JPS59131878A - Rotary kiln for baking cement raw material - Google Patents

Rotary kiln for baking cement raw material

Info

Publication number
JPS59131878A
JPS59131878A JP637583A JP637583A JPS59131878A JP S59131878 A JPS59131878 A JP S59131878A JP 637583 A JP637583 A JP 637583A JP 637583 A JP637583 A JP 637583A JP S59131878 A JPS59131878 A JP S59131878A
Authority
JP
Japan
Prior art keywords
kiln
raw material
clinker
rotary kiln
granulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP637583A
Other languages
Japanese (ja)
Other versions
JPH0128874B2 (en
Inventor
市川 嘉宏
哲夫 藤沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP637583A priority Critical patent/JPS59131878A/en
Publication of JPS59131878A publication Critical patent/JPS59131878A/en
Publication of JPH0128874B2 publication Critical patent/JPH0128874B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、原料人口端側にサスペンションプレヒータを
接続したロータリキルンの構造に係り、特にキルン内で
の造粒作用の適正化を図り、細粒状クリンカや塊状クリ
ンカの量を減少させて適正精度の籾粒状クリンカの増量
を企図するロータリキルンに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotary kiln structure in which a suspension preheater is connected to the raw material end, and in particular aims to optimize the granulation action within the kiln, thereby reducing the amount of fine clinker and lump clinker. This invention relates to a rotary kiln designed to increase the amount of rice granule clinker with appropriate precision by reducing the amount of clinker.

第1図はセメント原料を予熱、焼成するときに用いられ
る焼成装置の一例を示す。この装置は主として原料予熱
用サイクロンC1〜C4及び仮焼炉2を縦方向に配列し
てなるサスペンションプレヒータ1と、クリンカ焼成用
のロータリキルン3、及びクリンカ冷却機4より構成さ
れている。
FIG. 1 shows an example of a firing apparatus used for preheating and firing cement raw materials. This apparatus mainly includes a suspension preheater 1 formed by vertically arranging cyclones C1 to C4 for preheating raw materials and a calcining furnace 2, a rotary kiln 3 for firing clinker, and a clinker cooler 4.

かかるクリンカ焼成装置に於いて、01〜C3のサイク
ロンを経由しながら順次下降する原料粉末Aは、その間
に排ガス誘引通風機8により吸引されてガスダクト7を
上昇する熱風によって徐々に予熱された後、仮焼炉2へ
供給される。当該仮焼炉2では抽気ダクト13を通して
クリンカ冷却機4からの高温空気が導入されていると共
に、バーナ6aから仮焼用燃料が供給されており、これ
らの熱を受けて原料粉末Aが仮焼される。仮焼された原
料は最下段のサイクロンC4に入り〜次いで接続ハウジ
ング12を経てロータリキルン3に導入される。
In such a clinker firing apparatus, the raw material powder A that descends sequentially through cyclones 01 to C3 is gradually preheated by the hot air that is sucked in by the exhaust gas induced draft fan 8 and ascends through the gas duct 7. It is supplied to the calcining furnace 2. In the calcining furnace 2, high-temperature air from the clinker cooler 4 is introduced through the bleed air duct 13, and fuel for calcining is supplied from the burner 6a, and the raw material powder A is calcined by receiving this heat. be done. The calcined raw material enters the lowermost cyclone C4 and is then introduced into the rotary kiln 3 via the connection housing 12.

ロータリキルン3にはクリンカ冷却機4からの高温空気
とバーナ6bからの焼成用燃料が導入されており、高温
下で焼成を受けたクリンカは冷却機4に排出される。排
出されたクリンカは冷却機4の通気性格子141−を移
送される過程で、押込送風機10から送り込まれる冷風
によって冷却された後、破砕機15で破砕され、コンベ
ア16等によって次工稈へ搬出される。また、クリンカ
冷却機4での余剰空気は誘引通風機9によって吸引され
、この中に含まれる微粉状のクリンカダストは集塵機1
7により分離され、成品クリンカに合流される。
High temperature air from a clinker cooler 4 and firing fuel from a burner 6b are introduced into the rotary kiln 3, and the clinker that has been fired at high temperature is discharged to the cooler 4. The discharged clinker is transferred through the ventilation grid 141- of the cooler 4, where it is cooled by cold air sent from the forced air blower 10, crushed by the crusher 15, and transported to the next culm by the conveyor 16, etc. be done. Further, the excess air in the clinker cooler 4 is sucked by the induced draft fan 9, and the fine clinker dust contained therein is removed by the dust collector 1.
7 and combined into finished clinker.

このようなセメント原料焼成方式によるロータリキルン
では、他の焼成方式に比べてキルン内容積当たりの処理
能力が大きく、又キルン胴体用内張り耐火物の寿命が長
いなど数多くの利点を備えている。
A rotary kiln using such a cement raw material firing method has many advantages compared to other firing methods, such as a larger throughput per kiln internal volume and a longer lifespan for the refractory lining for the kiln body.

しかし反面かかる方式によるキルンで焼成したクリンカ
は粒度幅が広<、適止粒度の*■粒状クリンカの他に大
径の塊状クリンカ及び細粒状クリンカも他の焼成方式に
比べてより多く含まれており、これに基づいて焼成工作
及び後続する粉砕工程における性能面及び成品の品I/
It面で種々の弊害をもたらしている。
However, on the other hand, the clinker fired in a kiln using this method has a wide range of particle sizes, and in addition to granular clinker with an appropriate particle size, it also contains larger amounts of large-diameter lump clinker and fine-grained clinker compared to other firing methods. Based on this, we will evaluate the performance of the firing process and the subsequent crushing process, and the quality of the finished product.
This has caused various problems in terms of IT.

サスペンションプレヒル夕を接続したロータリキルンに
於いて、このようにクリンカの粒度幅が拡大する原因は
、次のように考えられている。
The reason why the particle size range of clinker increases as described above in a rotary kiln connected to a suspension pre-chiller is considered to be as follows.

即ち、セメント原料は主成分として石灰分(CaCO3
,)、硅酸分(S i 02 ) 、アルミナ分(A6
203)及び酸化鉄分(Fe203)より成り、石灰分
は、クリンカ形成反応に先立ぢ仮焼されて生石灰(Ca
b)となる。
In other words, cement raw materials contain lime (CaCO3) as the main component.
), silicic acid content (S i 02 ), alumina content (A6
203) and iron oxide (Fe203), and the lime component is calcined prior to the clinker formation reaction to form quicklime (Ca
b).

上記のようにサスペンションプレヒータで予熱及び部分
仮焼され、800乃至900 ’cに力吋ハされたセメ
ント原料は、続いてロータリキルン内に供給され、カス
ケード運動を行いながら出目端側へ向けて移動する間に
加熱される。
The cement raw material, which has been preheated and partially calcined in the suspension preheater as described above and heated to 800 to 900'C, is then fed into the rotary kiln, where it is heated in a cascade motion toward the exposed end. Heats up while moving.

こうしてキルンの中間部付近において120゜乃至13
00°C稈度の温度領域に達した原料粉末の一部は溶融
により液相をヰして造粒作用を受け、最高温度が145
0°C稈度に達するキルン内「1側の焼成帯にかけて造
粒物の成長が継続される。
In this way, the angle between 120° and 13° near the middle of the kiln
A part of the raw material powder that reached the temperature range of 00°C culm melted and changed into a liquid phase and underwent granulation, and the maximum temperature reached 145°C.
The granules continue to grow in the firing zone on the first side of the kiln, which reaches a culm degree of 0°C.

セメント原料中の酸化鉄分は、比較的溶融温度が低く、
ト述のクリンカの造粒、形成反応に際して溶媒の役割を
果たす。
Iron oxide in cement raw materials has a relatively low melting temperature.
It plays the role of a solvent during the clinker granulation and formation reaction described above.

とごろで、サスペンションブレヒータを接続したロータ
リキルンでは、キルンの処理能力が大きい為キルン軸方
向の原料移動速度が速くなるように設定され、そのため
他の焼成方式と較べてキルン内の造粒領域が広くなって
いる。
In a rotary kiln connected to a suspension breheater, the processing capacity of the kiln is large, so the material movement speed in the axial direction of the kiln is set to be faster. is getting wider.

このように広い造粒領域で造粒作用が行われると、原料
の流れ方向に見て造粒領域の上流部で溶媒としての酸化
鉄分の溶融が促進され、この部分では造粒作用が良好に
行われることになるが、かかる初期の造粒に於いて酸化
鉄分が多く消費されるため、造粒領域の後半(下流部)
では未反応の原料粉末中の酸化鉄分が相対的に不足し、
良好な造粒作用を行うことが出来ず、初期の造粒作用に
よって肥大した大径の塊状クリンカや、造粒作用から取
り残された細粒状クリンカが多く形成され、中間的な適
正粒度を有する細粒状クリンカの鞭が相対的に減少する
ことになる。特にキルン内容積当たりの処理能力が大で
ある仮焼炉付きサスペンションブレヒータに接続したロ
ータリキルンでは、土建の傾向が顕著となる。
When the granulation effect is performed in such a wide granulation area, the melting of iron oxide as a solvent is promoted in the upstream part of the granulation area when viewed in the flow direction of the raw material, and the granulation effect is improved in this area. However, since a large amount of iron oxide is consumed in the initial granulation, the latter half (downstream part) of the granulation region is
In this case, the iron oxide content in the unreacted raw material powder is relatively insufficient,
Good granulation cannot be performed, and many large-diameter lumpy clinkers enlarged by the initial granulation and fine granular clinker left behind from the granulation are formed, resulting in fine particles with an intermediate appropriate particle size. The whipping of granular clinker will be relatively reduced. The tendency toward earthworks is particularly noticeable in rotary kilns connected to suspension breheaters with a calciner, which have a large processing capacity per kiln internal volume.

この点、サスペンションブレヒータを原料人「1端側に
接続した従来のロータリキルンの形状は、主として第2
図(a)に示ずような直筒状胴体20が使用され、中に
は大目端部に於ける胴体2Iの直径を出口側胴体22よ
り大きくしたキルン23 (第2図(b)参照)や、逆
に出口側胴体24の直径を入口側胴体25の直径より大
きくしたキルン26(第2図(c)参照)、更には第2
図(d)に示すように入口側27及び出口側28の胴部
の直径を中間部胴体29よりも拡大したキルン30等の
異径キルンが使用或いは提案されている。しかしこれら
の形状ではキルン内の造粒作用を積極的に制御する機能
に乏しく、得られたクリンカの粒度幅を適正化しうるも
のではなかった。
In this respect, the shape of the conventional rotary kiln in which the suspension breheater is connected to the first end of the raw material is mainly
A straight cylindrical body 20 as shown in Figure 2(a) is used, and there is a kiln 23 in which the diameter of the body 2I at the large end is larger than that of the outlet side body 22 (see Figure 2(b)). Or, conversely, a kiln 26 in which the diameter of the outlet side body 24 is larger than the diameter of the inlet side body 25 (see FIG. 2(c)), or even a second
Kilns with different diameters, such as a kiln 30, in which the diameters of the bodies on the inlet side 27 and the outlet side 28 are larger than those of the intermediate body 29, as shown in FIG. 3(d), are used or proposed. However, these shapes lack the ability to actively control the granulation action within the kiln, and it has not been possible to optimize the particle size range of the obtained clinker.

従って本発明の目的は、従来のロータリキルンの諸機能
に加えて、従来は余り考慮されていなかったキルン内で
の原料の造粒機能に着目し、キルン1lti体に特殊な
形状を与えることにより造粒域に好適な造粒条件を形成
し、比較的精度の揃った*■粒状クリンカを多く形成す
ることによりセメント製造工程における品質及び性能面
の同士を図らんとすることにあり、サスペンションプレ
ヒータを原料人口端側に有する従来型ロータリキルンに
おける精度幅についての前記欠点が造粒領域の拡大によ
ることに着目し、キルン軸方向の比較的狭い領域におい
て造粒操作が完了するように構成し、これにより造粒領
域の下流側において酸化鉄分が相対的に不足した未反応
原料粉末が残される事態を緩和し、クリンカの粒度を適
正な幅に制限せんとするものである。
Therefore, in addition to the various functions of the conventional rotary kiln, the purpose of the present invention is to focus on the function of granulating raw materials within the kiln, which has not been considered much in the past, and to provide a special shape to the kiln body. The aim is to improve quality and performance in the cement manufacturing process by creating suitable granulation conditions in the granulation zone and forming a large amount of granular clinker with relatively uniform accuracy. Focusing on the fact that the above-mentioned drawback in terms of accuracy range in a conventional rotary kiln having a kiln at the raw material end is due to the expansion of the granulation area, the kiln is constructed so that the granulation operation is completed in a relatively narrow area in the axial direction of the kiln, This is intended to alleviate the situation in which unreacted raw material powder with a relative lack of iron oxide remains on the downstream side of the granulation region, and to limit the particle size of the clinker to an appropriate width.

第3図(a)に本発明の一実施例に係るロータリキルン
の側面図を示す。図の左端から原料がキルンに供給され
る。図に明らかな如く、キルン胴体Kaば中間部に前後
の胴部よりも直径の拡大した拡大胴部31を有しており
、この拡大胴部31は、キルン内の原料が流れる方向に
拡開するテーパ状拡経部32と、同じ方向に縮径される
テーパ状縮径部33とを接続して成り立っており、かか
る拡大胴部31のキルン軸方向における配設位置は、キ
ルンの大目端から供給された後、加熱されつつ下流側へ
移動する原料粉末に造粒作用が与えられるような温度領
域、即ぢ造粒領域とされる。
FIG. 3(a) shows a side view of a rotary kiln according to an embodiment of the present invention. Raw materials are fed into the kiln from the left end of the diagram. As is clear from the figure, the kiln body Ka has an enlarged body part 31 in the middle part thereof, which has a larger diameter than the front and rear body parts, and this enlarged body part 31 expands in the direction in which the raw materials in the kiln flow. It is constructed by connecting a tapered enlarged part 32 that extends in diameter and a tapered reduced diameter part 33 that reduces its diameter in the same direction, and the arrangement position of this enlarged body part 31 in the kiln axial direction is determined by the diameter of the kiln. The temperature region is defined as a granulation region, which is a temperature region in which a granulation action is given to the raw material powder that is supplied from the end and moves downstream while being heated.

L記のような拡大胴部におげろ造粒現象につき、以下説
明する。
The phenomenon of granulation in the enlarged body as shown in letter L will be explained below.

種々の直径の粒子が混在する原料の回転円筒胴内でのカ
スケード運動を円筒軸に直角な断面について実験により
観察すると、*■粒状の原料は層表面付近を転勤、落下
し、原料層の最下部にもぐり込んで円筒壁面の近くを円
筒の回転と共に持ち十げられ、最高位置に於いて原料層
の表面に現れるという1llL跡をとるが、細粒状又は
粉状の原料は層中央部或いは底部にも(り込んだまま滞
留されて層表面に現れにくいという軌道特性を持ってい
る従って拡大胴部31に到達した原料は拡径部32より
もこう配の急な縮径部33によりキルン軸方向の流れが
Iil+l−められ、ここで造粒作用を受け、粒径が次
第に大きくなるにつれ原料層の表面近くを連動するよう
になり、粒径の適度に発達した相粒子のみが拡大胴部3
1に形成された縮径部33による堰を乗り越えて下流側
へ移動し、粒径が未発達の細流及び粉末状原料は、拡大
胴部で堰+I=められて下流側への前進を妨げられ、拡
大胴部へ連続的に流入してくる粉末状原料と混合されて
造粒が行われる。
When we experimentally observed the cascade motion of raw materials containing particles of various diameters in a rotating cylindrical shell on a cross section perpendicular to the cylinder axis, we found that *■ granular raw materials transfer and fall near the surface of the layer, and reach the top of the raw material layer. It sinks into the bottom and is carried near the cylinder wall as the cylinder rotates, leaving a trace that appears on the surface of the raw material layer at the highest position, but fine grained or powdered raw materials are left in the center or bottom of the layer. Therefore, the raw material that has reached the enlarged body part 31 is moved in the kiln axial direction by the reduced diameter part 33, which has a steeper slope than the enlarged diameter part 32. The flow is Iil+l-, where it undergoes a granulation action, and as the particle size gradually increases, it moves near the surface of the raw material layer, and only the phase particles with an appropriately developed particle size move to the enlarged body 3.
1, the rivulet and powdered raw materials with undeveloped particle sizes are blocked by the weir + I = weir + I = impeded from advancing downstream. The powder is mixed with the powdered raw material that continuously flows into the expanded body, and granulation is performed.

このような造粒メカニズムにより、縮径部33により形
成される堰からはある程度以上に粒径の発達した*■粒
状の原料のみが後続する焼成帯へ移りJしてクリンカと
なり、細粒状及び粉末状原料は縮径部により堰止められ
て滞留し造粒活動を継続するので、焼成帯における細粒
状クリンカの量が減少し、粗粒状原料も拡大胴部の下流
側(焼成帯部)では、周囲に粉末状原料がない為それ以
上に成長して大きくなることが出来ず、従って塊状クリ
ンカの量も減少し、このようにして比較的粒度の揃った
粒状クリンカを多く形成することができるのである。
Due to such a granulation mechanism, only *■ granular raw materials whose particle size has developed beyond a certain level are transferred from the weir formed by the diameter-reduced portion 33 to the subsequent firing zone, where they become clinker and become fine granules and powder. The shaped raw material is dammed up by the reduced diameter section and remains there to continue granulation activity, so the amount of fine clinker in the firing zone decreases, and the coarse grained raw material is also reduced downstream of the expanded body section (calcination zone). Since there is no powdery raw material in the surrounding area, the clinker cannot grow further and become larger, and therefore the amount of lumpy clinker decreases, and in this way, it is possible to form a large amount of granular clinker with relatively uniform particle size. be.

前記拡大胴部の形状に関して、縮径部のこう配は、ある
程度急な方が堰11−め効果が大となる。また胴体内周
に沿い円環状に耐火物の突起を設けることにより堰を形
成するのと比較して、胴体の一部を拡大した拡大胴部の
縮径部により堰を形成しているため、内張り耐火物の構
造が安定し、又通過ガスに余分な圧損を生じることもな
い。
Regarding the shape of the enlarged body part, if the slope of the reduced diameter part is steeper to some extent, the effect of the weir 11 will be greater. Also, compared to forming a weir by providing an annular refractory protrusion along the inner circumference of the fuselage, the weir is formed by a reduced diameter part of the enlarged body part, which is an enlarged part of the fuselage. The structure of the refractory lining is stable, and no extra pressure loss occurs in the passing gas.

拡大胴部のキルン軸方向位置は、サスペンションプレヒ
ータの種類、従ってキルンへ供給する原料粉末の仮焼度
合に応じて変動する造粒領域の位置に合わせて選定され
る。例えば仮焼炉を付設しないサスペンションプレヒー
タよりも、仮焼炉付サスペンションプレヒータを付設し
たロータリキルンの方がキルンの入口側寄りに拡大胴部
が設けられる。
The position of the enlarged body in the axial direction of the kiln is selected in accordance with the position of the granulation region, which varies depending on the type of suspension preheater and, therefore, the degree of calcination of the raw material powder supplied to the kiln. For example, a rotary kiln equipped with a suspension preheater with a calcining furnace has an enlarged body closer to the inlet side of the kiln than a suspension preheater without a calciner.

尚実際のキルンでは、種々の1染業状態に応じて造粒領
域の位置がキルン軸方向に若干移動する為、キルン設計
に当たっては操業状態の変動に対応させるので、第3図
(b)に示ずようにキルン軸0 方向に複数の拡大胴部31.31・・・を設けることが
望ましい。また拡大胴部に於いて滞留する粉末原料の量
をil!lI整するため第3図(b)に示すよ・うな平
行胴部34を設けて拡大胴部31の容積を増大させるこ
とも可能であり、また複数の拡大胴部の直径を異ならせ
たり、拡大胴部に接続する前後の胴体を異径としたり、
更には円環状の突起物による堰を拡大胴部と組合せるこ
とも可能であり、これらの程度の設計変更は、本発明の
技術的範囲実施例 以上の説明において、本発明に係るロータリキルンはサ
スペンションプレヒータ及び仮焼炉の種類、或いは、ク
リンカ冷却機の種類等には制限されず、例えば冷却機と
して竪型充填層式のものを使用する場合にも、クリンカ
粒度幅が狭い為、冷却空気の偏流等の操業十の問題を伴
うことがなく、これにより焼成工程での燃料消費量の低
減を達成することが出来る。
In an actual kiln, the position of the granulation area moves slightly in the direction of the kiln axis depending on various dyeing industry conditions, so when designing the kiln, it is necessary to take into account fluctuations in the operating conditions. As shown, it is desirable to provide a plurality of enlarged body portions 31, 31, . . . in the 0 direction of the kiln axis. Also, the amount of powder raw material that stays in the expanding body is il! It is also possible to increase the volume of the enlarged body part 31 by providing a parallel body part 34 as shown in FIG. The front and rear torsos connected to the enlarged torso have different diameters,
Furthermore, it is also possible to combine a weir with an annular projection with an enlarged body, and these degree of design changes are within the scope of the present invention.In the embodiments described above, the rotary kiln according to the present invention is There are no restrictions on the type of suspension preheater and calciner, or the type of clinker cooler. For example, even if a vertical packed bed type cooler is used, the clinker particle size range is narrow, so the cooling air There are no operational problems such as drifting of the flow, and as a result, it is possible to reduce fuel consumption in the firing process.

本発明は以上述べた如くサスペンションプレヒータを原
料人口端側に接続したセメント原料焼成1 用ロータリキルンに於いて、キルン胴体中間の造粒領域
にテーパ状の拡径部と縮径部とを有する1又は2以トの
拡大胴部を形成したごとを特徴とするセメント原料焼成
用ロータリキルンであるから、サスペンションプレヒー
タからロータリキルン内に供給された原料の内、特に細
粒状、又は粉末状原料が造粒領域に設けた拡大)111
部に一時的に滞留され、造粒作用を受けて成長した*■
粒状原料となって、焼成領域へ送られるので、得られる
クリンカ中の細粒状又は粉末状のクリンカの量が減少し
、また焼成領域には造粒作用を生じる粉末状原料が少な
いので、それ以1−の造粒作用は生じず、塊状クリンカ
の量も減少し、而して比較的精度の揃った粒状クリンカ
を多く形成することに成功したものである。
As described above, the present invention provides a rotary kiln for firing cement raw materials 1 in which a suspension preheater is connected to the raw material end side, which has a tapered enlarged diameter part and a tapered diameter part in the granulation area in the middle of the kiln body. Or, since it is a rotary kiln for firing cement raw materials, which is characterized by forming two or more enlarged barrels, fine grained or powdered raw materials are particularly produced among the raw materials supplied into the rotary kiln from the suspension preheater. Enlargement provided in the grain area) 111
*■
Since the raw material becomes granular and is sent to the firing area, the amount of fine grain or powdered clinker in the clinker obtained is reduced, and since there is less powdered raw material in the firing area that causes granulation, no further The granulation effect of 1- did not occur, the amount of clumpy clinker was reduced, and a large amount of granular clinker with relatively uniform precision was successfully formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、セメント原料を予熱、焼成する時にもちいら
れる焼成装置の一例を示す工程図、第2図(a)乃至(
d)は、それぞれ従来のロータリキルンの概略形状を示
す側面図、第3図(a)、2 (b)は、それぞれ本発明の一実施例に係るロータリキ
ルンの概略形状を示す側面図である。 Ka・・・キルン胴体、   31・・・拡大胴部32
・・・拡径部、     33・・・縮径部34・・・
平行胴部。 出願人  株式会社 神戸製鋼所 代理人  弁理士  本庄 武勇 3 第1図 上t←         〉 第2図 0 旦 / 、、、31 (b)ロ=コ化主=] 419−
Figure 1 is a process diagram showing an example of a firing device used to preheat and fire cement raw materials, and Figures 2 (a) to (
d) is a side view showing the schematic shape of a conventional rotary kiln, and FIGS. 3(a) and 2(b) are side views showing the schematic shape of a rotary kiln according to an embodiment of the present invention, respectively. . Ka...kiln body, 31...enlarged body 32
... Expanded diameter section, 33... Reduced diameter section 34...
Parallel torso. Applicant Kobe Steel Co., Ltd. Agent Patent Attorney Takeyu Honjo 3 Figure 1, upper t

Claims (1)

【特許請求の範囲】 1、サスペンションプレヒータを原料人口端側に接続し
たセメント原料焼成用ロータリキルンに於いて、キルン
胴体中間の造粒領域にテーパ状の拡径部と縮径部とを有
する1又は2以上の拡大胴部を形成したことを特徴とす
るセメント原料焼成用ロータリキルン。 2、縮径部の勾配が拡径部の勾配より急である特許請求
の範囲第1項に記載したセメント原料焼成用ロータリキ
ルン。
[Scope of Claims] 1. A rotary kiln for firing cement raw materials in which a suspension preheater is connected to the raw material end side, which has a tapered enlarged diameter part and a tapered diameter part in the granulation region in the middle of the kiln body. Or a rotary kiln for firing cement raw materials, characterized in that two or more enlarged barrels are formed. 2. The rotary kiln for firing cement raw materials according to claim 1, wherein the slope of the reduced diameter portion is steeper than the slope of the expanded diameter portion.
JP637583A 1983-01-18 1983-01-18 Rotary kiln for baking cement raw material Granted JPS59131878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP637583A JPS59131878A (en) 1983-01-18 1983-01-18 Rotary kiln for baking cement raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP637583A JPS59131878A (en) 1983-01-18 1983-01-18 Rotary kiln for baking cement raw material

Publications (2)

Publication Number Publication Date
JPS59131878A true JPS59131878A (en) 1984-07-28
JPH0128874B2 JPH0128874B2 (en) 1989-06-06

Family

ID=11636628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP637583A Granted JPS59131878A (en) 1983-01-18 1983-01-18 Rotary kiln for baking cement raw material

Country Status (1)

Country Link
JP (1) JPS59131878A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004250260A (en) * 2003-02-19 2004-09-09 Hisashi Ikeda Method and apparatus for firing into cement clinker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004250260A (en) * 2003-02-19 2004-09-09 Hisashi Ikeda Method and apparatus for firing into cement clinker
JP4582438B2 (en) * 2003-02-19 2010-11-17 恒 池田 Cement clinker firing method and firing apparatus

Also Published As

Publication number Publication date
JPH0128874B2 (en) 1989-06-06

Similar Documents

Publication Publication Date Title
PL190049B1 (en) Method of and apparatus for obtaining cement clinker using blast furnace slag
CA1285761C (en) Plant for manufacturing cement clinker
GB2127946A (en) A method of and a plant for burning or roasting fine-grained material
JPS59131878A (en) Rotary kiln for baking cement raw material
US3603569A (en) Kiln preheat and drying section
AU5644500A (en) Method and apparatus for producing reduced iron
JPS6086374A (en) Rotary kiln for baking cement raw material
JPH0676240B2 (en) Spouted bed granulator
JPS63149333A (en) Coating method for powdery coke on green pellet for burnt agglomerated ore
JP3223467B2 (en) Method and apparatus for manufacturing cement clinker
JPS5839789B2 (en) Heating equipment for powder and granular raw materials such as cement
CN102775079A (en) Lime powder calcination device
JP3220077B2 (en) Method and apparatus for manufacturing cement clinker
JPH01148737A (en) Cement calcinating device
JPS63149332A (en) Production of burnt agglomerated ore
JPH092850A (en) Production of cement clinker
JPH0437020B2 (en)
JP2005248271A (en) Method for granulating sintering raw material
JP2629113B2 (en) Operating method of waste melting furnace
AU762647B2 (en) Apparatus for producing reduced iron
JPH0760065B2 (en) Method for preventing discharge shut-off in a spouted bed or fluidized bed furnace
JP2919906B2 (en) Fluid medium and method for producing the same
JPS6361880A (en) Cement baking device
JPS6026580B2 (en) Fluidized bed firing equipment
JPH01148736A (en) Calcining method of cement