JPS59131753A - Hot gas engine - Google Patents

Hot gas engine

Info

Publication number
JPS59131753A
JPS59131753A JP557083A JP557083A JPS59131753A JP S59131753 A JPS59131753 A JP S59131753A JP 557083 A JP557083 A JP 557083A JP 557083 A JP557083 A JP 557083A JP S59131753 A JPS59131753 A JP S59131753A
Authority
JP
Japan
Prior art keywords
heater
cooler
regenerator
expansion cylinder
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP557083A
Other languages
Japanese (ja)
Other versions
JPS6364622B2 (en
Inventor
Kenji Hashimoto
見次 橋本
Tokio Hizawa
樋沢 登喜夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP557083A priority Critical patent/JPS59131753A/en
Publication of JPS59131753A publication Critical patent/JPS59131753A/en
Publication of JPS6364622B2 publication Critical patent/JPS6364622B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To make the engine with a low cost structure suitable for a training aid by a method wherein a heater, a cooler, a regenerator and cylinders are arranged in compact and the heater is formed integrally by brazing it in a furnace or the like in order to improve the heat transfer effect thereof. CONSTITUTION:The high-temperature expansion cylinder 35 and the regenerator 35 are arranged in parallel between the heater 102 and the cooler, the low-temperature compression cylinder is arranged coaxially with the high-temperature expansion cylinder 35 above the cooler and the opening of the regenerator 37 is communicated with the insides of the high-temperature expansion cylinder 35 and the low-temperature compression cylinder through the heater 102 and the cooler. The heater 102 is constituted by a partitioning plate 49, wound in spiral with a small clearance, and two sheets of plate members 1, 2 while the plate members 1, 2 and the partitioning plate 49 are formed integrally under pinching the partitioning plate 49 between the plate members by the method of brazing them in the furnace or the like. A recess 50 is provided on the plate member 1 at the side of heating.

Description

【発明の詳細な説明】 本発明は教材用に適した熱ガス機関の構造に関するもの
であシ、その目的とするところは熱ガス機関の主な構成
要素である加熱器、冷却器、再生器およびシリンダーを
コンパクトに配置するとともに、該加熱器を炉中ロー付
は法等により一体的に形成し、伝熱効果を高め、しかも
低コストで製作可能にすることにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a hot gas engine suitable for teaching materials, and its purpose is to provide a heater, a cooler, and a regenerator, which are the main components of the hot gas engine. In addition to arranging the cylinder compactly, the heater is integrally formed by a method such as brazing in a furnace, thereby improving the heat transfer effect and making it possible to manufacture it at low cost.

既に知られているスターリングエンジン等の熱ガス機関
は、密閉空間内に封入した空気、水素、ヘリウム等の作
動ガスを加熱、冷却することによシ、作動ガスの膨張と
圧縮を繰シ返して動力を発生するよりにした外燃機関で
あυ、熱効率が高くしかも騒音が低い等の理由で近年そ
の研究が盛んに行なわれつつアシ、その研究段階におい
て取扱いおよび操作が容易でかつ小容量の加熱源でも効
率よく良好に作動し得る小出力の教材用熱ガス機関が望
まれている。
Heat gas engines such as the already known Stirling engine repeatedly expand and compress the working gas by heating and cooling the working gas such as air, hydrogen, helium, etc. sealed in a closed space. It is an external combustion engine that is designed to generate power, and has been actively researched in recent years due to its high thermal efficiency and low noise. There is a need for a small-output hot gas engine for teaching materials that can operate efficiently and well even with heating sources.

そのためには水素、ヘリウム等の高価なガヌを使うよシ
大気圧空気を作動ガスとして使う方が手軽で安全である
。他方、水素、ヘリウム等のガスを使う熱ガス機関では
出力を増大させるためにそれらの作動ガスの内部圧力を
高める必要があシ、そのためには複雑で性能のよいシー
ル構造を必要としていたが、小出力の空気を用いた教材
用熱ガス機関では作動ガス(空気)の洩れを最小におさ
えれば大気圧を平均圧力として有効に作動しうろことが
知られている。
For this purpose, instead of using expensive materials such as hydrogen or helium, it is easier and safer to use atmospheric pressure air as the working gas. On the other hand, in hot gas engines that use gases such as hydrogen and helium, it is necessary to increase the internal pressure of the working gas in order to increase the output, and this requires a complex and high-performance seal structure. It is known that hot gas engines for teaching materials that use small-output air can operate effectively with atmospheric pressure as the average pressure if the leakage of the working gas (air) is kept to a minimum.

本発明は上記の点に鑑み作動ガスとして空気を用いると
ともに作動ガス空間を作動ガスが有効に往復動するよう
に構成し、このことで小出力ながら効率のよい熱ガス機
関を得ようとするものである。
In view of the above points, the present invention uses air as the working gas and configures the working gas space so that the working gas can effectively reciprocate, thereby obtaining a hot gas engine with low output but high efficiency. It is.

以下従来例を含む図面を用いて本発明の詳細な説明する
が、第1図は従来の熱ガス機関の構造を示す正面図、第
2図は同様の平面図、第6図は同様の右側面図、第4図
は第1図のA−A線断面図、第5図は第1図の13−E
線断面図、第6図は従来の他の加熱器を示す主要断面図
、第7図は本発明の一実施例における加熱器を示す主要
断面図、第8図は同様における仕切板を示す平面図であ
る。
The present invention will be described in detail below using drawings including conventional examples. FIG. 1 is a front view showing the structure of a conventional hot gas engine, FIG. 2 is a similar plan view, and FIG. 6 is a similar right side view. 4 is a cross-sectional view taken along line A-A in FIG. 1, and FIG. 5 is a sectional view taken along line 13-E in FIG.
A line sectional view, FIG. 6 is a main sectional view showing another conventional heater, FIG. 7 is a main sectional view showing a heater in an embodiment of the present invention, and FIG. 8 is a plane showing a partition plate in the same. It is a diagram.

なお本発明と従来例とは共通な構成が含1れるため、第
7図と第8図以外の図面をも参照して説明する。
Note that since the present invention and the conventional example include common configurations, the description will be made with reference to drawings other than FIGS. 7 and 8.

主に第6図、第4図を参照して、102は2枚の板材1
,2をシール部材8を介して重合形成した加熱器であシ
、506は加熱器102同様の冷却器であシ、これは冷
却筒6の底板と板材5をOリング64を介して重ね合わ
せて形成したものである。加熱器102と冷却器506
′の作動ガス伝熱側壁には環状の溝66、ろ8が切シ込
まれている。加熱器102と冷却器506は間隔を介し
て互いに対向し、両者間に高温膨張シリンダーろと再生
器4とが並列に配置される。ところで高温膨張シリンダ
ー6の加熱器102と冷却器506に接する部分はシー
ル部材9,40でシールされておシ、同様に再生器4の
端面もシール部材10゜41でシールされている。この
ため高温膨張シリンダー3と再生器4がら空気(以下構
成説明において作動ガスと呼ぶ。)が洩れることはない
。また再生器4はその両開口が加熱器102および冷却
器506の溝ろ6.ろ8を通じて高温膨張シリンダー6
および低温圧縮シリンダー7の内部に連通され、内部に
図示しないが細かいメツシーの金網が多数枚充填されて
いる。
Mainly referring to FIG. 6 and FIG. 4, 102 indicates two plates 1.
, 2 are polymerized via a sealing member 8, and 506 is a cooler similar to the heater 102, in which the bottom plate of the cooling cylinder 6 and the plate material 5 are overlapped via an O-ring 64. It was formed by Heater 102 and cooler 506
An annular groove 66 and a filter 8 are cut into the working gas heat transfer side wall of '. The heater 102 and the cooler 506 face each other with a gap between them, and the high temperature expansion cylinder filter and the regenerator 4 are arranged in parallel between them. By the way, the portions of the high-temperature expansion cylinder 6 that contact the heater 102 and the cooler 506 are sealed with seal members 9 and 40, and similarly, the end face of the regenerator 4 is also sealed with seal members 10 and 41. Therefore, air (hereinafter referred to as working gas in the configuration description) will not leak from the high temperature expansion cylinder 3 and the regenerator 4. The regenerator 4 has both openings connected to the grooves 6. of the heater 102 and the cooler 506. High temperature expansion cylinder 6 through filter 8
It communicates with the inside of the low-temperature compression cylinder 7, and the inside is filled with a large number of fine mesh wire meshes (not shown).

さて前記した冷却器506の冷却筒6は冷却水槽44を
形成していてその底面には高温膨張シリンダー6と同一
軸上にシール部材46を介して低温圧縮シリンダー7を
配置しである。
The cooling cylinder 6 of the cooler 506 described above forms a cooling water tank 44, on the bottom of which a low temperature compression cylinder 7 is arranged coaxially with the high temperature expansion cylinder 6 via a seal member 46.

さて次に動力伝達機構において、低温圧縮シリンダー7
の上面にはアームサポート11とクランクサポート12
が設けられている。またアームサポート11にはディス
プレーサ−ピストンアーム20とパワーピストンアーム
26の一端がそれぞれ連結ビン22.31で支持され、
クランフサポー ト12 、12にはクランク14のク
ランク軸42.42が回転自在に固定され、さらに該ク
ランク軸42.42にはフライホイールi5.isが固
定されている。
Now, next in the power transmission mechanism, the low temperature compression cylinder 7
Arm support 11 and crank support 12 are on the top of the
is provided. Further, one end of the displacer piston arm 20 and the power piston arm 26 are each supported by a connecting pin 22.31 on the arm support 11,
A crankshaft 42.42 of the crank 14 is rotatably fixed to the crank supports 12, 12, and a flywheel i5. is is fixed.

さて高温膨張シリンダー6と低温圧縮シリンダー7内に
はディスプレーサ−ピストン15とパワーピストン16
が配置され、両ピストン15゜16は両シリンダー3,
7内をある位相差(例えば900)をもってすシ合わせ
の往復運動をし得るようになっている。またディスプレ
ーサ−ピストン15の上部に一体形成されたディスプレ
ーサ−ガイド17は内空になっており、パワルビストン
16のピストンボディ62内ですり合わせの往復運動を
する。なおディスプレーサ−ガイド17の動きは後述の
連結板18の動きと同一である。
Now, inside the high temperature expansion cylinder 6 and the low temperature compression cylinder 7, there is a displacer piston 15 and a power piston 16.
are arranged, both pistons 15° 16 are connected to both cylinders 3,
It is possible to perform a reciprocating motion within 7 with a certain phase difference (for example, 900). Further, the displacer guide 17 integrally formed on the upper part of the displacer piston 15 is hollow and reciprocates within the piston body 62 of the power piston 16. The movement of the displacer guide 17 is the same as the movement of the connecting plate 18, which will be described later.

第5図をも参照するとそれぞれのピストン15゜16は
連結板18.19の一端に固定され、またそれぞれの連
結板18.19の他端は連結ピン21.27を介しディ
スプレーザーピストンアーム20およびパワーピストン
アーム2ろに連結されている。このためディスプレーザ
ーピストン15とパワーピストン16の往復運動により
両ピストンアーム20.23は揺動運動する。
Referring also to FIG. 5, each piston 15.16 is fixed to one end of a connecting plate 18.19, and the other end of each connecting plate 18.19 is connected to a displacer piston arm 20 and It is connected to power piston arm 2. Therefore, due to the reciprocating motion of the dispersor piston 15 and the power piston 16, both piston arms 20.23 swing.

一方デイスプレーサーピストンアーム20およびパワー
ピストンアーム23の他端は連結ヒン26.60を介し
て連接棒24.25に連結されまた該連接棒24.25
の他端はそれぞれベアリング29.29を介してクラン
ク14のクランクピン28に連結されている。このため
クランクピン28を固定したクランク車45,46,4
7゜48は回転運動をし同様にクランク車45.48に
固定したクランク軸42.42を介してフライホイール
1’3.13が回転運動する。
Meanwhile, the other ends of the displacer piston arm 20 and the power piston arm 23 are connected to a connecting rod 24.25 via a connecting hinge 26.60, and the connecting rod 24.25
The other ends are connected to the crank pin 28 of the crank 14 via bearings 29, 29, respectively. For this reason, the crank wheels 45, 46, 4 with the crank pin 28 fixed
7.48 rotates, and the flywheel 1'3.13 similarly rotates via a crankshaft 42.42 fixed to a crank wheel 45.48.

以上のような構成からなる従来例の作用について以下に
説明する。
The operation of the conventional example having the above configuration will be explained below.

まず冷却器506の冷却水槽44に冷却水を入れ、適当
な燃焼装置、たとえばガスバーナ66で加熱器102の
底面を加熱すると高温膨張シリンダー6、加熱器102
、再生器4、冷却器5o6゜低温圧縮シリンダー7の内
部空間に密封された作動ガスは加熱器102側で加熱さ
れ、冷却器50.15側で冷却される。このときフライ
ホイール13゜13を手動回転させるとクランク14の
クランクピン28に連結されている連接棒24.25が
作動し、これによシ各連結ピン26.50によって連結
されているディスプレーサ−ピストンアーム20、パワ
ーピストンアーム26が揺動する。この結果、前記各ア
ーム20.23に連結ピン21゜27で連結している連
結板18.19は上下動し起動力が与えられ、最終的に
はディスプレーサ−ピストン15とパワーピストン16
は温度と圧力の周期的な変化に同期してずシ合わせの往
復運動を継続する。というのは起動後はディスプレーザ
ーピストンアーム20とパワーピストンアーム26とは
ある位相差(例えば90°)をもって揺動することで、
連結板18.19に連結されているディスプレーサ−ピ
ストン15とパワーピストン16がそれぞれ高温膨張シ
リンダー6、および低温圧縮シリンダー7内を前記の位
相差で往復運動するため、内部空間に密封された作動ガ
スが加熱器側と冷却器側を移動するからである。
First, cooling water is poured into the cooling water tank 44 of the cooler 506, and when the bottom of the heater 102 is heated with a suitable combustion device, such as a gas burner 66, the high temperature expansion cylinder 6 and the heater 102 are heated.
, regenerator 4, cooler 5o6° The working gas sealed in the internal space of the low-temperature compression cylinder 7 is heated on the heater 102 side and cooled on the cooler 50.15 side. At this time, when the flywheel 13.degree. 13 is manually rotated, the connecting rod 24.25 connected to the crank pin 28 of the crank 14 is actuated, thereby causing the displacer piston to be connected by each connecting pin 26.50. The arm 20 and the power piston arm 26 swing. As a result, the connecting plates 18.19 connected to the arms 20.23 by the connecting pins 21.27 move up and down, applying a starting force, and finally displacer piston 15 and power piston 16.
continues a reciprocating motion that is not synchronized with periodic changes in temperature and pressure. This is because after startup, the displacer piston arm 20 and the power piston arm 26 swing with a certain phase difference (for example, 90 degrees).
Since the displacer piston 15 and the power piston 16 connected to the connecting plates 18 and 19 reciprocate within the high-temperature expansion cylinder 6 and the low-temperature compression cylinder 7 with the above-mentioned phase difference, the working gas sealed in the internal space is released. This is because it moves between the heater side and the cooler side.

換言すれば起動後は密封された作動ガスが加熱空間65
、加熱器102の溝66、再生器4の空間67、冷却器
506の溝38および冷却空間69からなる作動ガス通
路を往復動し、周期的にその温度と圧力が変化し、パワ
ーピストン16の往復運動が継続される。
In other words, after startup, the sealed working gas flows into the heating space 65.
, the working gas passage consisting of the groove 66 of the heater 102, the space 67 of the regenerator 4, the groove 38 of the cooler 506, and the cooling space 69, and the temperature and pressure of the working gas change periodically. The reciprocating motion continues.

なお上記したパワーピストン16の動作原理は通常のス
ターリング機関の動作原理と全く同様である。
The operating principle of the power piston 16 described above is exactly the same as that of a normal Stirling engine.

勿Fmパワーピストン16およびディスプレーサ−ピス
トン15の往復運動の継続によシ連結板19.18を介
してアーム23.20が揺動し、連接棒25.24を通
じてクランク車45.’46゜47.48およびフライ
ホイール13.13は回転を継続する。
Of course, the continuation of the reciprocating movement of the Fm power piston 16 and the displacer piston 15 causes the arm 23.20 to swing through the connecting plate 19.18, and the crank wheel 45.20 through the connecting rod 25.24. '46°47.48 and the flywheel 13.13 continue to rotate.

さて、ここでこの機関の理論熱効率ηは、加熱器の温度
をTH1冷却器の温度をTCとすると、O で表わされる。
Now, here, the theoretical thermal efficiency η of this engine is expressed as O 2 where the temperature of the heater is TH1 and the temperature of the cooler is TC.

従って効率ηを高めるためには、 ■ 冷却器の温度TCが一定の場合には加熱器の温度T
Hをできるだけ高め、両者の温度差を太きくしたシ、 ■ 温度TH,Toが一定の温度であれば、機関内部の
作動ガスと加熱器102の作動ガス伝熱側壁102aの
温度差ΔTH−を極めて小さくすることが必要であシ、
たとえば教材用の熱空気機関の場合のように加熱熱源が
小容量のような場合には、加熱器ゎの作動ガスに対する
伝熱面積をできるだけ大きくとり、しかも加熱効率の良
好な構造とすることが重要な要素になってくる。
Therefore, in order to increase the efficiency η, ■ If the cooler temperature TC is constant, the heater temperature T
H is raised as much as possible and the temperature difference between the two is widened. ■ If the temperatures TH and To are constant, the temperature difference ΔTH- between the working gas inside the engine and the working gas heat transfer side wall 102a of the heater 102 is It is necessary to make it extremely small,
For example, when the heating heat source has a small capacity, such as in the case of a hot air engine for teaching materials, it is necessary to make the heat transfer area of the heater for the working gas as large as possible and to have a structure with good heating efficiency. It becomes an important element.

ところが、第4図に示すように従来例では加熱器102
の作動ガス伝熱側壁102aには環状の溝ろ6がきっで
ある構造なので、加熱器の温度THが一定である場合は
、作動ガスは十分伝熱されずに再生器空間ろ7から加熱
空間65へ通過してし筐う。従ってこの場合はΔTHが
大きく、加熱効率が悪い。
However, as shown in FIG. 4, in the conventional example, the heater 102
Since the working gas heat transfer side wall 102a has an annular groove 6, if the temperature TH of the heater is constant, the working gas is not sufficiently heat-transferred and flows from the regenerator space filter 7 to the heating space. Passed to 65. Therefore, in this case, ΔTH is large and heating efficiency is poor.

そこでこれを改良するために従来第6図に示すように、
加熱器102のガスバーナ側の加熱壁102bと反対側
の作動ガス伝熱側壁102aに多数の溝36を切り込み
、伝熱面積を大きくとる構造としている。この構造によ
ればガスバーナあるいはアルコールラング等の小容量の
加熱源を利用する教材用の熱ガス機関であっても作動ガ
スに対する伝熱効率が良好なので、高効率の出力の大き
い機関を提供することができる。
Therefore, in order to improve this, as shown in Fig. 6,
A large number of grooves 36 are cut into the heating wall 102b on the gas burner side of the heater 102 and the working gas heat transfer side wall 102a on the opposite side, thereby increasing the heat transfer area. According to this structure, even in a hot gas engine for teaching materials that uses a small-capacity heating source such as a gas burner or an alcohol rung, the heat transfer efficiency to the working gas is good, so it is possible to provide a highly efficient engine with a large output. can.

しかし、この従来例では加熱器102の作動ガス伝熱側
壁102aに多数の溝66を切り込むので、切削加工で
製作する場合には加工コストが割高になシ、金型で製作
する場合には溝巾があ筐シ小さくとれないという欠点が
あった。
However, in this conventional example, a large number of grooves 66 are cut into the working gas heat transfer side wall 102a of the heater 102, so the processing cost is relatively high when manufacturing by cutting, and the grooves are not required when manufacturing by molding. The drawback was that the width could not be made smaller.

そこで本発明では第7図、第8図に示すように加熱器1
02の加熱壁側102bの板材1はプレス絞シによシ中
央部にφD1なる凹部50を設け、周囲に内径φD2 
なる7リング部51を設ける。
Therefore, in the present invention, as shown in FIG. 7 and FIG.
The plate material 1 on the heating wall side 102b of 02 is press-drawn and has a concave portion 50 with a diameter of φD1 in the center, and an inner diameter of φD2 around the periphery.
Seven ring portions 51 are provided.

49は第8図に示すように内径φD + 、外径φD2
なるぜんまい状の仕切板でδなる均一な細かい隙間を有
して巻き整えられている。また加熱器102の上側の板
材2は外径がりD2 なる円板で、加熱空間65と再生
器空間37と同じ直径の穴がおいている。
49 has an inner diameter φD + and an outer diameter φD2 as shown in Fig. 8.
It is wound with a spiral-shaped partition plate with uniform fine gaps δ. The plate material 2 above the heater 102 is a circular plate with an outer diameter of D2, and has holes with the same diameter as the heating space 65 and the regenerator space 37.

そして上記仕切板49を板材1の径lD1 とφD2で
はさ筐れる空間に位置決め配置し、その上に板材2を板
材1の内径φD2のフランジ部51に圧入固定し、該仕
切板49、板材1,2の接触部は全て炉中ロー付けによ
シ一体重に重合形成する。
Then, the partition plate 49 is positioned and arranged in a space enclosed by the diameters lD1 and φD2 of the plate material 1, and the plate material 2 is press-fitted and fixed onto the flange portion 51 of the plate material 1 having an inner diameter φD2, and the partition plate 49 and the plate material 1 , 2 are all polymerized into a single body by furnace brazing.

従って本発明によれば従来の切削加工のだめのコスト高
や金型使用のだめの隙間間隔の広さを容易に解消でき、
その効果は非常に太きい。
Therefore, according to the present invention, it is possible to easily eliminate the high cost of the conventional cutting sump and the wide gap between the sumps used in molds.
The effect is very strong.

又、ぜんまい状の仕切板49は、隙間δを容易に小さく
することができ、たとえば板厚1岨の板材を2枚重ねて
成形すればδ−’Irunの仕切板が2枚とれ、極めて
経済的である。
In addition, the spiral-shaped partition plate 49 can easily reduce the gap δ. For example, if two sheets of plate material with a thickness of 1 dia are stacked and molded, two partition plates of δ-'Irun can be obtained, which is extremely economical. It is true.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱ガス機関の構造を示す正面図、第2図
は同様の平面図、第6図は同様の右側面図、第4図は第
1図のA−A線断面図、第5図は第1図のB−B線断面
図、第6図は従来の他の加熱器を示す主要断面図、第7
図は本発明の一実施例における加熱器を示す主要断面図
、第8図は同様における仕切板を示す平面図である。 1・・・板材  2・・板材 6・・高温膨張シリンダー  4・・再生器5・・・板
材  6・・水槽 7・・・低温圧縮シリンダー  8・・・シール部材9
・・シール部材  10・・・シール部材11・・・ア
ームサポート  12・・・クランクサポート13・・
・フライホイール  14・クランク15・・ディスプ
レーサ−ピストン 16・・・パワーピストン 17・・ディスプレーサ−ガイド  18・・連結板1
9・・連結板  20・・ディスプレーサ−ピストンア
ーム21・・・連結ビン  22・・・連結ビン23・
・・パワーピストンアーム  24・・・連接棒25・
・・連接棒  26・・・連結ビン27・・・連結ビン
  28・・・クランクビン29・・ベアリング  3
0・・連結ビン61・・・連結ビン  62・・ピスト
ンボディ66・・・ガスバーナ  64・・・0リング
ろ5・・・加熱空間  66・・・加熱器の溝67・・
・再生器空間  38・・冷却器の溝69・・冷却空間
  40・・シール部材41・・シール部材  42・
・クランク軸46・・・シール部材  44・・・冷却
水槽45・・・クランク車  46・クランク車47・
・・クランク車4El・クランク車102・・・加熱器
  102a・・作動ガス伝熱側壁102b・・・加熱
壁  506・・冷却器506a・・・作動ガス伝熱側
壁 506b・冷却壁  49・・仕切板  50・・凹部
51・・フランジ部 特許出願人 第6図 第6図 第7図
Fig. 1 is a front view showing the structure of a conventional hot gas engine, Fig. 2 is a similar plan view, Fig. 6 is a similar right side view, Fig. 4 is a sectional view taken along line A-A in Fig. 1, Fig. 5 is a sectional view taken along the line B-B in Fig. 1, Fig. 6 is a main sectional view showing another conventional heater, and Fig. 7 is a sectional view taken along the line B-B in Fig. 1.
The figure is a main sectional view showing a heater in one embodiment of the present invention, and FIG. 8 is a plan view showing a partition plate in the same. 1... Plate material 2... Plate material 6... High temperature expansion cylinder 4... Regenerator 5... Plate material 6... Water tank 7... Low temperature compression cylinder 8... Seal member 9
...Seal member 10...Seal member 11...Arm support 12...Crank support 13...
・Flywheel 14・Crank 15・・Displacer piston 16・・Power piston 17・・Displacer guide 18・・Connecting plate 1
9... Connecting plate 20... Displacer piston arm 21... Connecting bin 22... Connecting bin 23...
...Power piston arm 24...Connecting rod 25.
...Connecting rod 26...Connection bin 27...Connection bin 28...Crank bin 29...Bearing 3
0...Connection bin 61...Connection bin 62...Piston body 66...Gas burner 64...0 ring groove 5...Heating space 66...Heater groove 67...
・Regenerator space 38・・Cooler groove 69・・Cooling space 40・・Seal member 41・・Seal member 42・
・Crankshaft 46...Seal member 44...Cooling water tank 45...Crank wheel 46・Crank wheel 47・
...Crank wheel 4El・Crank wheel 102...Heater 102a...Working gas heat transfer side wall 102b...Heating wall 506...Cooler 506a...Working gas heat transfer side wall 506b/Cooling wall 49...Partition Plate 50... Recessed portion 51... Flange portion Patent applicant Figure 6 Figure 6 Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)加熱器、と冷却器を間隔を介して互いに対向させ
るとともに、該加熱器と冷却器の間に高温膨張シリンダ
ーと再生器を並列に配置する一方、該冷却器上部に該高
温膨張シリンダーと同軸上に低温圧縮シリンダーを配置
し、上記再生器の両開口を前記加熱器および冷却器を介
してそれぞれ高温膨張シリンダーおよび低温圧縮シリン
ダーの内部に連通し、作動ガス通路となした熱ガス機関
において、該加熱器はわずかな隙間間隔を有して巻かれ
たぜんまい状の仕切板と2枚の板材とからなり、該2枚
の板材は該仕切板を挾んで炉中ロー付は法等によシ一体
的に重合形成されていることを特徴とする熱ガス機関。
(1) A heater and a cooler are arranged to face each other with a gap therebetween, and a high-temperature expansion cylinder and a regenerator are arranged in parallel between the heater and the cooler, while the high-temperature expansion cylinder is placed above the cooler. A hot gas engine in which a cold compression cylinder is disposed coaxially with the regenerator, and both openings of the regenerator are communicated with the inside of the hot expansion cylinder and the cold compression cylinder through the heater and the cooler, respectively, to serve as working gas passages. The heater consists of a spiral-shaped partition plate wound with a slight gap and two plates, and the two plates are sandwiched between the partition plates and brazed in a furnace according to the law. A hot gas engine characterized in that it is integrally formed by polymerization.
(2)上記加熱器の加熱側の板材には凹部を有すること
を特徴とする特許請求の範囲第1項記載の熱ガス機関。
(2) The hot gas engine according to claim 1, wherein the plate material on the heating side of the heater has a recess.
JP557083A 1983-01-17 1983-01-17 Hot gas engine Granted JPS59131753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP557083A JPS59131753A (en) 1983-01-17 1983-01-17 Hot gas engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP557083A JPS59131753A (en) 1983-01-17 1983-01-17 Hot gas engine

Publications (2)

Publication Number Publication Date
JPS59131753A true JPS59131753A (en) 1984-07-28
JPS6364622B2 JPS6364622B2 (en) 1988-12-13

Family

ID=11614869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP557083A Granted JPS59131753A (en) 1983-01-17 1983-01-17 Hot gas engine

Country Status (1)

Country Link
JP (1) JPS59131753A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2527257A1 (en) * 2013-07-19 2015-01-21 Impulso Industrial Alternativo, S.A. Stirling engine with low thermal jump (Machine-translation by Google Translate, not legally binding)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0516099Y2 (en) * 1987-11-18 1993-04-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2527257A1 (en) * 2013-07-19 2015-01-21 Impulso Industrial Alternativo, S.A. Stirling engine with low thermal jump (Machine-translation by Google Translate, not legally binding)

Also Published As

Publication number Publication date
JPS6364622B2 (en) 1988-12-13

Similar Documents

Publication Publication Date Title
US4619112A (en) Stirling cycle machine
US4455825A (en) Maximized thermal efficiency hot gas engine
CN105781783A (en) Free piston Stirling heat engine
US6701708B2 (en) Moveable regenerator for stirling engines
WO2003027541A1 (en) Method and apparatus for diminishing the consumption of fuel and converting reciprocal piston motion into rotary motion
US5414997A (en) Thermal lag machine
JPS59131753A (en) Hot gas engine
US5644917A (en) Kinematic stirling engine
JPS59136548A (en) Heat gas engine
JPS59168249A (en) Stirling engine
JPS5947146B2 (en) Water cooling structure of hot air engine
JP2687819B2 (en) Refrigerator heat transfer device
JPS5970858A (en) Heat air engine
JPS59200045A (en) Structure of heat gas engine
JPS58158353A (en) Stirling engine
JPS5970859A (en) Heat gas engine
JPS6315566Y2 (en)
JPH03185253A (en) Stirling engine
JPH0454062B2 (en)
JP2003028527A (en) Internal heat exchanger for stirling engine, and stirling refrigerating machine
SU985638A1 (en) Refrigerating gas machine
JPS60142039A (en) Structure of thermal gas engine
JPS58187560A (en) Starling engine
JPH0643648Y2 (en) refrigerator
JPH04129067U (en) Stirling engine regenerator