JPS59131774A - Mooring type multiple direction wave force converting device - Google Patents

Mooring type multiple direction wave force converting device

Info

Publication number
JPS59131774A
JPS59131774A JP58006405A JP640583A JPS59131774A JP S59131774 A JPS59131774 A JP S59131774A JP 58006405 A JP58006405 A JP 58006405A JP 640583 A JP640583 A JP 640583A JP S59131774 A JPS59131774 A JP S59131774A
Authority
JP
Japan
Prior art keywords
wave
air
chamber
waves
air chambers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58006405A
Other languages
Japanese (ja)
Other versions
JPS64597B2 (en
Inventor
Kuniya Watabe
渡部 国也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Original Assignee
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP58006405A priority Critical patent/JPS59131774A/en
Publication of JPS59131774A publication Critical patent/JPS59131774A/en
Publication of JPS64597B2 publication Critical patent/JPS64597B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/141Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector
    • F03B13/142Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector which creates an oscillating water column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE:To pick up wave energy efficiently and permit to moor the device in the area of sea having soft bottom by a method wherein a plurality of air chambers, having different volumes, are arranged into a circular configuration substantially in accordance with the direction of the wave. CONSTITUTION:A plurality of bulkheads are provided between a sheathing body 52 and a buoyancy chamber 51 and a plurality of air chambers 54, having substantially fan-shaped sections, are formed by the bulkheads 53, the buoyancy chamber 51 and the sheathing body 52 while these plural air chambers 54 are arranged in the substantially circular configuration in accordance with the direction of the wave. According to this method, the movements of the waves, coming from every directions, may be converted efficiently into a power in accordance with the conditions of the waves and the device may be moored in the area of sea in which the wave conditions are severe or the bottoms are soft, since the outer figure thereof is like a column and the resistance thereof against the pressure or the stream of the wave is small.

Description

【発明の詳細な説明】 この発明は比較的深い海域あるいは海底地質の悪い浅海
域に設置され、波エネルギーよシ動力を得る係留式多方
向波力変換装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a moored multidirectional wave power conversion device that is installed in a relatively deep sea area or a shallow sea area with poor seabed geology and obtains wave energy and shear force.

周知のように、海波のエネルギーは岸側よシ沖側のほう
が大きい。また、比較的深い海域における水深と波エネ
ルギーの関係は海面に近いほど大きく、水深が深くなる
と急速に小さくなり、波長の半分の水深ではほとんど水
分子は動かない。一方、波向は海上を吹く風あるいは水
深線などの影響を受は地点によシ、相当異なって分布出
現するものである。
As is well known, the energy of ocean waves is greater on the offshore side than on the shore side. In addition, the relationship between water depth and wave energy in relatively deep oceans is larger as it gets closer to the sea surface, and rapidly decreases as the water depth increases, and water molecules hardly move at a depth of half the wavelength. On the other hand, the direction of waves is influenced by the wind blowing on the sea or the water depth line, and the distribution appears to be quite different depending on the location.

第1図はある地点の浅海域における年間の波向分布の一
例を示すものであシ、実際の海波はこのようにどの瞬間
もいろいろな方向から到来しているものである。
Figure 1 shows an example of the yearly distribution of wave directions in shallow waters at a certain point; in this way, actual ocean waves arrive from various directions at any given moment.

上記のような特性を有する波エネルギーを利用する波力
変換装置はこのような条件に効果的に対応することが望
ましい。
It is desirable that a wave power conversion device that utilizes wave energy having the above-mentioned characteristics effectively cope with such conditions.

第2図は従来の浮堤体型波力変換装置を示すものである
。この場合、浮堤体21は複数の空気室22の開口部2
3が最多波向方向に向くよう係留され空気室22と連通
される収容室24には空気タービン25が設けられる。
FIG. 2 shows a conventional floating embankment type wave power conversion device. In this case, the floating embankment body 21 has the openings 2 of the plurality of air chambers 22.
An air turbine 25 is provided in a storage chamber 24 which is moored so that the wave 3 faces the direction of the most frequent waves and communicates with the air chamber 22 .

このような浮堤体型の場合、浅海域に設置し、たとえ最
適方向に向けたとしても、第1図に示すような各波エネ
ルギーの大きさを考慮しない波向性だけで、波エネルギ
ーの減少は20%程度予測される。さらに、方向角度が
広がるほど大きい波であることを考えるとさらに損失が
犬きく、効率良く波エネルギーを取出すことは困難であ
る。
In the case of such a floating embankment type, even if it is installed in shallow water and oriented in the optimal direction, the wave energy will decrease due to wave directionality without considering the size of each wave energy as shown in Figure 1. is predicted to be around 20%. Furthermore, considering that the wider the directional angle is, the larger the wave is, the loss becomes even greater, making it difficult to extract wave energy efficiently.

また、装置正面に平行して波が打寄せてきた場合には、
各空気室22で得られたエネルギーが重畳されるため、
電力を得る場合などは必ず平滑化対策を要し、付帯設備
の容量も増大しなければならない。さらには波の回り込
みが少ないだめ多大■波力が作用し、大きな係留力がか
がるなど技術的および経済的な面で問題を有している。
Also, if waves are hitting parallel to the front of the device,
Since the energy obtained in each air chamber 22 is superimposed,
When obtaining electricity, smoothing measures must be taken and the capacity of ancillary equipment must also be increased. Furthermore, because the waves do not wrap around, a large amount of wave force acts on them, creating a large mooring force, which poses technical and economical problems.

第3図は従来考えられている他の波力変換装置である。FIG. 3 shows another conventionally considered wave power conversion device.

31は船形をした浮体であシ、この浮体31の内部には
複数の空気室32が設けられる。この空気室32は浮体
3Iの底部の開口部33によシ海中と連通されこの開口
部33を介して出入する波によシ空気流が発生される。
31 is a boat-shaped floating body, and a plurality of air chambers 32 are provided inside this floating body 31. This air chamber 32 is communicated with the sea through an opening 33 at the bottom of the floating body 3I, and an air current is generated by waves entering and exiting through the opening 33.

この空気流は空気室32と連通された例えば空気タービ
ン発電装置34に供給され、この発電装置34によって
電力が発生されるようになりている。また、前記浮体3
1は船首に設けられた係留施設35によって係留されて
いる。
This air flow is supplied to, for example, an air turbine power generator 34 that is in communication with the air chamber 32, and the power generator 34 generates electric power. In addition, the floating body 3
1 is moored by a mooring facility 35 provided at the bow of the ship.

上記構成の波力変換装置は浮体3Iが振れ回わることが
でき、波の方向に対して常に正面を向く方式であるが、
船首側の一点係留であり、しかも浮体31の幅が狭いた
め、浮体31の動揺が犬きく、エネルギーの捕捉が小さ
い欠点を有している。また、浮体31を発電船として使
用し、ケーブルを陸地との間に布設する場合には浮体側
ケーブルの屈折動揺や係留施設絡まシに起因する故障な
どの問題を有している。
In the wave power conversion device with the above configuration, the floating body 3I can swing around and always faces forward in the direction of the waves.
Since the mooring is done at a single point on the bow side and the width of the floating body 31 is narrow, the floating body 31 has the disadvantage that it moves a lot and captures little energy. Furthermore, when the floating body 31 is used as a power generating boat and cables are laid between it and the land, there are problems such as failures due to bending and sway of the floating body side cables and entanglement of mooring facilities.

第4図は本願出願人が出願した全方向波力変換装置(特
願昭56−141265号)である。
FIG. 4 shows an omnidirectional wave power conversion device (Japanese Patent Application No. 141265/1982) filed by the applicant of the present application.

ここで、41は円筒状の固定台、42は固定台41の内
部に設けられた重量物、43は固定台4Iの底部に設け
られ、固定台4Iを海底に固定する突出部、44は固定
台41の周囲に設けられた複数の空気室、45は空気室
44と海中とを連通ずる開口部、46は空気室44と外
部相互を連通ずる収容室、47は収容室46の内部に設
けられた往復流空気タービンである。
Here, 41 is a cylindrical fixed base, 42 is a heavy object provided inside the fixed base 41, 43 is a protrusion provided at the bottom of the fixed base 4I and fixes the fixed base 4I to the seabed, and 44 is a fixed A plurality of air chambers are provided around the platform 41, 45 is an opening that communicates between the air chamber 44 and the sea, 46 is a storage chamber that communicates between the air chamber 44 and the outside, and 47 is provided inside the storage chamber 46. This is a reciprocating air turbine.

上記構成の波力変換装置は海岸に装置自体の重量あるい
はアンカーパイルを打込むなどして装置を固定している
。この固定方法は望ましいと考えられるが、軟弱な地盤
箇所であるとか、比較的深い海域に設置する場合は安定
性あるいは経済性で問題を有している。
The wave power conversion device having the above configuration is fixed to the shore by the weight of the device itself or by driving an anchor pile into the shore. Although this fixing method is considered desirable, it has problems with stability and economy when installed on soft ground or in relatively deep sea areas.

この発明は上記事情に基づいてなされたもので、その目
的とするところは波の波圧や流れの抵抗力をよシ小さく
シ、波浪状況に対応して極めて効率良く波エネルギーを
取出すことが可能であるとともに、エネルギーの大きい
比較的沖合の波力を利用することができる係留式多方向
波力変換装置を提供しようとするものである。
This invention was made based on the above circumstances, and its purpose is to further reduce wave pressure and flow resistance, and to make it possible to extract wave energy extremely efficiently in response to wave conditions. In addition, the present invention aims to provide a moored multi-directional wave power conversion device that can utilize relatively high-energy wave power located offshore.

以下、この発明の一実施例について図面を参照して説明
する。
An embodiment of the present invention will be described below with reference to the drawings.

第5図、第6図において、5ノは内部が中空とされた鉄
あるいはコンクリート等によって形成された浮力室であ
る。この浮力室51にはこれと偏心して外装体52が設
けられ、この外装体62によシ浮力室51が覆われる。
In FIGS. 5 and 6, numeral 5 indicates a buoyancy chamber made of iron, concrete, or the like and having a hollow interior. An exterior body 52 is provided eccentrically to the buoyancy chamber 51, and the buoyancy chamber 51 is covered by this exterior body 62.

この外装体52と浮力室51との間には所定間隔離間し
て複数個の隔壁53が設けられ、この隔壁53および浮
力室51、外装体52によシ断面略扇形状の空気室54
が複数個形成される。この空気室54は最多波向方向(
第6図に矢印Aで示す)を中心として波の進行方向に奥
行の長いものから順次略円形状となるよう配設される。
A plurality of partition walls 53 are provided between the exterior body 52 and the buoyancy chamber 51 at a predetermined distance.
are formed. This air chamber 54 is located in the direction of the maximum number of waves (
They are arranged in a substantially circular shape in the direction of wave propagation, starting from the one with the longest depth, with the center at the center (indicated by arrow A in FIG. 6).

この空気室54は外装体52の下端部に設けられた開口
部55によシ海中と連通される。また、このように外装
体52と浮力室51が偏心している場合は、装置全体の
平衡を保つため、バラスト73が設けられ、さらに、こ
の装置は最適な喫水を保つため、浮力と重液の平衡が保
たれている。また、この装置は外装体52の4箇所に設
けられた係留施設74によって係留される。
This air chamber 54 is communicated with the sea through an opening 55 provided at the lower end of the exterior body 52. In addition, when the exterior body 52 and the buoyancy chamber 51 are eccentric in this way, a ballast 73 is provided to maintain the balance of the entire device.Furthermore, this device maintains an optimal draft by balancing buoyancy and heavy liquid. Equilibrium is maintained. Further, this device is moored by mooring facilities 74 provided at four locations on the exterior body 52.

この係留においては奥行の長い空気室54が最多波向方
向に向くよう設定され、前記係留施設74は例えば最多
波向方向と一致する外装体52の直径両端部および、こ
の直径方向と直交する外装体52の直径両端部に設けら
れる。
In this mooring, the air chamber 54 having a long depth is set to face the direction of the most frequent waves, and the mooring facility 74 includes, for example, both diametrical ends of the exterior body 52 that coincide with the direction of the most frequent waves, and the exterior body 52 that is perpendicular to this diametric direction. It is provided at both diametrical ends of the body 52.

一方、前記浮力室51の上面部には略同心円状に隔壁5
6,57.58が設けられ、浮力室51の上面に前記空
気室54と分離された空気槽59が設けられる。前記隔
壁57の上方に位置する外装体52には隔壁57によっ
て分離され、前記空気室54と連通される吸排気孔60
および空気槽59と連通される吸気孔6Iがそれぞれ設
けられる。また、前記隔壁58にはそれぞれ空気室54
に対応して往復流タービン62が設けられ、このタービ
ン62の回転軸63は隔壁57を貫通されて前記隔壁5
6に設けられた空気圧縮機64にそれぞれ連結される。
On the other hand, a partition wall 5 is formed approximately concentrically on the upper surface of the buoyancy chamber 51.
6, 57, and 58 are provided, and an air tank 59 separated from the air chamber 54 is provided on the upper surface of the buoyancy chamber 51. The exterior body 52 located above the partition wall 57 has intake and exhaust holes 60 separated by the partition wall 57 and communicating with the air chamber 54.
and an intake hole 6I communicating with the air tank 59. Further, each of the partition walls 58 has an air chamber 54.
A reciprocating flow turbine 62 is provided correspondingly, and a rotating shaft 63 of this turbine 62 is passed through the partition wall 57 and is connected to the partition wall 5.
The air compressors 64 are connected to air compressors 64 provided in the air compressors 6 and 6, respectively.

前記タービン62は空気室54内の波動の変化(図示点
線の矢印)によって生ずる空気室54と吸排気孔60間
の空気流(図示実線の矢印)により一定方向に回転され
る。この回転力は回転軸63を介して空気圧縮機64に
伝達され、この圧縮機64によシ前記吸気孔61から外
気が取り入れられる。この外気は逆止弁65を介して前
記空気槽59に蓄積される。この空気槽59の中央部に
は同心円状に隔壁66が設けられ、この隔壁66には所
定間隔あけて流量調整弁67、ノズル68が設けられる
。この隔壁67の内部には主空気タービン69が設けら
れ、このタービン69は回転軸70によって浮力室51
に設けられた発電機71に連結される。前記主空気ター
ビン69には流量調整弁67を介して空気槽59内の平
滑且つ圧縮された空気が供給され、この空気によりター
ビ;/69が駆動される。しかして、発電機71によっ
て発電が行われ、また、隔壁66内に供給された空気は
排気孔72よシ外部に排出される。
The turbine 62 is rotated in a fixed direction by an air flow between the air chamber 54 and the intake/exhaust hole 60 (solid line arrows in the figure) caused by changes in wave motion within the air chamber 54 (dotted line arrows in the figure). This rotational force is transmitted to the air compressor 64 via the rotating shaft 63, and the compressor 64 takes in outside air from the intake hole 61. This outside air is accumulated in the air tank 59 via the check valve 65. A partition wall 66 is provided concentrically in the center of the air tank 59, and a flow rate regulating valve 67 and a nozzle 68 are provided on the partition wall 66 at predetermined intervals. A main air turbine 69 is provided inside this partition wall 67, and this turbine 69 is connected to the buoyancy chamber 51 by a rotating shaft 70.
It is connected to a generator 71 provided in the. Smooth and compressed air in the air tank 59 is supplied to the main air turbine 69 via a flow rate regulating valve 67, and the turbine 69 is driven by this air. Thus, the generator 71 generates electricity, and the air supplied into the partition wall 66 is discharged to the outside through the exhaust hole 72.

上記構成によれば、容積の異なる複数の空気室54を波
向に対応して略円形状に配設している。したがって、あ
らゆる方向より到来する波動を波浪状況に対応して効率
良く動力に変換することができるものである。
According to the above configuration, the plurality of air chambers 54 having different volumes are arranged in a substantially circular shape corresponding to the wave direction. Therefore, waves arriving from all directions can be efficiently converted into power in response to wave conditions.

また、この変換装置は比較的深海域に係留されるため、
エネルギーの大きな波動を利用できる利点を有している
Additionally, since this conversion device is moored in relatively deep waters,
It has the advantage of being able to utilize large waves of energy.

ざらに、外形が円柱状であるため波の波圧や流れの抵抗
力が小さく、係留が容易なものである。したがって、波
浪状況が厳しい海域あるいは海底が軟弱な海域にも係留
し得るものである。
In general, since the outer shape is cylindrical, wave pressure and flow resistance are small, making mooring easy. Therefore, it can be moored even in sea areas with severe wave conditions or soft seabeds.

次に、この発明の他の実施例について説明する。尚、第
5図、第6図と同一部分には同一符号を付し異なる部分
についてのみ説明する。
Next, other embodiments of the invention will be described. Note that the same parts as in FIGS. 5 and 6 are given the same reference numerals, and only the different parts will be explained.

第7図は外装体52の外形を円錐台形状とし、各空気室
54で発生された空気流を各空気室54と外部とを連通
ずる流通路75.76を介して空気タービン62に導ひ
き、このタービン62によって空気流を動力に変換する
ものである。この変換された動力は図示せぬ圧縮機ある
いは直接的に発電機に供給される。
In FIG. 7, the external shape of the exterior body 52 is a truncated cone shape, and the air flow generated in each air chamber 54 is guided to the air turbine 62 through flow passages 75 and 76 that communicate each air chamber 54 with the outside. , this turbine 62 converts airflow into power. This converted power is supplied to a compressor (not shown) or directly to a generator.

このような構成としても上記実施とほぼ同様の効果を得
ることができる。
Even with such a configuration, substantially the same effect as the above embodiment can be obtained.

第8図、第9図は空気室54および浮力室51をリング
状に配設した構成のものであり、浮力室51は各空気室
54に対応して形成される。これら浮力室51および空
気室54はそれぞれ同一形状とされており、各空気室5
4に対応して往復流タービン62および発電機81が設
けられる。
8 and 9 show a configuration in which air chambers 54 and buoyancy chambers 51 are arranged in a ring shape, and buoyancy chambers 51 are formed corresponding to each air chamber 54. FIG. These buoyancy chambers 51 and air chambers 54 have the same shape, and each air chamber 5
4, a reciprocating flow turbine 62 and a generator 81 are provided.

上記構成としても前記実施例と同様の効果を得ることが
できる。しかも、この構造の場合、1個の空気室54、
浮力室51、往復流カービン62および発電機81から
なる波力変換装置を1ユニツトとして分割形成し、これ
を係留海域において複数個結合して図示するようなリン
グ状の装置とすることが可能であるため、製造および運
搬が容易となる利点を有している。
Even with the above configuration, the same effects as in the above embodiment can be obtained. Moreover, in the case of this structure, one air chamber 54,
It is possible to divide the wave power conversion device consisting of the buoyancy chamber 51, the reciprocating flow carbine 62, and the generator 81 into one unit, and connect a plurality of them in the mooring area to form a ring-shaped device as shown in the figure. Therefore, it has the advantage of being easy to manufacture and transport.

尚、上記各実施例では空気室を略円形状に配置したが、
これに限らず円弧状あるいは楕円柱形状、多角柱形状と
してもよい。
In each of the above embodiments, the air chambers were arranged in a substantially circular shape.
The shape is not limited to this, but may be an arc shape, an elliptical cylinder shape, or a polygonal cylinder shape.

その他、この発明の要旨を変えない範囲で行程変形実施
可能なことは勿論である。
It goes without saying that other stroke modifications can be made without departing from the gist of the invention.

以上、詳述したようにこの発明によれば、波の波圧や流
れの抵抗力をよシ小さくシ、波浪状況に対応して極めて
効率良く波エネルギーを取出すことが可能であるととも
に、エネルギーの大きい比較的沖合の波力を利用するこ
とができる係留式多方向波力変換装置を提供できる。
As detailed above, according to the present invention, it is possible to significantly reduce wave pressure and flow resistance, and to extract wave energy extremely efficiently in response to wave conditions. It is possible to provide a moored multi-directional wave power conversion device that can utilize large wave power relatively offshore.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は浅海域における波向分布の一例を示す図、第2
図は従来の浮編体型波力変換装置を概略的に示す一部切
除した側面図、第3図は従来の船型波力変換装置を概略
的に示す側面図、第4図は固定式全方向波力変換装置の
構成を示す側断面図、第5図はこの発明に係わる多方向
波力変換装置の一実施例を示す側断面図、第6図は第5
図の上部断面図、第7図はこの発明の他の実施例を示す
側断面図、第8図は第7図と異なるこの発明の他の実施
例を示す側断面図、第9図は第8図の斜視図である。 5Z・・・浮力室、52・・・外装体、54・・・空気
室、55・・・開口部、59・・・空気槽、62・・・
往復流タービン、74・・・係留施設。 出願人代理人  弁理士 鈴 江 武 彦第1図   
   第2図 第3図 第4図 第7図 べ9 第8図 493− 第9図
Figure 1 shows an example of wave direction distribution in shallow waters;
The figure is a partially cutaway side view schematically showing a conventional floating structure type wave power converter, Figure 3 is a side view schematically showing a conventional ship type wave power converter, and Figure 4 is a fixed omnidirectional FIG. 5 is a side sectional view showing the configuration of a wave power conversion device. FIG. 5 is a side sectional view showing an embodiment of the multidirectional wave power conversion device according to the present invention.
7 is a side sectional view showing another embodiment of the invention, FIG. 8 is a side sectional view showing another embodiment of the invention different from FIG. 7, and FIG. 9 is a side sectional view showing another embodiment of the invention. FIG. 8 is a perspective view of FIG. 8; 5Z... Buoyancy chamber, 52... Exterior body, 54... Air chamber, 55... Opening, 59... Air tank, 62...
Reciprocating flow turbine, 74... mooring facility. Applicant's agent Patent attorney Takehiko Suzue Figure 1
Figure 2 Figure 3 Figure 4 Figure 7 Figure 9 Figure 8 493- Figure 9

Claims (1)

【特許請求の範囲】[Claims] 適度の喫水を保つよう係留された浮力室と、この浮力室
の周囲に略円形状あるいは略円弧状に配置され下端部が
水中に位置された複数個の空気室と、この空気室下端部
外面に設けられ波力を空気室内に導び〈開口部と、前記
浮力室の上方に設けられ前記空気室内部で発生された空
気流を動力に変換する手段とを具備したことを特徴とす
る係留式多方向波力変換装置。
A buoyancy chamber moored to maintain an appropriate draft, a plurality of air chambers arranged in a substantially circular or arc shape around the buoyancy chamber and with their lower ends submerged in the water, and the outer surface of the lower ends of the air chambers. A mooring comprising: an opening for guiding wave force into an air chamber; and a means for converting the airflow generated within the air chamber into power, provided above the buoyancy chamber. Multi-directional wave power conversion device.
JP58006405A 1983-01-18 1983-01-18 Mooring type multiple direction wave force converting device Granted JPS59131774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58006405A JPS59131774A (en) 1983-01-18 1983-01-18 Mooring type multiple direction wave force converting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58006405A JPS59131774A (en) 1983-01-18 1983-01-18 Mooring type multiple direction wave force converting device

Publications (2)

Publication Number Publication Date
JPS59131774A true JPS59131774A (en) 1984-07-28
JPS64597B2 JPS64597B2 (en) 1989-01-06

Family

ID=11637455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58006405A Granted JPS59131774A (en) 1983-01-18 1983-01-18 Mooring type multiple direction wave force converting device

Country Status (1)

Country Link
JP (1) JPS59131774A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294663A (en) * 1990-04-12 1991-12-25 Kentaro Ueda Method and device for wave power generation using continuous air chamber
US5510656A (en) * 1991-04-17 1996-04-23 Wells; Alan A. Wave energy converter
GB2460303A (en) * 2008-05-29 2009-12-02 Norman West Bellamy Ring of wave energy converters supply air to common turbine
JP2010507041A (en) * 2006-10-20 2010-03-04 マリタイム・テクノロジーズ・リミテッド Floating wave energy converter and method for improving the efficiency of a floating wave energy converter
JP2010525214A (en) * 2007-04-18 2010-07-22 シーベイスト アクチボラグ Wave power unit, buoy, use of wave power unit, and method of generating electrical energy
US20130009402A1 (en) * 2010-03-18 2013-01-10 Williams Arthur R Wave-energy converter
JP2017516027A (en) * 2014-05-14 2017-06-15 セネル,インヘネリア イ システマス,エセ.アー. Device to acquire wave energy
CN109779822A (en) * 2019-01-16 2019-05-21 中国科学院广州能源研究所 A kind of horizontal straight pipe dual chamber apparatus for generating electricity by wave force
CN111878295A (en) * 2020-06-18 2020-11-03 王保林 Navigation mark for inshore based on wave energy power generation
CN113446147A (en) * 2021-06-23 2021-09-28 哈尔滨工程大学 Floating type net cage integrating OWC power generation unit and OWC power generation unit array

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143845A (en) * 1977-05-19 1978-12-14 Hitachi Zosen Corp Rock amplification type wave power generator
JPS566077A (en) * 1979-06-27 1981-01-22 Yasuhiro Manabe Generation device with resistance plate utilizing up and down movement of wave

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143845A (en) * 1977-05-19 1978-12-14 Hitachi Zosen Corp Rock amplification type wave power generator
JPS566077A (en) * 1979-06-27 1981-01-22 Yasuhiro Manabe Generation device with resistance plate utilizing up and down movement of wave

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03294663A (en) * 1990-04-12 1991-12-25 Kentaro Ueda Method and device for wave power generation using continuous air chamber
US5510656A (en) * 1991-04-17 1996-04-23 Wells; Alan A. Wave energy converter
JP2010507041A (en) * 2006-10-20 2010-03-04 マリタイム・テクノロジーズ・リミテッド Floating wave energy converter and method for improving the efficiency of a floating wave energy converter
JP2010525214A (en) * 2007-04-18 2010-07-22 シーベイスト アクチボラグ Wave power unit, buoy, use of wave power unit, and method of generating electrical energy
GB2460303A (en) * 2008-05-29 2009-12-02 Norman West Bellamy Ring of wave energy converters supply air to common turbine
US20130009402A1 (en) * 2010-03-18 2013-01-10 Williams Arthur R Wave-energy converter
JP2017516027A (en) * 2014-05-14 2017-06-15 セネル,インヘネリア イ システマス,エセ.アー. Device to acquire wave energy
CN109779822A (en) * 2019-01-16 2019-05-21 中国科学院广州能源研究所 A kind of horizontal straight pipe dual chamber apparatus for generating electricity by wave force
CN111878295A (en) * 2020-06-18 2020-11-03 王保林 Navigation mark for inshore based on wave energy power generation
CN113446147A (en) * 2021-06-23 2021-09-28 哈尔滨工程大学 Floating type net cage integrating OWC power generation unit and OWC power generation unit array

Also Published As

Publication number Publication date
JPS64597B2 (en) 1989-01-06

Similar Documents

Publication Publication Date Title
AU694772B2 (en) Wave energy device
US9657710B2 (en) Dynamic tuning for wave energy conversion
KR20170140289A (en) Hull for win-win wind turbine platform
EP3874161B1 (en) Tuned mass damper for floating structures
AU2009326019B2 (en) Wave energy convertor
CN107002638B (en) For the floating platform using wind energy
JP6607867B2 (en) Floatable support structure for offshore wind turbines or other devices
JPH08502111A (en) Wave force utilization device based on buoy
AU2006274564A1 (en) Free floating wave energy converter
JPS59131774A (en) Mooring type multiple direction wave force converting device
JP3493130B2 (en) Wave power generator
WO2019135996A1 (en) Inertial water column wave energy converter
CN110949633A (en) Barge type floating fan system and floating fan platform
CN106759454A (en) A kind of entirely latent separate type blower foundation
KR20150041152A (en) Wave energy conversion
JPH0151674B2 (en)
US4464578A (en) Wave energy converter
JP5526801B2 (en) Power generator using mooring lines for floating structures
US11932360B2 (en) Tuned mass damper for floating structures
JP2002529629A (en) A caisson for absorbing wave energy
CN113530761B (en) Floating type foundation of offshore wind turbine generator set with grid type structure and construction method
JP2002508048A (en) Tidal turbine equipment
JPS58160562A (en) Multidirectional wave force converter
EP3423704A1 (en) Wave power device
JPS5844277A (en) Omnidirectional wave force converter