜100℃が適当である。触媒中間体は、
この温度に一定時間保つことによって生成できる。
The method for preparing a vanadium-phosphorus oxide intermediate according to the present invention may be carried out by suspending a vanadium compound in water, adding thereto an aqueous solution of hydrazine and a phosphorus compound in a dropwise manner, or reacting the vanadium compound by suspending the vanadium compound in water. The hydrazine may be added dropwise into the aqueous medium containing the compound and the phosphorus compound. Other addition orders different from these can also be used. A suitable reaction temperature is 50 to 100°C. The catalyst intermediate is
It can be produced by maintaining this temperature for a certain period of time.

反応時間は反応温度あるいは添加順序の違いによって変
わるが、約1時間から約5時間が望ましい。
The reaction time varies depending on the reaction temperature or the order of addition, but is preferably about 1 hour to about 5 hours.

このようにして生じた触媒中間体の沈殿物が、表1のX
線回折パターンを示すことは容易に確認される。この触
媒中間体はリン−バナジウム−酸素からなる組成物で結
晶水を含有し7ている。この結晶水は、示差熱分析によ
れば110℃から脱離しけじめ、結晶性を失ない、次第
に無定型物質になることがわかる。
The precipitate of the catalyst intermediate thus produced is
It is easily confirmed that it shows a line diffraction pattern. This catalyst intermediate has a composition of phosphorus-vanadium-oxygen and contains water of crystallization. Differential thermal analysis shows that this water of crystallization begins to desorb at 110° C., does not lose its crystallinity, and gradually becomes an amorphous substance.

この触媒中間体の沈殿物を含有するスラリーは、室温に
放置して放冷し、その後沈殿物をr過、遠心分離など通
常の方法によって水性媒体中から取シ出す。
The slurry containing the precipitate of the catalyst intermediate is allowed to cool at room temperature, and then the precipitate is removed from the aqueous medium by a conventional method such as filtration or centrifugation.

前述のようにこの触媒中間体は無定型物質たなシ易いが
、本発明では、この触媒中間体を経た無定型物質が含有
しているもの、あるいはこの触媒中間体を経た無定型物
質を、その後に続く有機媒体中での熱処理操作しても良
いが、これらの無定型物質ができるだけ少い状態に保た
れたものを熱処理操作することが望ましい。
As mentioned above, this catalyst intermediate can easily be an amorphous substance, but in the present invention, the amorphous substance that has passed through this catalyst intermediate contains, or the amorphous substance that has passed through this catalyst intermediate, A subsequent heat treatment in an organic medium may be performed, but it is desirable to carry out the heat treatment in a state in which these amorphous substances are kept as low as possible.

よって水性媒体中から取シ出されたケーキは、遊離の水
分を・含有するが、次の方法などによって除去するのが
よい。
Therefore, the cake taken out from the aqueous medium contains free water, which is preferably removed by the following method.

■使用する有機媒体で置換する。■Replace with the organic medium used.

0100℃以下の温度、好ましくは5〜80℃の温度で
常圧又は減圧乾燥する。
Drying is carried out at a temperature of 0.0100°C or less, preferably at a temperature of 5 to 80°C, under normal pressure or reduced pressure.

本発明で使用される有機媒体は必ずしも還元性物質であ
る必要はない。アルコール類、ケトン類、エーテル類以
外にもベンゼン、トルエンのような□無極性溶媒あるい
はN−N’ジメチルホルムアミドのような非プロトン性
極性溶媒などあらゆる有機溶媒が使用できる。その中で
もリン化合物と相溶性のあるアルコール類、ケトン類、
エーテル類が好ましい。特にメタノール、エタノール、
n−ブチルアルコール、シクロヘキサノール、メチル・
エチル・ケトン、ジオキサンが好ましい。有機媒体は混
合して使用してもよい。有機媒体は乾燥粉体100りに
対し約600CCから1600CjT使用するのが望ま
しい。
The organic medium used in the present invention does not necessarily have to be a reducing substance. In addition to alcohols, ketones, and ethers, any organic solvent can be used, including nonpolar solvents such as benzene and toluene, and aprotic polar solvents such as N-N' dimethylformamide. Among them, alcohols and ketones that are compatible with phosphorus compounds,
Ethers are preferred. Especially methanol, ethanol,
n-butyl alcohol, cyclohexanol, methyl
Ethyl ketone and dioxane are preferred. Mixtures of organic media may be used. It is desirable to use about 600 CC to 1600 CjT of organic medium per 100 dry powders.

有機媒体は本質的には無水のものが好ましいが、必ずし
も無水である必要はなく約lO重量係以下の水分ならば
含んでいてもよい。
The organic medium is preferably essentially anhydrous, but need not necessarily be anhydrous and may contain less than about 10% water by weight.

熱処理温度は50〜200℃の範囲で攪拌しながら行う
のがよい。好ましくは60〜160℃の範囲で行うのが
よい。沸点の低い有機媒体例えばメタノール、エタノー
ルなどを使用する場合オートク、レープを使って自己発
生圧下で行ってもよい。
The heat treatment temperature is preferably in the range of 50 to 200° C. while stirring. Preferably, the temperature is 60 to 160°C. When using an organic medium with a low boiling point, such as methanol or ethanol, the reaction may be carried out under autogenous pressure using an autoclave or rape.

処理時間は0.5〜10時間、特に0.5〜6時間が好
ましい。
The treatment time is preferably 0.5 to 10 hours, particularly 0.5 to 6 hours.

有機媒体中に追加するリン源は、リン化合物ならばあら
ゆるものが使用できる。その中でもオルトリン酸、ビロ
リン酸、ポリリン酸、亜リン酸が特に好捷しい。オルト
リン酸を使用する場合、市販の約85ヴ濃度のものでも
よい。追加する燐量は触媒中間体としての乾燥粉体10
0 yK対し元素換算して約0.17から357、好ま
しくは約57から307が適当である。
Any phosphorus compound can be used as the phosphorus source added to the organic medium. Among them, orthophosphoric acid, birophosphoric acid, polyphosphoric acid, and phosphorous acid are particularly preferred. If orthophosphoric acid is used, it may be commercially available at a concentration of about 85%. The amount of phosphorus to be added is 10% of the dry powder as a catalyst intermediate.
Appropriate values are approximately 0.17 to 357, preferably approximately 57 to 307, in elemental terms relative to 0 yK.

リン化合物を追加する理由は、有機媒体中酸性条件下で
行うことによって熱処理効果があがる為である。又最終
にえられる触媒中のリンとバナジウムの原子比が1.0
.0〜1.25:1、好ましくは1.02〜1.20 
: 1の範囲内になるようにリン量が調節されることを
目的とする。この範囲内に調節されることによって性能
の良い触媒かえられる。
The reason for adding a phosphorus compound is that the heat treatment effect is enhanced by carrying out the heat treatment under acidic conditions in an organic medium. Also, the atomic ratio of phosphorus and vanadium in the final catalyst is 1.0.
.. 0-1.25:1, preferably 1.02-1.20
: The purpose is to adjust the amount of phosphorus so that it is within the range of 1. By adjusting within this range, a catalyst with good performance can be obtained.

有機媒体中での熱処理によってえられた触媒先駆体は、
前述の中間体と異なり、結晶性物質が少なく、はとんど
が微細な無定型物質に変化している。このように有機媒
体中での熱処理によって無定型物質に変化することが触
媒の活性、選択性が良好で長寿命であるひとつの要因で
あると考えられる。
The catalyst precursor obtained by heat treatment in an organic medium is
Unlike the intermediates mentioned above, there is little crystalline material, and most of the material has changed to fine amorphous materials. This transformation into an amorphous substance by heat treatment in an organic medium is considered to be one of the reasons why the catalyst has good activity, selectivity, and long life.

有機媒体中での熱処理によってえられた先駆体は、通常
の方法である蒸発乾固、沖過あるいは遠心分離などによ
って有機媒体から単離する。単離された触媒先駆体は、
単独で、またはシリカ、アルミナ、炭化ケイ素、チタニ
アなどの担体とともに成型ないし、これら担体に担持さ
れ250〜550℃の温度、好ましくは350〜450
℃の温度で焼成される。焼成時間は0.5〜16時間が
適尚である。焼成は、例えば空気のような酸素含有ガス
雰囲気で行うのが好ましい。又不活性ガス中であるいは
炭化水素ガスの含まれた空気混合ガス雰囲気下で焼成し
てもよい。このようにして焼成された触媒は、C4炭化
水素を気相酸化して無水マレイン酸を製造する為の触媒
として使用される。このような焼成条件では、無水マレ
イン酸の初期収率の低いこともあり得るが、その場合あ
る期間メタン、エタン、プロパン、ブタンなどの炭化水
素と空気との混合ガスを、その濃度を調節して接触せし
める活性化処理を行うことによ−り高水準の活性に到達
させることができる。
The precursor obtained by heat treatment in an organic medium is isolated from the organic medium by conventional methods such as evaporation to dryness, filtration or centrifugation. The isolated catalyst precursor is
Molded alone or with a carrier such as silica, alumina, silicon carbide, titania, etc., or supported on such a carrier at a temperature of 250 to 550 °C, preferably 350 to 450 °C
It is fired at a temperature of ℃. A suitable firing time is 0.5 to 16 hours. Firing is preferably carried out in an oxygen-containing gas atmosphere, such as air. It may also be fired in an inert gas or in an air mixed gas atmosphere containing hydrocarbon gas. The catalyst calcined in this manner is used as a catalyst for producing maleic anhydride by gas phase oxidation of C4 hydrocarbons. Under such calcination conditions, the initial yield of maleic anhydride may be low, but in that case, a mixed gas of air and a hydrocarbon such as methane, ethane, propane, or butane is fed for a certain period of time, and its concentration is adjusted. A high level of activity can be achieved by carrying out an activation treatment that involves contacting the molecule.

無水マレイン酸製造に使用されるC4炭化水素は!l−
ブタンが好ましい。酸素源としては空気が好ましいが純
酸素でもよいし、又水蒸気、窒素等の他の不活性ガスで
希釈して使用してもよい。
What is the C4 hydrocarbon used in the production of maleic anhydride? l-
Butane is preferred. Air is preferred as the oxygen source, but pure oxygen may also be used, or it may be diluted with other inert gases such as water vapor or nitrogen.

全原料ガス中の04炭化水素の濃度は0.5〜1゜容量
壬、好ましくは0.5〜3容量係がよい。触媒を固定床
で使用する場合、原料ガスの空間速度は1 500〜20,000hr 1好1しくは1,000〜
5.000br  ’である。反応温度は300〜55
0℃、好ましくは350〜500℃が適当である。
The concentration of 04 hydrocarbons in the total raw material gas is preferably 0.5 to 1 volume, preferably 0.5 to 3 volume. When the catalyst is used in a fixed bed, the space velocity of the raw material gas is 1,500 to 20,000 hr, preferably 1,000 to 20,000 hr.
5.000br'. Reaction temperature is 300-55
A temperature of 0°C, preferably 350 to 500°C is suitable.

本発明の触媒は固定床反応器でも流動床反応器でも使用
できる。
The catalyst of the present invention can be used in both fixed bed and fluidized bed reactors.

以下実施例により更に具体的に説明するが、本発明はこ
れらに限定されるものではない。
The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited thereto.

実施例 1 五酸化バナジウムV2O5100yを50 ’OCCの
水に懸濁させ、攪拌しながら80℃に保ち、そこへ85
係オルトリン酸H3PO4133,2f及び抱水ヒドラ
ジン13.99を溶解させた水溶液300頷を少量づつ
滴下し、V2O5を溶解させた。滴下後濃青色の溶液を
攪拌しながら2時間還流させたところ濃青色沈殿物を生
じた。この生じた沈殿物の一部を取り出し60℃で4時
間減圧下に乾燥しX線回折スペクトル分析を行った結果
表1の記載の触媒中間体であることが確認された。この
沈殿物を含む反応液スラリーを室温に放置して放冷し沈
殿物を沖過した。このケーキ中に含有する水をエタノー
ルで完全に置換して除去した。このエタノール322を
含有しているケーキ1322をピロリン酸H4P2O7
18,9グを溶解させたエタノール1150C,C,に
懸濁させ、オートクレーブを使用して130℃に昇温し
、攪拌しながら自然発生圧下のもとて2時間保持した。
Example 1 Vanadium pentoxide V2O5100y was suspended in 50'OCC of water, kept at 80°C with stirring, and 85%
300 g of an aqueous solution in which orthophosphoric acid H3PO413,2f and 13.99 g of hydrazine hydrate were dissolved was dropped little by little to dissolve V2O5. After the dropwise addition, the dark blue solution was refluxed for 2 hours with stirring, producing a dark blue precipitate. A portion of the resulting precipitate was taken out, dried under reduced pressure at 60° C. for 4 hours, and analyzed by X-ray diffraction spectroscopy. As a result, it was confirmed that the precipitate was the catalyst intermediate described in Table 1. The reaction liquid slurry containing this precipitate was left to cool at room temperature, and the precipitate was filtered off. The water contained in this cake was removed by completely replacing it with ethanol. The cake 1322 containing this ethanol 322 is converted into pyrophosphoric acid H4P2O7
The suspension was suspended in ethanol 1150 C.C. in which 18.9 g of 18.9 g was dissolved, heated to 130.degree. C. using an autoclave, and kept under spontaneous pressure with stirring for 2 hours.

ついで室温にまで放冷し、沈殿物を濾過し、120℃で
一昼夜乾燥させ触媒先駆体をえた。これを長さ3.5 
tan、直径3.5.φに成型し、空気気流下で400
℃、1時間焼成し触媒とした。触媒中のリンとバナジウ
ムの原子比を分析したところ約1.10 : Iであっ
た。
Then, the mixture was allowed to cool to room temperature, and the precipitate was filtered and dried at 120° C. for one day to obtain a catalyst precursor. This length is 3.5
tan, diameter 3.5. Molded to φ and 400 mm under air flow
℃ for 1 hour to obtain a catalyst. Analysis of the atomic ratio of phosphorus to vanadium in the catalyst revealed that it was approximately 1.10:I.

触媒を内径12賦φU字型反応管に15Cr−充填し反
応を行ない表2の結果を得た。
A 15Cr-15 catalyst was charged in a U-shaped reaction tube with an inner diameter of 12 mm, and the reaction was carried out to obtain the results shown in Table 2.

実施例 2 V2O5100,Of’、85壬オルトリン酸H3PO
4゜12.6.8 S’を加えた6 50 mlの水溶
液を75℃に保った。そこへ抱水ヒドラジン13.99
を溶解させた水溶液150CCを少量づつ滴下した。滴
下後濫 撹拌しながら1.5時間還流させて一青色沈殿物をえた
。これらを室温に放置して放冷し沈殿物を涙過した。つ
いでケーキを80℃4時間減圧乾燥して自由水を完全に
除去した。この粉体の一部を取ってX線回折スペクトル
分析を行った結果、表1の記載の触媒中間体であること
が確認された。この粉体100.OS’を97%亜り/
eH3PO324,47を溶解させたエタノール120
0CC中に懸濁させ、オートクレーブを使用して130
℃に昇温し、攪拌しながら自然発生圧下のもとて3時間
保持した。
Example 2 V2O5100,Of', 85mm orthophosphoric acid H3PO
650 ml of an aqueous solution containing 4°12.6.8 S' was kept at 75°C. There, hydrazine hydrate 13.99
150 cc of an aqueous solution in which was dissolved was added dropwise little by little. After the dropwise addition, the mixture was refluxed for 1.5 hours while stirring to obtain a blue precipitate. These were left to cool at room temperature, and the precipitate was filtered off. The cake was then dried under reduced pressure at 80° C. for 4 hours to completely remove free water. A portion of this powder was subjected to X-ray diffraction spectrum analysis, and as a result, it was confirmed that it was a catalyst intermediate described in Table 1. This powder 100. 97% reduction in OS'/
Ethanol 120 in which eH3PO324,47 was dissolved
Suspended in 0CC and using an autoclave at 130
The temperature was raised to 0.degree. C. and maintained under spontaneous pressure for 3 hours while stirring.

ついで室温にまで放冷し、沈殿物を洲過し、120℃で
乾燥させ触媒先駆体をえた。以下実施例1におけると同
様に行ない表2に示す結果をえた。なお触媒中のリンと
バナジウムの原子比を分析したところ約1.13 : 
1であった。
The mixture was then allowed to cool to room temperature, and the precipitate was filtered and dried at 120°C to obtain a catalyst precursor. The following procedure was carried out in the same manner as in Example 1, and the results shown in Table 2 were obtained. An analysis of the atomic ratio of phosphorus and vanadium in the catalyst revealed that it was approximately 1.13:
It was 1.

実施例 3 V2O5100,09を500ccの水に懸濁させ、攪
拌しながら85℃に保ち、そこへ85ol)オルトリン
酸H3PO4148,4り及び抱水ヒドラジン14.6
fを溶解させた水溶液300dを少量づつ滴下した。
Example 3 V2O5100,09 was suspended in 500cc of water, kept at 85°C with stirring, and 85ol) orthophosphoric acid H3PO4148,4 and hydrazine hydrate 14.6
300 d of an aqueous solution in which f was dissolved was added dropwise little by little.

滴下後攪拌しながら3時間還流させて濃青色の触媒中間
体を沈殿させた。この沈殿物を含む反応後のス城【 ラリ−を室温に一昼夜放置して放冷し沈催物を沖過した
。ついでケーキを40℃減圧乾燥して自由水を完全に除
去した。えられた粉体中100.0 yを取って85壬
オルトリン酸H3PO48,009を溶解させたメタノ
ール120(Icに懸濁さぜ、オートクレーブを使用し
て120℃に昇温し、攪拌しながら自然発生圧下のもと
て3時間保持した。ついで室温にまで放冷し、沈殿物を
沖過し、120℃で乾燥させ触媒先駆体をえた。以下実
施例1におけると同様に行ない、表2に示す結果をえた
。なお触媒中のリンとバナジウムの原子比を分析したと
ころ約1.04 : 1であった。
After the dropwise addition, the mixture was refluxed for 3 hours with stirring to precipitate a deep blue catalyst intermediate. The reaction mixture containing this precipitate was left at room temperature overnight to cool and remove the precipitate. The cake was then dried under reduced pressure at 40°C to completely remove free water. Take 100.0 y of the resulting powder, suspend it in methanol 120 (Ic) in which 85 m orthophosphoric acid H3PO48,009 has been dissolved, heat it to 120°C using an autoclave, and naturally generate while stirring. The mixture was kept under pressure for 3 hours.Then, it was allowed to cool to room temperature, and the precipitate was filtered off and dried at 120°C to obtain a catalyst precursor.The following procedure was carried out in the same manner as in Example 1, and the results are shown in Table 2. The atomic ratio of phosphorus to vanadium in the catalyst was analyzed and found to be approximately 1.04:1.

実施例 4 V2O3100,0?、85係オルトリン酸H3P 0
4137.0 ?を加えた5 50 mlの水溶液を8
0℃に保ち、そこへ抱水ヒドラジン]、 3.99を含
む水溶液200 meを少量づつ滴下した。滴下後攪拌
しながら2時間還流させて濃青色を呈した触媒中間体を
沈殿させた。この沈殿物を含むスラリーを室温に放置し
て放冷し、沈殿物を濾過した。このケーキ中に含有する
水をn−ブタ7ノールで完全に置換して除去した。つい
でn−ブタノール36.5 rを含有しているケーキ1
36.5 fを97係亜リン酸H3PO314,2tを
溶解させたn−ブタノール1150(f中に懸濁させ攪
拌しながら還流下4時間保持した。ついで室温にまで放
冷し、沈殿物を沖過して120℃で乾燥させ触媒先駆体
をえた。
Example 4 V2O3100,0? , 85 orthophosphoric acid H3P 0
4137.0? Add 5 50 ml of aqueous solution to 8
The mixture was kept at 0°C, and 200 me of an aqueous solution containing hydrazine hydrate, 3.99% was added dropwise little by little thereto. After the dropwise addition, the mixture was refluxed for 2 hours with stirring to precipitate a deep blue catalyst intermediate. The slurry containing this precipitate was left to cool at room temperature, and the precipitate was filtered. The water contained in this cake was completely replaced and removed with n-butanol. Then cake 1 containing 36.5 r of n-butanol
36.5 f was suspended in n-butanol 1150 (f) in which 14,2 t of 97% phosphorous acid H3PO3 was dissolved and kept under reflux with stirring for 4 hours.Then, it was allowed to cool to room temperature, and the precipitate was evaporated. The catalyst precursor was obtained by drying at 120°C.

以下実施例1におけると同様に行ない表2に示す結果を
えた。なお触媒中のリンとバナジウムの原子比を分析し
たところ1.09 : 1であった。
The following procedure was carried out in the same manner as in Example 1, and the results shown in Table 2 were obtained. The atomic ratio of phosphorus to vanadium in the catalyst was analyzed and found to be 1.09:1.

実施例 5 V2O3100,0?を500虻の水に懸濁させ、攪拌
しながら70℃に保ち、そこへ85係オルトリン酸H3
PO4133,2?及び抱水ヒドラジン13.99を溶
解させた水溶液2000:を少量づつ滴下した。滴下後
溶液を攪拌しながら2時間還流させて濃青色を呈した触
媒中間体を沈殿させた。
Example 5 V2O3100,0? Suspended in 500 g of water, kept at 70°C with stirring, and added 85 orthophosphoric acid H3.
PO4133,2? and 2000: of an aqueous solution in which 13.99% of hydrazine hydrate was dissolved were added dropwise little by little. After the addition, the solution was refluxed for 2 hours while stirring to precipitate a deep blue catalyst intermediate.

5わ とのO散物を含むスラリーを室温に放置して放冷し沈殿
物を沖過した。このケーキを60℃で減圧乾燥して自由
水を除去した。えられた粉体中1002をピロリン酸H
4P 20726.4 f?を溶解さぜたエチ#フル=
y−ル1200 CCK懸濁させ、オートクレーブを使
用して自然発生圧下140℃1時間保持した。ついで降
温させた後ロータリーエバポレーターを使用して50℃
で減圧下蒸発乾固させ、その後120℃で乾燥させ触媒
先駆体をえた。以下実施例1と同様にして表2に示す結
果をえた。なお、触媒中のリンとバナジウムの原子比を
分析したところ1.20 : 1であった。
The slurry containing 50% of O dispersion was left to cool at room temperature, and the precipitate was filtered off. This cake was dried under reduced pressure at 60°C to remove free water. 1002 in the obtained powder is converted into pyrophosphoric acid H
4P 20726.4 f? Dissolved Echi#Full=
Y-L1200 CCK was suspended and maintained at 140° C. for 1 hour under natural pressure using an autoclave. Then, the temperature was lowered to 50℃ using a rotary evaporator.
The mixture was evaporated to dryness under reduced pressure and then dried at 120°C to obtain a catalyst precursor. The results shown in Table 2 were obtained in the same manner as in Example 1. The atomic ratio of phosphorus to vanadium in the catalyst was analyzed and found to be 1.20:1.

実施例 6〜9 実施例1と同じ手順で溶媒、追加燐源、温度を変えて触
媒を調製し7、以下同様にして表2に示す結果をえた。
Examples 6 to 9 Catalysts were prepared in the same manner as in Example 1 by changing the solvent, additional phosphorus source, and temperature, and the results shown in Table 2 were obtained in the same manner.

実施例 lO 実施例1の10倍のスケールで触媒先駆体を調製した。Example lO A catalyst precursor was prepared on a scale ten times that of Example 1.

えられた粉体を長さ5.1 mm、直径5.1謹φに成
型し、空気気流下で400℃1時間焼成しス、 だ。内径25■φのステフレ1反応管に触触層高が2m
50,1−77+になるまで触媒を充填し反応を行ない
表2の結果をえた。
The obtained powder was shaped into a shape with a length of 5.1 mm and a diameter of 5.1 mm, and was fired at 400°C for 1 hour under a stream of air. The height of the tactile layer is 2 m in the STEFLE 1 reaction tube with an inner diameter of 25 φ.
The reaction was carried out by filling the catalyst until the concentration reached 50,1-77+, and the results shown in Table 2 were obtained.

比較例 1 実施例1と同じ手順で触媒中間体を沈殿させた。Comparative example 1 The catalyst intermediate was precipitated using the same procedure as in Example 1.

この沈殿物を含む反応液を室温に放置して放冷し沈殿物
を沖過した。ついで自由水28重量係を含むケーキ13
9tをビロリン酸H4P2O718,9りを溶解させた
水中に懸濁させ、オートクレーブを使用して145℃に
昇温し、攪拌しながら自然発生圧下のもとて2時間保持
した。ついで室温にまで放冷し、沈殿物を濾過し、12
0℃で乾燥させ触媒先駆体をえた。以下実施例1におけ
ると同様に行ない表2に示す結果をえた。この触媒中の
リンとバナジウムの原子比を分析したところ1.08:
1であった。
The reaction solution containing this precipitate was left to cool at room temperature, and the precipitate was filtered off. Then cake 13 containing 28 parts by weight of free water
9t was suspended in water in which 718.9% of birophosphoric acid H4P2O was dissolved, the temperature was raised to 145°C using an autoclave, and the suspension was kept under spontaneous pressure for 2 hours with stirring. Then, it was allowed to cool to room temperature, and the precipitate was filtered.
A catalyst precursor was obtained by drying at 0°C. The following procedure was carried out in the same manner as in Example 1, and the results shown in Table 2 were obtained. The atomic ratio of phosphorus and vanadium in this catalyst was analyzed and was 1.08:
It was 1.

比較例 2 実施例1と同じ手順で触媒中間体を沈殿させた。Comparative example 2 The catalyst intermediate was precipitated using the same procedure as in Example 1.

この沈殿物を含む反応液を室温に放置し放冷して沈殿物
を濾過し、えられたケーキを60℃で減圧乾燥させた。
The reaction solution containing this precipitate was left to cool at room temperature, the precipitate was filtered, and the resulting cake was dried under reduced pressure at 60°C.

その粉体を有機媒体中での熱処理を行なわないで実施例
1と同じ操作で触媒にして、又同じ反応管−を用いて反
応させ、表2に示す結果をえた。
The powder was made into a catalyst in the same manner as in Example 1 without heat treatment in an organic medium, and the reaction was carried out using the same reaction tube to obtain the results shown in Table 2.

比較例 3 85係オルトリン酸H3PO476,09!7′を加え
たインブタノール825CCから共沸蒸留で水を除去し
、追い出され7y量のイソブタノールを足して、そこへ
V2O550,0?を懸濁させた。そして攪拌しながら
16時間還流させた。生成し大青色の沈殿物を濾過、洗
浄、乾燥した。えらnだ粉体を実施例1と同じ操作で触
媒にして、又同じ反応管を用いて反応させ、表2に示す
結果をえた。
Comparative Example 3 Water is removed by azeotropic distillation from 825 CC of inbutanol to which 85 orthophosphoric acid H3PO476,09!7' has been added, and 7y amount of isobutanol is added to V2O550,0? was suspended. The mixture was then refluxed for 16 hours while stirring. The large blue precipitate formed was filtered, washed and dried. The Ela Nada powder was used as a catalyst in the same manner as in Example 1, and the reaction was carried out using the same reaction tube to obtain the results shown in Table 2.

比較例 4 V20g 54.6 !i’、85循オルトリン酸H3
P 0437、、Of、亜リン酸H3PO327,9G
’を220 m/!の水中にそれぞれ加え、3時1jl
 3’tj拌しながら還流させた。えられた青色スラリ
ーを80℃に降温後オー)・クレープに仕込んで150
℃に加温し、自然発生圧下4時間保持した。ついで12
0℃で蒸発乾固し7て得だ粉体を実施例1と同じ操作で
触媒にして、又同じ反応管を・用いで反応させ、表2に
示す結果をえた。
Comparative example 4 V20g 54.6! i', 85-cycle orthophosphoric acid H3
P 0437,, Of, Phosphite H3PO327,9G
'220 m/! Add each to 1 jl of water at 3 o'clock.
The mixture was refluxed with stirring for 3'tj. After cooling the obtained blue slurry to 80℃, it was poured into a crepe and heated to 150℃.
℃ and held under autogenous pressure for 4 hours. Then 12
The resulting powder was evaporated to dryness at 0° C. and used as a catalyst in the same manner as in Example 1, and reacted using the same reaction tube to obtain the results shown in Table 2.

表2実施例1〜9に示した結果かられかるように、不発
明の方法によって製造された触媒は、腐蝕性ガスを使用
しないで製造でき、処耶時間が短いという利点をもって
いる以外に、従来提案されている方法のものに比べn−
ブタンの無水マレイン酸への選択率、収率が優れておシ
、しかも反応を連続的に経過させても初期の性能をはソ
保ち得る。又、表2実施例10では工業化に近い条件で
更に長時間の反応を試みだ結果を示しであるが充分工業
的実施においで満足できるものと云える。
As can be seen from the results shown in Table 2 Examples 1 to 9, the catalyst produced by the uninvented method has the advantage that it can be produced without using corrosive gas and the treatment time is short. n− compared to that of the conventionally proposed method.
The selectivity and yield of butane to maleic anhydride are excellent, and the initial performance can be maintained even if the reaction is carried out continuously. In addition, Example 10 in Table 2 shows the results obtained by attempting a longer reaction time under conditions close to industrial conditions, which can be said to be sufficiently satisfactory for industrial implementation.

この様に本発明による触媒は工業的実施において長寿命
の初期の性能が保ち得るものが製造できるという利点が
ある。
As described above, the catalyst according to the present invention has the advantage that it can be produced in industrial practice so that it can maintain a long life and initial performance.

特許出願人  日本触媒化学工業株式会社代 理 人 
    山  口  剛  男  、・、゛)ζジ・′
Patent applicant: Agent of Nippon Shokubai Chemical Co., Ltd.
Takeo Yamaguchi...

Claims (1)

【特許請求の範囲】 (11X線回折スペクトル(対陰極Cu−にα)におい
て回折角2θが10.7°、13.1’、21.4°、
24.6°、28.4°および29.5°の主要ピーク
を有することを特徴とするバナジウム−リン系酸化物触
媒中間体。 (2)  (a)水性媒体中でバナジウム化合物とリン
化合物および還元剤であるヒドラジンとをリンとバナジ
ウムの原子比が0.7〜1.25:1およびバナジウム
の原子価が3.9〜4.4の範囲になるような条件下で
反応させ、特許請求の範囲第(1)項記載の触媒中間体
組成物を沈殿させ、 (b)その後沈殿物を水性媒体中よシ取出し、(C)え
られた沈殿物を有機媒体中、リン化合物の存在下50〜
200℃の温度で熱処理して触媒先駆体をえ、 (d)当該先駆体を有機媒体中より取出し、ついで (e)当該先駆体を250〜550℃の温度で焼成する
、 各段階の操作からなることを特徴とするリン対バナジウ
ムの原子比1〜1.25 : 1の組成を有する無水マ
レイン酸製造用の触媒製造法。 (31(a)の操作においてバナジウム化合物が五酸化
バナジウム、リン化合物がオルトリン酸であることを特
徴とする特許請求の範囲(2)記載の触媒製造法。 (4)  (c)の操作において熱処理温度が60〜1
60℃の範囲であることを特徴とする特許請求の範囲(
2)またはtS+記載の触媒製造法。 +5+  (C)の操作における有機媒体が、アルコー
ル類、ケトン類、エーテル類またはそれらの混合物であ
ることを特徴とする特許請求の範囲(2)、(3)また
は(4)記載の触媒製造法。 +6)(C)の操作における有機媒体が、メタノールエ
タノール、n−ブチルアルコール、シクロヘキサノール
、メチルエチルケトン、ジオキサンまたはそれらの混合
物であることを特徴とする特許請求の範囲(2)、(3
)、+41または(5)記載の触媒製造法。 (71(b)の操作において当該沈殿物知合まれる自5
に 山水を5〜80℃の範囲の0度で常圧丑たけ減圧乾燥し
て除去することを特徴とする特許請求の範囲(2)、(
3)、(4)、(5)まだは(6)記載の触媒製造法。 (8) (b)の操作において当該沈殿物に含まれる自
由水を有機媒体で置換して除去することを特徴とする特
許請求の範囲(2)、(3)、(4)、(5)まだは(
6)記載の触媒製造法。 +9)  (C)の操作におけるリン化合物がオルトリ
ン酸、ピロリン酸および亜リン酸よりなる群から選ばれ
る少なくとも1種であシ、特許請求範囲(7)でえられ
る乾燥粉体1005’換算に対して約57〜30りの範
囲存在することを特、  徴とする特許請求の範囲(2
)、(3)、(4)、(5)、(7)または(8)記載
の触媒製造法。 Oot  (c)の操作において有機媒体自己発生圧下
で熱処理することを特徴とする特許請求の範囲(2)、
(3)、(4)、(5)、(6)、(7)、(81また
は(9)記載の触媒製造法。
[Claims] (In the 11 X-ray diffraction spectrum (α to the anticathode Cu-), the diffraction angles 2θ are 10.7°, 13.1', 21.4°,
A vanadium-phosphorous oxide catalyst intermediate characterized by having main peaks at 24.6°, 28.4° and 29.5°. (2) (a) A vanadium compound, a phosphorus compound, and hydrazine as a reducing agent are mixed in an aqueous medium so that the atomic ratio of phosphorus to vanadium is 0.7 to 1.25:1 and the valence of vanadium is 3.9 to 4. .4 to precipitate the catalyst intermediate composition according to claim (1); (b) then remove the precipitate in an aqueous medium; ) The resulting precipitate was heated in an organic medium in the presence of a phosphorus compound for 50~
From the steps of heat treatment at a temperature of 200° C. to obtain a catalyst precursor, (d) removing said precursor from an organic medium, and (e) calcining said precursor at a temperature of 250 to 550° C. A method for producing a catalyst for producing maleic anhydride having a phosphorus to vanadium atomic ratio of 1 to 1.25:1. (The method for producing a catalyst according to claim (2), characterized in that in the operation of 31(a), the vanadium compound is vanadium pentoxide and the phosphorus compound is orthophosphoric acid. (4) Heat treatment in the operation of (c) Temperature is 60-1
Claims characterized in that the temperature range is 60°C (
2) or the catalyst production method described in tS+. +5+ The method for producing a catalyst according to claim (2), (3) or (4), wherein the organic medium in the operation (C) is an alcohol, a ketone, an ether, or a mixture thereof. . +6) Claims (2), (3) characterized in that the organic medium in the operation (C) is methanol ethanol, n-butyl alcohol, cyclohexanol, methyl ethyl ketone, dioxane or a mixture thereof.
), +41 or the catalyst production method described in (5). (In the operation of Section 71(b), the said precipitate is
Claims (2) and (2), characterized in that the mountain water is removed by drying under normal pressure and reduced pressure at 0 degrees in the range of 5 to 80 degrees Celsius.
3), (4), (5) and the catalyst production method described in (6). (8) Claims (2), (3), (4), and (5) characterized in that in the operation (b), free water contained in the precipitate is removed by replacing it with an organic medium. Not yet (
6) Catalyst production method described. +9) The phosphorus compound in the operation (C) is at least one selected from the group consisting of orthophosphoric acid, pyrophosphoric acid and phosphorous acid, and the dry powder obtained in claim (7) is converted to 1005' Claims (2) characterized in that there is a range of approximately 57 to 30 degrees.
), (3), (4), (5), (7) or (8). Claim (2), characterized in that in the operation of Oot (c) the organic medium is heat-treated under autogenous pressure;
The catalyst manufacturing method described in (3), (4), (5), (6), (7), (81 or (9)).
JP58005836A 1983-01-19 1983-01-19 Vanadium-phosphorus oxide catalyst intermediate and preparation of maleic anhydride preparing catalyst by using same Pending JPS59132938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58005836A JPS59132938A (en) 1983-01-19 1983-01-19 Vanadium-phosphorus oxide catalyst intermediate and preparation of maleic anhydride preparing catalyst by using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58005836A JPS59132938A (en) 1983-01-19 1983-01-19 Vanadium-phosphorus oxide catalyst intermediate and preparation of maleic anhydride preparing catalyst by using same

Publications (1)

Publication Number Publication Date
JPS59132938A true JPS59132938A (en) 1984-07-31

Family

ID=11622111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58005836A Pending JPS59132938A (en) 1983-01-19 1983-01-19 Vanadium-phosphorus oxide catalyst intermediate and preparation of maleic anhydride preparing catalyst by using same

Country Status (1)

Country Link
JP (1) JPS59132938A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0799795A2 (en) 1996-04-01 1997-10-08 Nippon Shokubai Co., Ltd. Vanadium-phosphorus oxide, method for production thereof, catalyst for vapor phase oxidation formed of the oxide, and method for partial vapor phase oxidation of hydrocarbon
US6194588B1 (en) 1998-02-18 2001-02-27 Nippon Shokubai Co., Ltd. Method for production of maleic anhydride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0799795A2 (en) 1996-04-01 1997-10-08 Nippon Shokubai Co., Ltd. Vanadium-phosphorus oxide, method for production thereof, catalyst for vapor phase oxidation formed of the oxide, and method for partial vapor phase oxidation of hydrocarbon
US6194588B1 (en) 1998-02-18 2001-02-27 Nippon Shokubai Co., Ltd. Method for production of maleic anhydride

Similar Documents

Publication Publication Date Title
RU2341327C2 (en) Method of preparing catalyst for oxidation and ammoxidation of olefins
US4288372A (en) Production of maleic anhydride
US20100105926A1 (en) Polynary metal oxide phosphate
US4668652A (en) Catalyst for oxidation reactions and process for its production
KR20010023221A (en) Process for the preparation of improved vanadium-phosphorus catalysts and use thereof for the production of maleic anhydride
JP2010524809A (en) Multi-element vanadyl pyrophosphate
JP2004512167A (en) Catalyst and method for producing maleic anhydride
US4171316A (en) Preparation of maleic anhydride using a crystalline vanadium(IV)bis(metaphosphate) catalyst
JP2010521400A (en) Multi-component metal oxide phosphate
JP2007534458A (en) Preparation of phosphorus / vanadium catalyst
JP2010521401A (en) Multi-component metal oxide phosphate
JP2001233608A (en) Method for synthesizing vpo catalyst
KR20010022283A (en) Phosphorus/vanadium catalyst preparation
KR950006529B1 (en) Process for producing methacrylic acid
US4247419A (en) Single phase vanadium(IV)bis(metaphosphate) oxidation catalyst with improved intrinsic surface area
JPS59132938A (en) Vanadium-phosphorus oxide catalyst intermediate and preparation of maleic anhydride preparing catalyst by using same
JP2002535136A (en) Production of phosphorus / vanadium maleic anhydride catalyst
US5480853A (en) Phosphorus/vanadium catalyst preparation
JP3974651B2 (en) Improved method for calcination / activation of V / P / O catalyst
JP2008037693A (en) Oxide containing vanadium, oxide having vanadium and phosphorus, catalyst, and manufacturing method of maleic anhydride
GB2273447A (en) Catalysts for producing maleic anhydride
JP3502526B2 (en) Vanadium-phosphorus oxide, method for producing the same, catalyst for gas phase oxidation comprising the oxide, and method for partial gas phase oxidation of hydrocarbons
JP3555205B2 (en) Method for producing phosphorus-vanadium oxide catalyst precursor
JP2008528461A (en) Process for producing acrylic acid comprising partial oxidation of propane to propylene
JPS5874143A (en) Vanadium-hydrogen-phosphorous-oxygen catalyst and production of maleic anhydride by fluidized bed catalyst