JPS59132799A - Exciter for superconductive generator - Google Patents

Exciter for superconductive generator

Info

Publication number
JPS59132799A
JPS59132799A JP58005862A JP586283A JPS59132799A JP S59132799 A JPS59132799 A JP S59132799A JP 58005862 A JP58005862 A JP 58005862A JP 586283 A JP586283 A JP 586283A JP S59132799 A JPS59132799 A JP S59132799A
Authority
JP
Japan
Prior art keywords
thyristor
generator
bridge
voltage
breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58005862A
Other languages
Japanese (ja)
Inventor
Takao Sato
孝夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58005862A priority Critical patent/JPS59132799A/en
Publication of JPS59132799A publication Critical patent/JPS59132799A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/12Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for demagnetising; for reducing effects of remanence; for preventing pole reversal
    • H02P9/123Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for demagnetising; for reducing effects of remanence; for preventing pole reversal for demagnetising; for reducing effects of remanence

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To suppress the commutation surge voltage producing during the normal operation and to enhance the peak voltage at a system fluctuating time by providing twice an exciting power source and a thyristor. CONSTITUTION:A breaker 11 is closed, and a power source is supplied from an exciting power transformer 3 directly to a thyristor bridge 4 or to a thyristor bridge 13 through a step-down transformer 14 during the normal operation of a generator 1. The firing angle of the thyristor of the bridge 13 is maintained substantially at 180 deg. at the normal operation time, and the firing angle of the thyristor of the bridge 4 is controlled by a pulse signal 7. The phase angle of the thyristor of the bridge 13 is controlled by a pulse signal 15 at the system fluctuating time. Further, the breaker 11 is opened and the breaker 12 is closed at the generator near terminal trouble time, a negative voltage corresponding to the peak voltage is applied from another power source to the bridge 13 to abruptly attenuate the remaining magnetic flux of a field winding.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は同期機の励磁装置に係シ特に界磁巻線に起電導
線を用いた超電導同期機の励磁装置において、正常運転
時のサージ嵯圧と交流波高値を低くおさえて、界磁回路
の絶縁特性を改善し、また系統動揺時の発°屯機主回路
の電圧変化に対応する界磁回路の制御の連応性を高めさ
らに発電機至近端の事故時に発電機の残留磁束を急速に
減衰せしめるようにするものである。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to an excitation device for a synchronous machine, and in particular, to an excitation device for a superconducting synchronous machine using electromotive conducting wire in the field winding. This improves the insulation characteristics of the field circuit by keeping the voltage and AC peak value low, and also improves the coordination of control of the field circuit in response to voltage changes in the main circuit of the generator during system fluctuations. This is to rapidly attenuate the residual magnetic flux of the generator in the event of a near-end accident.

”〔発明の技術的背景とその問題点〕 界磁巻線を超゛屯導状態に構成した超電導同期機は、一
般の同期機に比べ軽重量、小形化、低損失。
” [Technical background of the invention and its problems] A superconducting synchronous machine with a field winding configured in a superconducting state is lighter in weight, smaller in size, and has lower loss than general synchronous machines.

系統安定度の向上環の利点がある。これらを主目的とし
て、超電導同期機の開発が海外および国内において鋭意
進められている。超電導同期発電機において、系統安定
化対策として同期発電機の界磁に直接サイリスタを採用
し、サイリスタのゲートを位相制御する励磁装置を使用
している。
This has the advantage of improving system stability. For these purposes, superconducting synchronous machines are being actively developed both overseas and in Japan. In superconducting synchronous generators, a thyristor is used directly in the field of the synchronous generator as a system stabilization measure, and an excitation device is used to control the phase of the thyristor gate.

しかしながら同期機が超電導のため、回路抵抗がリアク
タンスに比べ非常に小さく、その結果従来の同期機に比
べ時定数が10〜100倍大きく、連応性が悪い。
However, since the synchronous machine is a superconductor, the circuit resistance is very small compared to the reactance, and as a result, the time constant is 10 to 100 times larger than that of a conventional synchronous machine, resulting in poor coordination.

以上の装置において、励磁系の時定数を変えないで早く
所定の励磁電圧に到達させるためには、励磁系の頂上電
圧は高ければ高いほどよい。しかし頂上電圧は高いほど
励磁の過渡安定度に貢献する度合が大きいわけであるが
、反対に界磁回路の絶縁強度の而で制約されてくる。
In the above device, in order to quickly reach a predetermined excitation voltage without changing the time constant of the excitation system, the higher the peak voltage of the excitation system is, the better. However, the higher the peak voltage is, the greater the contribution it makes to the transient stability of excitation, but on the contrary, it is restricted by the insulation strength of the field circuit.

以下その理由を第1図に示す従来装置で説明する。同図
において、発電機1の界磁巻#J2には、発゛嘔機1の
出力回路に接続された励磁電源変圧器8の二次側交流電
圧をサイリスタブリッジ4で直流に交換された励磁電力
が供給されている。この励磁電力は発電機1の出力電圧
を一定にするために計器用変成器5で得られた電圧と、
整定された電圧を自動電圧詞整器6で比較し、サイリス
タブリッジ4の各サイリスタゲートにパルス信号7を加
えて、位相制御することによって得られる。この場合励
磁電源変圧器8の二次側の電圧は、界磁回路の頂上電圧
に相当しているが、各サイリスタゲートの位相制御は位
相角が0度で最大出力、90度遅れ角で出力が零となる
ため、発電機1の出力電圧は、定格時に界磁巻線2にサ
イリスタの位相角を遅れ角とし、系統動揺の時は、位相
角を零度として頂上電圧を加えるように運転制御されて
いる。しかしながら、時定数が大きいため、系統動揺時
には従来の同期発電機に比べ、頂上電圧な高め速応度を
高めないと、系統安定化が確保できない。また、サイリ
スタの出力電圧は、転流のたびに発生する第2図に示す
如きサージ電圧Vsが常時発生しておシ、さらに頂上電
圧に相当する交流波高値Wも常に印加されており、それ
らの大きさは、頂上電圧つt、b励磁電源変圧器8の二
次定格電圧が高ければ高いほど大きくなり、界磁回路の
絶縁を常におびやかしているととになる。
The reason for this will be explained below using the conventional device shown in FIG. In the same figure, the field winding #J2 of the generator 1 is supplied with an excitation voltage in which the secondary side AC voltage of the excitation power supply transformer 8 connected to the output circuit of the generator 1 is exchanged with DC voltage by the thyristor bridge 4. Power is supplied. This excitation power is the voltage obtained by the instrument transformer 5 in order to keep the output voltage of the generator 1 constant,
It is obtained by comparing the settled voltages with an automatic voltage adjuster 6, applying a pulse signal 7 to each thyristor gate of the thyristor bridge 4, and controlling the phase. In this case, the voltage on the secondary side of the excitation power supply transformer 8 corresponds to the top voltage of the field circuit, but the phase control of each thyristor gate is such that the maximum output is output when the phase angle is 0 degrees, and the output is output when the phase angle is 90 degrees. becomes zero, so the output voltage of the generator 1 is controlled so that the phase angle of the thyristor is used as a delay angle to the field winding 2 during rated conditions, and the peak voltage is applied to the field winding 2 during system fluctuations with the phase angle set to zero degrees. has been done. However, because the time constant is large, grid stability cannot be ensured during system fluctuations unless the peak voltage and speed response are increased compared to conventional synchronous generators. In addition, the output voltage of the thyristor is such that a surge voltage Vs as shown in Fig. 2 is generated every time there is commutation, and an AC peak value W corresponding to the peak voltage is also constantly applied. The magnitude of the peak voltage t,b increases as the secondary rated voltage of the excitation power supply transformer 8 increases, and the insulation of the field circuit is always threatened.

また、発電機1の電機子巻線及び端子部から発電機しゃ
断8までの間で、短絡事故等が起きた場合、保護継電器
等によシこの事故を検出し、発電機しゃ断器8.界磁し
ゃ断器9を開にし、さらに界磁しゃ断器9のb接点を閉
じるととにより、放電抵抗器10が投入され、界磁巻線
2の減磁作用が行われ、事故電流の供給を低減して事故
拡大を防ぐのが一般である。ところが、超電導発電機1
においては、界磁巻線2の時定数が大きいため、事故電
流が長く継続する欠点がある。
In addition, if a short-circuit accident or the like occurs between the armature winding and terminals of the generator 1 and the generator breaker 8, this accident is detected by a protective relay or the like, and the generator breaker 8. By opening the field breaker 9 and closing the b contact of the field breaker 9, the discharge resistor 10 is turned on, the field winding 2 is demagnetized, and the fault current is no longer supplied. It is common practice to reduce the number of accidents and prevent the spread of accidents. However, superconducting generator 1
Since the time constant of the field winding 2 is large, there is a drawback that the fault current continues for a long time.

〔発明の目的〕[Purpose of the invention]

本発明は、以上のように常時界磁回路に加わるサージ′
屯圧と交流波高値を低くおさえ、高速応変に適応でき、
さらに事故時の発電機界磁巻線の残留磁束を至急に減磁
させる超電導発電機の励磁゛装置を提供することを目的
とするものである。
As described above, the present invention is designed to prevent surges that are constantly applied to the field circuit.
Keeps tonnage pressure and AC wave height low and can adapt to high-speed fluctuations.
A further object of the present invention is to provide an excitation device for a superconducting generator that immediately demagnetizes the residual magnetic flux of the generator field winding in the event of an accident.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例について第8図を参照して説明す
る。なお、第8図は第1図と比較して、その構成上の異
なるところは、サイリスタ回路と励磁電源を2つ設は組
合せたことにある、次に以上のように構成した超電導同
期発電機の励磁装置の作用を説明する。発電機1の正常
運転中は、しゃ断器11を閉、しゃ断器12を開にし、
励磁電源変圧器8から直接サイリスタブリッジ18に電
源を供給する回路と、励磁゛電源変圧器8゜逓降変圧器
14を介してサイリスタブリッジ4に゛電源を供給する
回路とを構成する。通常運転時はサイリスタブリッジ1
8の各々のサイリスタのゲートの位相角をパルス信号1
5によシ略1800に保ち、サイリスタブリッジ4の各
々のサイリスタのゲートの位相角をパルス信号7により
制御して運転する。これによシ正常運転中に発生する転
流サージ電圧と交流波高値を低くおさえることができる
。また、系統動揺時には、サイリスタブリッジ18の各
々のサイリスタのゲートの位相角をパルス信号15によ
り制御して速応度を早め系統の安定化を図っている、。
An embodiment of the present invention will be described below with reference to FIG. The difference in the configuration of Fig. 8 from Fig. 1 is that two thyristor circuits and two excitation power sources are installed or combined. Next, the superconducting synchronous generator configured as above The operation of the excitation device will be explained. During normal operation of the generator 1, the breaker 11 is closed, the breaker 12 is opened,
A circuit supplies power directly from the excitation power transformer 8 to the thyristor bridge 18, and a circuit supplies power to the thyristor bridge 4 via the excitation power transformer 8° down-down transformer 14. During normal operation, thyristor bridge 1
The phase angle of the gate of each of the 8 thyristors is determined by the pulse signal 1.
5 is maintained at approximately 1800°C, and the phase angle of the gate of each thyristor of the thyristor bridge 4 is controlled by a pulse signal 7 for operation. This allows the commutation surge voltage and AC peak value that occur during normal operation to be kept low. Furthermore, when the system is in oscillation, the phase angle of the gate of each thyristor of the thyristor bridge 18 is controlled by the pulse signal 15 to speed up the speed response and stabilize the system.

さらに発電機至近端事故時には、しゃ断器11を開、し
ゃ断器12を閉にし、図示しない信頼性のある別電源か
ら励磁電源変圧器16を介して頂上電圧に相当する負の
電圧をサイリスタブリッジ18に与え、発電機の界磁巻
線の残留磁束を打ち消す向きに磁束を発生させ残留磁束
を急速に減衰させる。
Furthermore, in the event of a generator close-end accident, the breaker 11 is opened, the breaker 12 is closed, and a negative voltage corresponding to the peak voltage is applied to the thyristor bridge from a reliable separate power source (not shown) via the excitation power supply transformer 16. 18 to generate magnetic flux in a direction that cancels out the residual magnetic flux of the field winding of the generator, causing the residual magnetic flux to rapidly attenuate.

〔発明の効果〕〔Effect of the invention〕

以上詳記したように本発明によれば、発電機出力端及び
界磁回路に直流変換電圧を加えるサイリスタの間に励磁
電源変圧器を設け、発電機の正常運転時には2つの励磁
電域変圧器を介して低電圧の電源を供給し、正常運転中
に発生する転流サージ電圧と交流波高値とを低くおさえ
ることができる。また系統動揺時には、励磁電源用変圧
器から高″題源を供給し頂上電圧を高め、これによって
系統の安定化にを与する。
As detailed above, according to the present invention, an excitation power supply transformer is provided between the generator output end and the thyristor that applies a DC converted voltage to the field circuit, and during normal operation of the generator, two excitation area transformers are provided. By supplying low-voltage power through the AC, commutation surge voltage and AC peak value that occur during normal operation can be kept low. In addition, when the system is in oscillation, a high voltage source is supplied from the excitation power transformer to increase the peak voltage, thereby stabilizing the system.

さらに、発゛亀機至近端の早故に際しては別の信頼性の
ある電源から、励磁゛電源変圧器を介して高電圧の電源
を供給し、発電機の界磁巻線の残留磁束を急速に減衰さ
せ、事故の拡大を防ぐことができる。
Furthermore, in the event of a premature failure at the end close to the generator, high voltage power is supplied from another reliable power source via the excitation power transformer to reduce the residual magnetic flux in the field winding of the generator. It can be rapidly damped and prevent the accident from escalating.

なお別の信頼性のある電源を初期励磁用電源として使用
することも可能である。
Note that it is also possible to use another reliable power source as the initial excitation power source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の系統図、第2図は第1図に示すサイ
リスタブリッジにおける転流時のサージ及び交流波高値
の状態を示す図、第8図は本発明に係る発電機の励磁装
置の一実施例を示す系統図である。 1・・・超電導同期発電機 2・・・界磁巻線8・・・
励磁電源変圧器  4・・・サイリスタブリッジ5・・
・計器用変成器   6・・・自動電圧調整器7・・・
パルス信号    8・・・発電機しゃ断器9・・・界
磁しゃ断器  10・・・放電抵抗11・・・しゃ断器
    12・・・しゃ断器18・・・サイリスタブリ
ッジ 14・・・励磁電源用逓降変圧器 15・・・パルス信号   16・・・励磁電源変圧器
代理人 弁理士 則 近 憲 佑 (ほか1名)6 507− 第2図 特間
Fig. 1 is a system diagram of a conventional device, Fig. 2 is a diagram showing the state of surge and AC peak value during commutation in the thyristor bridge shown in Fig. 1, and Fig. 8 is an excitation device for a generator according to the present invention. FIG. 2 is a system diagram showing an example of FIG. 1... Superconducting synchronous generator 2... Field winding 8...
Excitation power supply transformer 4... Thyristor bridge 5...
・Instrument transformer 6...Automatic voltage regulator 7...
Pulse signal 8... Generator breaker 9... Field breaker 10... Discharge resistor 11... Breaker 12... Breaker 18... Thyristor bridge 14... Excitation power source Step-down transformer 15...Pulse signal 16...Exciting power supply transformer Agent Patent attorney Noriyuki Chika (and 1 other person) 6 507- Figure 2 Special area

Claims (1)

【特許請求の範囲】 サイリスタ回路のゲートを位相角制御して発電趙 機の界磁電圧制御を行なう超電導発電機の励磁装置にお
いて、励磁電源とサイリスタ回路を2回路設け、発電機
の正常運転時には、界磁巻線に加わるサイリスタ回路転
流時のサージ電圧と交流波高値を低くおさえかつ系統動
揺時及び発電機至近端事故時の励磁の応答を速めるよう
にしたことを特徴とする超電導発電機の励磁装置。
[Claims] In an excitation device for a superconducting generator that controls the field voltage of a generator by controlling the phase angle of the gate of a thyristor circuit, two excitation power sources and two thyristor circuits are provided, and when the generator is in normal operation, , a superconducting power generation system characterized by suppressing the surge voltage and AC peak value at the time of thyristor circuit commutation applied to the field winding, and speeding up the response of excitation during system fluctuations and generator close-end faults. Machine exciter.
JP58005862A 1983-01-19 1983-01-19 Exciter for superconductive generator Pending JPS59132799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58005862A JPS59132799A (en) 1983-01-19 1983-01-19 Exciter for superconductive generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58005862A JPS59132799A (en) 1983-01-19 1983-01-19 Exciter for superconductive generator

Publications (1)

Publication Number Publication Date
JPS59132799A true JPS59132799A (en) 1984-07-30

Family

ID=11622767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58005862A Pending JPS59132799A (en) 1983-01-19 1983-01-19 Exciter for superconductive generator

Country Status (1)

Country Link
JP (1) JPS59132799A (en)

Similar Documents

Publication Publication Date Title
JPS63253833A (en) Non-interrupted electric source
JPH0767393A (en) Overvoltage protecting device for variable-speed pumped-storage power generation system
US3619761A (en) Excitation control device of self-exciting, compound synchronous machine
JPS59132799A (en) Exciter for superconductive generator
US2075105A (en) Regulating system
US4719554A (en) Method for protecting two static converters with direct-current link from overcurrents
JPH0114818B2 (en)
US3549981A (en) Static exciter field suppressor
JP2685454B2 (en) Control device for PWM converter
JPH06327264A (en) Voltage type inverter device
SU446163A1 (en) Power source for arc welding
US2651016A (en) Direct current electric power transmission system
JP2001333537A (en) Power supply facility
JPS6216100A (en) Brushless exciter for synchronous generator
JPH0479719A (en) Protecting device of power generating system
JPS58144600A (en) Exciter for superconductive generator
JPH0199498A (en) Exciter of synchronous machine
JPH05316800A (en) Overexcitation preventive controller for synchronous generator
US3030567A (en) Electrical control arrangement operating with voltage-comparison
JPH0161037B2 (en)
JPS6318994A (en) Synchronous generator
McDonald Voltage control of mercury-arc rectifiers
JPS58136299A (en) Demagnetizing device for superconductive generator
Tokiwa et al. Development of self‐commutated SVC for power system
JPS58130800A (en) Exciter for ac generator