JPS59131423A - Coating method of inside of pipe - Google Patents

Coating method of inside of pipe

Info

Publication number
JPS59131423A
JPS59131423A JP602383A JP602383A JPS59131423A JP S59131423 A JPS59131423 A JP S59131423A JP 602383 A JP602383 A JP 602383A JP 602383 A JP602383 A JP 602383A JP S59131423 A JPS59131423 A JP S59131423A
Authority
JP
Japan
Prior art keywords
tube
strength
pipe
low
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP602383A
Other languages
Japanese (ja)
Inventor
Kenji Nomura
健二 野村
Mitsutoshi Hayashi
林 光俊
Yutaka Hibino
豊 日比野
Masaaki Hirutani
蛭谷 眞明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Tokyo Gas Co Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Tokyo Gas Co Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP602383A priority Critical patent/JPS59131423A/en
Publication of JPS59131423A publication Critical patent/JPS59131423A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To prevent fluid completely from leaking through a large corroded hole or a joint portion and to make possible easy perforation at a branch pipe portion by using a composite tube. CONSTITUTION:A tube 1 of thermoplastic resin having a low strength near 100 deg.C and a tube 2 of thermoplastic resin or rubber that is in contact with the inside of the low strength tube 1, can be peeled near 100 deg.C and shows high strength near 100 deg.C are extruded under a state where they can be released from each other and combined to make a composite tube 4. If this tube 4 is inserted into a tube 6 in operation to supply compressed steam, the low strength tube 1 and the high strength tube 2 are stuck closely to the inner wall of the pipe and bonded by bond 3 with the inside of the pipe. The high strength tube 2 is drawn out and air is extracted through the ends of branches 7, 7' to perforate the low strength tube 1.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は水道管、ガス管等、特にそれらの既設管を補修
、更生するための管内面被覆方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for coating the inner surface of water pipes, gas pipes, etc., particularly for repairing and rehabilitating existing pipes thereof.

〔発明の背景〕[Background of the invention]

従来水道管、ガス管等の既設管が老朽化した場合、道路
を掘り起こして新管と交換し布設していた。しかし、近
年の道路事情により道路の掘り起こしが出来ない場合に
は、埋設された状態で管を補修し更生する必要性が高ま
っている。
Traditionally, when existing pipes such as water pipes and gas pipes became obsolete, the road was dug up and replaced with new pipes. However, in cases where roads cannot be dug up due to recent road conditions, there is an increasing need to repair and rehabilitate buried pipes.

数十メートルから数百メートルに亘って埋設されている
管を更生する方法として、老朽化した鋳鉄管、ダクタイ
ル管、鋼管等の内部を清掃した後、エポキシ樹脂を塗装
したり、常温硬化型エポキシ樹脂をナイロンチューブの
外面に塗布しながら、ナイロンチューブを管内へ引込み
、チューブを加圧膨張して、管壁に密着させる工法が採
られていた。
As a method of rehabilitating pipes that are buried tens to hundreds of meters long, after cleaning the insides of aging cast iron pipes, ductile pipes, steel pipes, etc., you can paint them with epoxy resin or use cold-curing epoxy. The method used was to apply resin to the outer surface of the nylon tube, draw the nylon tube into the tube, expand the tube under pressure, and bring it into close contact with the tube wall.

しかし乍ら、エポキシ樹脂を塗布する工法では、塗布厚
が不均一で、管壁を貫通した穴や接続部の隙間を完全に
密封することは困難であり、また補修後に機械的振動が
加わるとクラック等が発生し気密性に問題が生じること
があった。一方ナイロンチューブを被覆する工法では常
温硬化型エポキシ樹脂を用いるため、作業性が悪く (
夏場は早く硬化し、冬場は非常に硬化しにくい等)使用
上の制約があり、更には分岐管(枝管)の無いナイロン
チューブを用いるために家庭や事務所等への分岐管が埋
設されている箇所ではこの工法を適用することが出来な
かった。
However, with the method of applying epoxy resin, the coating thickness is uneven, making it difficult to completely seal holes penetrating the pipe wall and gaps between connections, and it is difficult to completely seal gaps between holes and connections when mechanical vibrations are applied after repair. Cracks and the like may occur, causing problems with airtightness. On the other hand, the method of coating nylon tubes uses room-temperature curing epoxy resin, which has poor workability (
There are restrictions on its use (hardening quickly in the summer and very difficult to harden in the winter, etc.), and furthermore, because nylon tubes without branch pipes are used, branch pipes to homes and offices are buried. This method could not be applied in the areas where

このため上記の従来工法に代り貫通した穴や接続部の隙
間でも完全に密封補修出来、分岐管のある既設管へ適用
可能な水道、ガス等の管更生工法が望まれていた。
Therefore, in place of the conventional method described above, there has been a demand for a pipe rehabilitation method for water, gas, etc., which can completely seal and repair even through holes and gaps between connections, and which can be applied to existing pipes with branch pipes.

〔発明の要旨〕[Summary of the invention]

本発明は、上記従来の工法に代る工法を提供するもので
あって、その要旨とするところは、管内に、100℃近
傍で低強度な熱可塑性樹脂チューブ(1)と該低強度な
チューブ(1)内面に接しloo’c近傍で剥離可能で
かつ100°C近傍で高強度な熱可塑性樹脂もしくはゴ
ムからなるチューブ(2)−とを設けた後、前記高強度
なチューブ(2)内に加圧水蒸気を送入して前記管内面
に前記低強度なチューブ(1)を接着剤を介して接着せ
しめ、然る後前記高強度なチューブ(2)を回収し、管
分岐部における前記低強度なチューブ(1)の内外面に
圧力差を設けることにより前記低強度なチューブ(1)
壁を、管分岐部において、破裂開孔せしめることを特徴
とする管内面被覆方法にある。
The present invention provides a construction method that is an alternative to the conventional construction method described above, and its gist is that a thermoplastic resin tube (1) that has low strength at around 100°C and a thermoplastic resin tube (1) that has low strength at around 100°C and a (1) After providing a tube (2) made of thermoplastic resin or rubber that is in contact with the inner surface and can be peeled off near the loo'c and has high strength near 100°C, inside the high strength tube (2) The low-strength tube (1) is bonded to the inner surface of the tube with an adhesive by introducing pressurized steam into the tube, and then the high-strength tube (2) is recovered and the low-strength tube (2) is bonded to the inner surface of the tube using an adhesive. By creating a pressure difference between the inner and outer surfaces of the strong tube (1), the low strength tube (1) is created.
A method for coating the inner surface of a tube, characterized in that the wall is burst-opened at a tube branch.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明において定義されるチューブの「強度」とは、分
岐管を有する管の内面に密着されたチューブが、分岐管
のところで管の内圧νてより破壊され開孔するときの強
度をいい、管の内圧すなわち耐内圧力によって表示され
る。
The "strength" of a tube as defined in the present invention refers to the strength when a tube that is tightly attached to the inner surface of a tube having a branch pipe is destroyed by the internal pressure ν of the tube at the branch pipe and opens a hole. It is expressed by the internal pressure, or internal pressure resistance.

また、上記チューブ(1)における「低」強度とは、上
記チューブ(2)における「高」強度に対し相対的に低
い強度を意味する。
Moreover, the "low" strength in the tube (1) means a relatively low strength compared to the "high" strength in the tube (2).

さらにr xooc近傍」とは、100℃との温度差が
約lO°C以内の範囲を意味する。
Further, "near rxoooc" means a range where the temperature difference from 100°C is within about 10°C.

本発明における100 ’C近傍で低強度な熱可塑性樹
脂チューブ(1)は、ポリエチレン樹脂、エチレン酢酸
ビニル樹脂、エチレンエチルアクリレート樹脂、エチレ
ングリシジルメタクリレート樹脂、アイオノマー樹脂、
ケン化エチレン酢酸ビニル樹脂エチレンプロピレン樹脂
、ポリブテン−1樹脂、その化ポリオレフィン樹脂)こ
無水マレイン酸、メタクリル酸、ビニルトリメトキシシ
ラン等をグラフト重合した多元共重合体等を1種もしく
は2種以上混練して成る樹脂組成物から成り好ましくは
熱可塑性樹脂をチューブ状に成形加工後X線、γ線、電
子線等を照射するか、他の適当な手段(例えば架橋剤を
添加)により架橋せしめて、100℃近傍の耐内圧力が
0.15 Kf/cm”以下の樹脂チューブと成したも
のである。
The thermoplastic resin tube (1) having low strength near 100'C in the present invention includes polyethylene resin, ethylene vinyl acetate resin, ethylene ethyl acrylate resin, ethylene glycidyl methacrylate resin, ionomer resin,
Saponified ethylene vinyl acetate resin, ethylene propylene resin, polybutene-1 resin, polyolefin resin)) One or more types of multi-component copolymers obtained by graft polymerization of maleic anhydride, methacrylic acid, vinyltrimethoxysilane, etc. are kneaded. Preferably, a thermoplastic resin is formed into a tube shape and then crosslinked by irradiation with X-rays, γ-rays, electron beams, etc., or by other appropriate means (for example, adding a crosslinking agent). The resin tube has an internal pressure resistance of 0.15 Kf/cm or less at around 100°C.

また、100℃近傍で高強度な熱可塑性樹脂もしくはゴ
ムから成るチューブ(2)は、ボリプdとレン樹脂、ポ
リメチルペンテン樹脂、ポリエチレンテレフタレート樹
脂、ポリブチレンテレフタレート樹脂、ポリ塩化ビニリ
デン樹脂、ナイロン6、ナイロン66、ナイロン11.
ナイロン12樹脂、ポリウレタン樹脂、シリコーン樹脂
、弗素樹脂、及びこれらの共重合樹脂や天然ゴム、イソ
プレンゴム、ブタジェンゴム、クロロプレンゴム、ニト
リルゴム、アクリルゴム、シリコーンゴム、弗素ゴム等
の加硫ゴム類を用いることが出来る。これらの樹力旨や
加硫ゴムの1種または2種以上を混練して成る組成物の
単層のチューブでも良いし、他の任意の樹脂と併用され
て複数の層を構成するチューブであっても良い。要は、
出来上ったチューブが全体として100℃で高強度を呈
することが重要なポイントである。高強度なチューブ(
2)は100°C近傍における強度が耐内圧力表示で0
.2に97am”以上に設計されたものが、管内の水蒸
気圧の制御が容易などの点で好ましい。
In addition, the tube (2) made of thermoplastic resin or rubber that has high strength at around 100°C is made of polyp d and ren resin, polymethylpentene resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyvinylidene chloride resin, nylon 6, Nylon 66, nylon 11.
Vulcanized rubbers such as nylon 12 resin, polyurethane resin, silicone resin, fluororesin, and copolymer resins thereof, natural rubber, isoprene rubber, butadiene rubber, chloroprene rubber, nitrile rubber, acrylic rubber, silicone rubber, and fluorine rubber are used. I can do it. It may be a single-layer tube made of a composition made by kneading one or more of these resins or vulcanized rubbers, or it may be a tube composed of multiple layers when used in combination with any other resin. It's okay. In short,
It is important that the finished tube as a whole exhibits high strength at 100°C. High strength tube (
2) indicates that the strength near 100°C is 0 on the internal pressure resistance display.
.. It is preferable that the pipe be designed to have a pressure of 97 am” or more in order to easily control the water vapor pressure inside the pipe.

高強度なチューブ(2)に用いられる前記熱可塑性樹脂
もしくはゴムの溶解度定数(以下sp値と略す)は、前
記低強度なチューブ(1)に用いる熱可塑性樹脂のSP
値より1.0以上離れていると、前記高強度なチューブ
(2)の回収が容易となり、好ましい。低強度なチュー
ブ(1)と高強度なチューブ(2)の組み合わせの例と
して、ポリオレフィン樹脂のSP値約8,0 に対して
ポリエチレンテレフタレート樹脂10.8、ポリ塩化ビ
ニリデン樹脂12.2、ナイロン12樹脂145等を用
いることが出来る。
The solubility constant (hereinafter abbreviated as SP value) of the thermoplastic resin or rubber used for the high-strength tube (2) is the SP value of the thermoplastic resin used for the low-strength tube (1).
It is preferable that the distance is 1.0 or more from the value, since the high-strength tube (2) can be easily recovered. As an example of a combination of a low-strength tube (1) and a high-strength tube (2), the SP value of polyolefin resin is approximately 8.0, while polyethylene terephthalate resin is 10.8, polyvinylidene chloride resin is 12.2, and nylon is 12. Resin 145 or the like can be used.

本発明においては、低強度なチューブ(1)を先に管内
に挿入してから、該低強度をチューブ(1)の内面に上
記高強度なチューブ(2)を挿入し、かつこれらチュー
ブが100℃近傍で互に剥離可能となる様にしてもよく
、又は上記低強度なチューブ(1)の内面に上記高度な
チューブ(2)をi o o ’c近傍で互に剥離可能
な状態で設けて成る複合チューブを管内に挿入してもよ
い。更に本発明は、上記高強度なチューブ(2)の内面
に上記低強度なチューブ(1)を設けて成る複合チュー
ブを用いてもよく、この複合チューブを用いる場合は、
複合チューブを反転しながら管内に挿入する方法が採ら
れる。
In the present invention, a low-strength tube (1) is first inserted into the tube, and then the high-strength tube (2) is inserted into the inner surface of the low-strength tube (1). Alternatively, the high-strength tube (2) may be provided on the inner surface of the low-strength tube (1) so as to be able to be peeled off from each other near io o 'c. A composite tube consisting of a tube may be inserted into the canal. Furthermore, the present invention may use a composite tube in which the low-strength tube (1) is provided on the inner surface of the high-strength tube (2), and when this composite tube is used,
A method is adopted in which the composite tube is inserted into the tube while being inverted.

いずれの複合チューブであっても低強度なチューブ(1
)と高強度なチューブ(2)とを積層した複合チューブ
は100℃近傍で伸び率が10096以上であることが
好ましい。その理由は上記複合チューブを、その外径を
縮少した状態で管内へ挿入したり、曲り管へ挿入すると
きに容易に変形し得るので、挿入の作業が容易となるか
らである。
Any composite tube has low strength (1
) and a high-strength tube (2) are preferably laminated to have an elongation rate of 10096 or more at around 100°C. The reason for this is that the composite tube can be easily deformed when inserted into a pipe with its outer diameter reduced or inserted into a bent pipe, making the insertion process easier.

複合チューブは、低強度なチューブ(1)と高強度なチ
ューブ(2)を個々に製造した後、低強度なチューブ(
1)内に高強度なチューブ(2)を挿入して製造したわ
、逆に高強度なチューブ(2)内に低強度なチューブ(
1)を挿入して製造することも出来るが、2台の押出し
機で同時に押出し成形して複合構造にするのがより能率
的である。更に、複合チューブ内には予め偏平なベルト
を挿入しておけば、管内部への引込みゃ高強度なチュー
ブ(2)の回収を容易にするので、より好ましい。
Composite tubes are produced by separately manufacturing a low-strength tube (1) and a high-strength tube (2).
It was manufactured by inserting a high-strength tube (2) into 1), and conversely, a low-strength tube (2) was inserted into a high-strength tube (2).
Although it is possible to manufacture the composite structure by inserting 1), it is more efficient to extrude it simultaneously using two extruders to form a composite structure. Furthermore, it is more preferable to insert a flat belt into the composite tube in advance, since this makes it easier to recover the high-strength tube (2) by pulling it into the tube.

本発明の工法を以下に図に従い説明する。The construction method of the present invention will be explained below with reference to the drawings.

第1図は本発明の工法において用いる複合チューブの一
例の横断面図で、低強度なチューブ(1)の内面に高強
度なチューブ(2)を相互ンて剥離可能な状態で押出し
被覆して複合構造となしたものである。
Figure 1 is a cross-sectional view of an example of a composite tube used in the construction method of the present invention, in which a high-strength tube (2) is extruded and coated on the inner surface of a low-strength tube (1) in a peelable state. It has a composite structure.

これらチューブ(1)及び(2)の層間には潤滑剤とし
てシリコーンオイル等を塗布しておくと、特に曲管内へ
の挿入或は高強度なチューブ(2)の回収に有効である
Applying silicone oil or the like as a lubricant between the layers of these tubes (1) and (2) is particularly effective when inserting into a curved pipe or recovering a high-strength tube (2).

上記低強度なチューブ(1)の外周tζは、更た接着剤
層(3)が、設けられるか、または予め管内面に接着剤
層(3)が設けられてから複合チューブを管端から引込
んでも良い。接着剤としては、ホットメルト接着剤、ま
たはエポキシ樹脂、ウレタン樹脂等の熱硬化型接着剤の
いずれでも良い。
The outer circumference tζ of the low-strength tube (1) can be adjusted by providing an additional adhesive layer (3), or by providing an adhesive layer (3) on the inner surface of the tube in advance and then pulling the composite tube from the tube end. It's okay to be crowded. The adhesive may be a hot melt adhesive or a thermosetting adhesive such as an epoxy resin or a urethane resin.

第2図は、第1図の複合チューブ(4)を偏平にし、管
内への挿入を容易にするため、バインド線又はテープ(
5)で縮径したときの状態を示す。縮径方法ンは横断面
がU字型、十字型或は星型なと任意の形状でよい。
Figure 2 shows the composite tube (4) in Figure 1 flattened to make it easier to insert it into the tube using binding wire or tape.
5) shows the state when the diameter is reduced. The diameter reduction method may have any shape such as a U-shape, a cross-shape, or a star-shape in cross section.

第3図は、接着性のあるバインドテープ(5)でバイン
ドした複合チューブ(4)を、分岐管(7) (7)’
及び曲り管を有する既設管(6)の内部へ、引込ロープ
(8)と引込み機(9)とで片端より挿入する状態を示
す。
Figure 3 shows composite tubes (4) bound with adhesive bind tape (5) and branch pipes (7) (7)'
The figure shows a state in which a pulling rope (8) and a pulling machine (9) are inserted from one end into the interior of an existing pipe (6) having a bent pipe.

チューブ挿入時シては、チューブと管路との摩擦くと良
い。第1図の如(予めチューブ外周にホットメルト接着
剤(3)を塗布出来ない場合は、第3図の41チユーブ
(4)の引込み時にチューブ表面にエポキシ接着剤等を
塗布しながら引込むことも可能である。
When inserting the tube, it is best to avoid friction between the tube and the conduit. As shown in Figure 1 (If hot melt adhesive (3) cannot be applied to the outer circumference of the tube in advance, it is also possible to apply epoxy adhesive etc. to the tube surface while pulling in the 41 tube (4) in Figure 3). It is possible.

第4図は、複合チューブを管内に引込み後、片端より加
圧液体又は気体を送入して管内面へ被覆した状態を示す
。引込まれたチューブは両端を密封後チユーブ内に液体
又は気体を送入して、バインドテープを解体し、管内で
円形のチューブ状にると、低強度なチューブ(1)及び
高強度なチューブ(2)は管内壁に密着し、且つ、接着
剤(3)によって管内面に接着する。管内面の圧力は圧
力計μsで管理される。
FIG. 4 shows a state in which the composite tube is drawn into the tube and then a pressurized liquid or gas is introduced from one end to coat the inner surface of the tube. After sealing both ends of the drawn tube, liquid or gas is introduced into the tube to break up the binding tape and create a circular tube shape inside the tube, resulting in a low-strength tube (1) and a high-strength tube (1). 2) is in close contact with the inner wall of the tube and is adhered to the inner surface of the tube with adhesive (3). The pressure inside the tube is controlled by a pressure gauge μs.

50〜loomの長尺の既設管を短時間で均一に加熱す
るには、熱風を送入し刈り、スチームホースを全長に通
したり、或は部分的に加熱する加熱器(加熱ビグ)を管
内全長に亘って通したりする方法が考えられるが、加圧
水蒸気を管の片端より送り込む方法が簡便で好ましい。
To uniformly heat a long existing pipe of 50 to 100 looms in a short period of time, blow hot air into the pipe, run a steam hose through the entire length, or install a heater (heating vig) that partially heats the pipe inside the pipe. Although a method of passing the pipe over its entire length is conceivable, a method of sending pressurized steam from one end of the pipe is simple and preferable.

管内の圧力を0.15Ky/(1)2以上にすることが
より好ましく、その理由は既設管路は少なくとも1m位
の高低差があるため低部に凝縮した水(ドレン)が溜り
、その排出圧力に0.15 Ky/crrtQ以上必要
なためである。そして複合チューブはその圧力に耐えて
破壊しないだけの強度が必要である。水蒸気加熱中は高
強度なチューブ(2)は低強度チューブ(1)を保護す
る機能を果す。即ち、低強度なチューブ(1)が管内壁
に完全にh合チューブはまた、例えば45°、90°エ
ルボ等の曲管部に水蒸気圧によって均一に密着する必要
がある。それ故、複合チューブは少なくとも100°C
近傍で伸び率100%以上あることが望ましく、100
%未満であると曲管部が偏平してガス又は液う記 体の液量が減少する。
It is more preferable to set the pressure inside the pipe to 0.15Ky/(1)2 or more.The reason for this is that the existing pipe has a difference in height of at least 1m, so condensed water (drainage) accumulates in the lower part, and it is difficult to drain it. This is because a pressure of 0.15 Ky/crrtQ or more is required. The composite tube needs to be strong enough to withstand that pressure without breaking. During steam heating, the high-strength tube (2) serves to protect the low-strength tube (1). That is, it is necessary for the low-strength tube (1) to fit completely against the inner wall of the tube, and for the tube to be evenly adhered to curved pipe portions such as 45° and 90° elbows by water vapor pressure. Therefore, the composite tube is heated to at least 100°C
It is desirable that the elongation rate is 100% or more in the vicinity;
If it is less than %, the curved pipe portion becomes flat and the amount of gas or liquid in the liquid medium decreases.

一方、低強度なチューブ(1)は管内壁に装着された後
、水蒸気加熱によって管内壁に接着する必要があるため
、又チューブ(1)の流動を防止するため架橋しておく
ことが望ましい。また、低強度なチューブ(1)と、管
内面の間には、接着剤が存在するが、これは加熱開始後
、出来るだけ速く硬化することが望ましい。
On the other hand, since the low-strength tube (1) needs to be bonded to the inner wall of the tube by steam heating after being attached to the inner wall of the tube, it is also desirable that the tube (1) be crosslinked in order to prevent the tube (1) from flowing. Further, there is an adhesive between the low-strength tube (1) and the inner surface of the tube, but it is desirable that this adhesive hardens as quickly as possible after heating is started.

第5図は複合チューブの内面に位置する高強度なチュー
ブを回収した後、分岐部における低強度f(f ユーズ
を、開孔した状況を示す縦断面図である。高強度なチュ
ーブ(2)を回収してから、分岐管(7) (7)’の
先端から真空引きして低強度なチューブ(1)を開孔す
るが、高強度なチューブ(2)を回収しながら真空引き
しても良い、このときの真空度合はチューブ内との圧力
差が100MHg以上即ちo、14Kp/cm2  以
上になるよう減圧することにより容易に開孔する。更に
低強度なチューブの温度は100°C近傍(90°C〜
110℃位)に保持する必要がある。
FIG. 5 is a vertical cross-sectional view showing a situation in which a low-strength f (f use) is opened at a branch part after recovering a high-strength tube located on the inner surface of a composite tube. High-strength tube (2) After collecting the tube, vacuum is drawn from the tip of the branch pipe (7) (7)' to open the low-strength tube (1), but while collecting the high-strength tube (2), vacuum is applied. At this time, the degree of vacuum is such that the pressure difference between the inside of the tube is 100 MHg or more, that is, 14 Kp/cm2 or more, and the hole can be easily opened. (90°C ~
It is necessary to maintain the temperature at around 110°C.

温度が大幅に低下すると、チューブの強度は向上し、Q
、14 K97cm2の圧力差で破壊しなくなるためで
あり、温度が上昇し過ぎると、高強度なチューブの回収
中に低強度なチューブ(1)が損傷する恐れがあるため
である。
As the temperature decreases significantly, the strength of the tube increases and Q
, 14 K97cm2 pressure difference will not destroy the tube, and if the temperature rises too much, the low-strength tube (1) may be damaged while the high-strength tube is being recovered.

又、真空引きによる開孔ができなV)場合は管内面に内
圧を加え開孔することもできるが、この時の圧力は腐食
孔における低強度なチューブ(1)を損傷しない程度の
圧力でなければならない。
In addition, if the hole cannot be opened by vacuuming V), the hole can be opened by applying internal pressure to the inner surface of the tube, but the pressure at this time must be at a pressure that does not damage the low-strength tube (1) in the corroded hole. There must be.

以上の如く本発明の管内面被覆方法は、上記複合チュー
ブを使用することにより大きな腐食孔や接続部からの漏
れに対して完全に被覆することができ、更に曲管へも均
一に被覆でき、分岐管部においては容易に開孔すること
ができる。
As described above, the pipe inner surface coating method of the present invention can completely cover large corrosion holes and leakage from connecting parts by using the above composite tube, and can also uniformly coat curved pipes. A hole can be easily opened in the branch pipe portion.

以下、本発明を実施例に基いて説明する。The present invention will be explained below based on examples.

実施例 低強度な熱可塑性樹脂チューブとして第1表に示す8種
の材料から成るチューブA1B及びC(内径102〆、
肉厚1.0M)  を、高強度な熱可塑性樹脂チューブ
として3種の材料から成るチューブD1E及びF(内径
100〆、肉厚0.2骸)を各々成形して、100A鋼
管内への被覆実験を行なった。チューブA、B及びCは
更に電子線を12 Mrad照射した。
Examples Low-strength thermoplastic resin tubes A1B and C (inner diameter 102 mm,
The tubes D1E and F (inner diameter 100 mm, wall thickness 0.2 mm) made of three different materials are each molded as high-strength thermoplastic resin tubes, and coated into 100 A steel pipes. We conducted an experiment. Tubes A, B and C were further irradiated with 12 Mrad of electron beam.

それぞれのチューブの物性値は第1表の通りであり、ゲ
ル分率は120°Cキシレン不溶解より求めたもので、
抗張力、伸び率及び耐内圧破壊強度は100℃における
値を示す。
The physical properties of each tube are shown in Table 1, and the gel fraction was determined from xylene insoluble at 120°C.
The tensile strength, elongation rate, and internal pressure fracture strength are the values at 100°C.

チューブD、E及びFをチューブA、B及びCの内側へ
それぞれ挿入して、ADlBE及びCFの3種の複合チ
ューブを得た。
Tubes D, E, and F were inserted inside tubes A, B, and C, respectively, to obtain three types of composite tubes, ADlBE and CF.

上記複合チューブの外側(即ちチューブA、 B及びC
の外側)にエポキシ接着剤の塗布を行ない更にエチレン
−酢酸ビニル樹脂テープでバインドして縮径した後、1
00A鋼管(内径105m、長さ50m)内へ片端より
複合チューブを引込みながら挿入した。挿入後、チュー
ブ両端を密封後、0.1〜2.OKy/αの加圧エアー
をチューブ内に送入してバインドテープを解体し、更に
片端より加圧水蒸気を送入し、低強度なチューブを管内
壁に密着させると共にエポキシ接着剤を硬化せしめた。
The outside of the composite tubes (i.e. tubes A, B and C)
After applying epoxy adhesive to the outside of the
The composite tube was inserted into a 00A steel pipe (inner diameter 105 m, length 50 m) while being pulled in from one end. After insertion, after sealing both ends of the tube, 0.1 to 2. OKy/α pressurized air was introduced into the tube to break up the bind tape, and pressurized steam was then introduced from one end to bring the low-strength tube into close contact with the inner wall of the tube and harden the epoxy adhesive.

この時の管内の水蒸気圧力は曲管部へも充分密着するよ
50.20 Kg/c1rLsにコントロールした。管
の全長に亘って約100°Cに達し接着剤が硬化した時
点で、直ちに水蒸気を止め高強度なチューブの回収装置
を取付け、次いで高強度なチューブは内側へ反転させな
がら、固着部を回収装置の側へ引き出すことにより、回
収しつつ、分岐管部を真空引きして開孔した。
At this time, the water vapor pressure inside the pipe was controlled to 50.20 Kg/c1rLs so that it could adhere sufficiently to the curved pipe section. When the temperature reaches approximately 100°C over the entire length of the tube and the adhesive has hardened, immediately stop the water vapor and install a high-strength tube recovery device, then turn the high-strength tube inward and recover the stuck part. While recovering the tube by pulling it out to the side of the device, the branch pipe section was evacuated and a hole was opened.

上記実施例の結果、以下の点を確認することができた。As a result of the above example, the following points were confirmed.

即ち、高強度なチューブは非常にスムーズに回収された
こと、所定の分岐部のみ開孔していること、また、冷却
後管を切断したところ、鋼管と低強度なチューブは強固
に接着し管切断時のが曲率にそって伸ばされ、チューブ
のしわやエアーだまりが全くなかったこと、及び腐食孔
部やフランジ継手部は該チューブにより完全に密封され
ていたことが確認された。
In other words, the high-strength tube was collected very smoothly, the holes were opened only at the designated branching points, and when the tube was cut after cooling, the steel tube and the low-strength tube were firmly bonded to each other. It was confirmed that the tube was stretched along the curvature at the time of cutting, that there were no wrinkles or air pockets in the tube, and that the corrosion hole and flange joint were completely sealed by the tube.

比較例 比較例として実施例で用いたチューブA、B及び(4−
10OA鋼管内へ挿入しライニング実験を行なった。実
験の結果、チューブ挿入後0.05KP/(7)2の水
蒸気圧では該チューブが管内壁に充分密着せず、エアー
だまりが多数残り、管内の流量抵抗が増大した。更に水
蒸気圧を0.20 Ky/cm”まで上昇させたところ
、分岐管部や腐食孔、フランジ継手部のところでチュー
ブが破裂していることが認められ、管内面被覆の役割を
果すものではなかった。
Comparative Example As a comparative example, tubes A, B and (4-
A lining experiment was conducted by inserting it into a 10OA steel pipe. As a result of the experiment, it was found that at a water vapor pressure of 0.05 KP/(7)2 after the tube was inserted, the tube did not adhere sufficiently to the inner wall of the tube, leaving many air pockets and increasing the flow resistance inside the tube. When the water vapor pressure was further increased to 0.20 Ky/cm", it was found that the tube burst at branch pipe sections, corrosion holes, and flange joints, indicating that the tube was not functioning as a coating for the inner surface of the tube. Ta.

以上の結果から、既設管の管内面に良好な被覆を行ない
、同時に分岐管部のみ開孔するためには本発明が極めて
有効であることが実証され、本発明の優位性を示すもの
である。
From the above results, it has been demonstrated that the present invention is extremely effective for providing good coating on the inner surface of the existing pipe and at the same time opening only the branch pipe portion, and shows the superiority of the present invention. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明において用いる管内面被覆用チューブの
横断面図、第2図は本発明において用いるチューブを偏
平にしたときの横断面図、第3図はチューブの既設管へ
の挿入する状態を示す縦断面図、第4図はチューブを管
内へ引込み後、片端より加圧流体を送入して管内面へ被
覆した状態を示す縦断面図、第5図は高強度チューブ(
2)を回収した後の低強度チューブ(1)の分岐部にお
ける開孔状況を示す縦断面図である。 (1)・・・・・・100℃近傍で低強度な熱可塑性樹
脂チューブ、(2)・・・・・100℃近傍で高強度な
熱可塑性樹脂もしくはゴムから成るチューブ、(3)・
・・本≠Φ−瞬接着剤、(4)・・・・・複合チューブ
、(5)・・・・・バインドテープ、(6)・・・・・
・既設管、(7X7) ’・・・・分岐管、(9)・・
・・・・引込み機。
Fig. 1 is a cross-sectional view of the tube for coating the inner surface of a pipe used in the present invention, Fig. 2 is a cross-sectional view of the tube used in the present invention when it is flattened, and Fig. 3 is a state in which the tube is inserted into an existing pipe. Figure 4 is a vertical cross-sectional view showing the state in which the inner surface of the tube is coated by supplying pressurized fluid from one end after the tube has been drawn into the tube, and Figure 5 is a vertical cross-sectional view showing the state in which the inner surface of the tube is coated by supplying pressurized fluid from one end after the tube has been drawn into the tube.
FIG. 2) is a longitudinal cross-sectional view showing the state of openings at the branch portion of the low-strength tube (1) after collecting the tube (1). (1)...A thermoplastic resin tube that has low strength near 100℃, (2)...A tube made of thermoplastic resin or rubber that has high strength near 100℃, (3).
・・Book≠Φ− Instantaneous adhesive, (4)・・・Composite tube, (5)・・・Binding tape, (6)・・・・
・Existing pipe, (7X7) '...branch pipe, (9)...
...Retraction machine.

Claims (1)

【特許請求の範囲】[Claims] (1)管内に、100°C近傍で低強度な熱可塑性樹脂
チューブ(1)と該低強度なチューブ(1)内面に接し
、100℃近傍で剥離可能でかつ100°C近傍で高強
度な熱可塑性樹脂もしくはゴムからなるチューブ(2)
とを設けた後、前記高強度なチューブ(2)内に加圧水
蒸気を送入して前記管内面に前記低強度なチューブ(1
)を接着剤を介して接着せしめ、然る後前記高強度なチ
ューブ(2)を回収し、管分岐部における前記低強度な
チューブ(1)の内外面に圧力差を設けることにより前
記低強度なチューブ(1)壁を、管分岐部において、破
裂開孔せしめることを特徴とする管内面被覆方法。
(1) Inside the pipe, there is a thermoplastic resin tube (1) that has low strength at around 100°C, and a thermoplastic resin tube (1) that is in contact with the inner surface of the low-strength tube (1) and that is peelable at around 100°C and has high strength at around 100°C. Tube (2) made of thermoplastic or rubber
After providing a
) are bonded together with an adhesive, and then the high-strength tube (2) is collected, and a pressure difference is created between the inner and outer surfaces of the low-strength tube (1) at the pipe branching part, thereby reducing the low-strength tube (1). A method for coating the inner surface of a tube, characterized in that the wall of the tube (1) is ruptured and opened at a tube branching portion.
JP602383A 1983-01-17 1983-01-17 Coating method of inside of pipe Pending JPS59131423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP602383A JPS59131423A (en) 1983-01-17 1983-01-17 Coating method of inside of pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP602383A JPS59131423A (en) 1983-01-17 1983-01-17 Coating method of inside of pipe

Publications (1)

Publication Number Publication Date
JPS59131423A true JPS59131423A (en) 1984-07-28

Family

ID=11627082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP602383A Pending JPS59131423A (en) 1983-01-17 1983-01-17 Coating method of inside of pipe

Country Status (1)

Country Link
JP (1) JPS59131423A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60217135A (en) * 1984-04-12 1985-10-30 Sumitomo Electric Ind Ltd Coating method for inner surface of tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60217135A (en) * 1984-04-12 1985-10-30 Sumitomo Electric Ind Ltd Coating method for inner surface of tube

Similar Documents

Publication Publication Date Title
JP2554411B2 (en) Branch pipe lining material and manufacturing method thereof
US5280811A (en) Method of softlining sewer rehabilitation
US5964249A (en) Apparatus and method for repairing a pipeline
US6006787A (en) Branch pipe liner bag and branch pipe lining method
JP3839597B2 (en) Pipe lining method
JP4452558B2 (en) Rehabilitation method for existing pipes
US20130098535A1 (en) Method and apparatus for forming a coating on a lining of a conduit in situ
JPS59131423A (en) Coating method of inside of pipe
AU646907B2 (en) Lining of pipeline or passageway
JPS59131448A (en) Tube for coating inner surface of pipe
JPS60217135A (en) Coating method for inner surface of tube
JPH0617072B2 (en) Pipe line lining method
EP2216580B1 (en) Top profile for sealed connection of a connecting pipeline with a main pipeline of a waste water pipeline system
JP2845798B2 (en) Branch pipe lining material and branch pipe lining method
JPS60201941A (en) Pipe inner-surface lining tube
JPS59131447A (en) Tube for coating inner surface of pipe
JP3084165B2 (en) Lining jig for branch pipe and lining construction method
JPH08164560A (en) Branch pipe-lining material and branch pipe-lining method
JP2974131B2 (en) Branch pipe lining material and pipe lining method
JPH04355116A (en) Lining technique for branch pipe
JP3400955B2 (en) Existing pipe rehabilitation pipe and existing pipe rehabilitation repair method
JP2002333082A (en) Water stop method and water stop member for regenerating pipe and holding device of water stop member
JP4601383B2 (en) Lining method for branch pipes of pipes
JPH11170367A (en) Method for lining inside of pipe
JP2007160762A (en) Lining method of pipeline