JPS5913113A - Dynamic-pressure thrust bearing - Google Patents

Dynamic-pressure thrust bearing

Info

Publication number
JPS5913113A
JPS5913113A JP11958082A JP11958082A JPS5913113A JP S5913113 A JPS5913113 A JP S5913113A JP 11958082 A JP11958082 A JP 11958082A JP 11958082 A JP11958082 A JP 11958082A JP S5913113 A JPS5913113 A JP S5913113A
Authority
JP
Japan
Prior art keywords
thrust bearing
thrust
bearing member
groove
shaft body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11958082A
Other languages
Japanese (ja)
Other versions
JPH0143847B2 (en
Inventor
Hiromi Sugi
杉 博美
Kyosaburo Furumura
恭三郎 古村
Hiromitsu Asai
拡光 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP11958082A priority Critical patent/JPS5913113A/en
Publication of JPS5913113A publication Critical patent/JPS5913113A/en
Publication of JPH0143847B2 publication Critical patent/JPH0143847B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To stabilize the axial displacement of a shaft and attain a prescribed thrust load carrying capacity, by using the gap between a thrust bearing member and a thrust load carrying member to control the pressure of a lubricant in the clearance of a thrust bearing so that the pressure is constant. CONSTITUTION:Cylindrical holes 11, 12 of small and large diameters are coaxially provided in a housing member 9. A sleeve 13 and a thrust bearing member 15 are secured in the holes 11, 12. The top of the thrust bearing member 15 serves as a thrust load carrying surface 16. An annular protrusion 18 is provided on the surface 16 along its inner circumferential edge. Spiral grooves 20 for causing dynamic pressure are provided between the outside of the protrusion 18 and the outer circumferential edge of the surface 16. A communication groove 21 is provided on the bottom of the bearing member 15 so that the groove extends in a radial direction and communicates with a fluid passage groove 22 extending in an axial direction on the peripheral surface of the bearing member 15. A housing 10 is thus constructed so that it rotatably supports a shaft 40 having a thrust member 30.

Description

【発明の詳細な説明】 この発明は、動圧形スラスト軸受に関し、とくに、スラ
スト受部制を有する軸体を、スラスト軸受部材を有する
・・ウジングの内周に配設し、スラスト軸受部材とスラ
スト受部材との少なくとも一方に動圧発生用のみそを設
けた動圧形スラスト軸受において、スラスト軸受部材と
スラスト受部材との少なくとも一方には動圧発生用のみ
その流出端側に環状凸部が突設され、スラスト軸受すき
間から環状凸部を通って流出する潤滑剤の循環通路を設
けることにより、軸体の浮上量(軸方向変位量)を安定
させ、大きいスラスト負荷能力が得られるようにしたも
のである。
Detailed Description of the Invention The present invention relates to a dynamic pressure type thrust bearing, and in particular, a shaft body having a thrust bearing member is disposed on the inner periphery of a housing having a thrust bearing member, and In a dynamic pressure type thrust bearing in which at least one of the thrust bearing member and the thrust receiving member is provided with a groove for generating dynamic pressure, at least one of the thrust bearing member and the thrust receiving member has an annular convex portion on the outflow end side only for generating dynamic pressure. By providing a circulation path for the lubricant that protrudes from the thrust bearing gap and flows out through the annular convex part, the floating amount (axial displacement amount) of the shaft body is stabilized and a large thrust load capacity can be obtained. This is what I did.

従来、この種の動圧形スラスト軸受として第1図および
第2図に示すものが知られている。両図において、符号
1は軸体、2はスラスト受部材、6はハウジング4のス
ラスト軸受部をそれぞれ示し、第1図のスラスト軸受部
乙のスラスト受面5には、スノクイラル状のみぞ6が形
成され、第2図のスラスト軸受部乙のスラスト受面5に
は、ヘリングボーン状のみぞ6が形成されている。
Conventionally, as this type of dynamic pressure type thrust bearing, those shown in FIGS. 1 and 2 are known. In both figures, reference numeral 1 indicates the shaft, 2 indicates the thrust bearing member, and 6 indicates the thrust bearing part of the housing 4. The thrust bearing surface 5 of the thrust bearing part B in FIG. A herringbone-shaped groove 6 is formed in the thrust bearing surface 5 of the thrust bearing part B shown in FIG.

上記の軸体1が回転すると、みぞ6のポンピング作用に
よる動圧が発生して、潤滑剤がスラスト軸受部乙のスラ
スト受面5とスラスト受部材2の3− スラスト端面7との間のスラスト軸受すき間8に流入し
、これにより軸体1が浮上してスラスト荷重を支持する
When the above-mentioned shaft body 1 rotates, dynamic pressure is generated due to the pumping action of the groove 6, and the lubricant is applied to the thrust between the thrust bearing surface 5 of the thrust bearing part B and the thrust end surface 7 of the thrust bearing member 2. It flows into the bearing gap 8, causing the shaft body 1 to float and support the thrust load.

上記の軸受をフラットモータ等に使用する場合は、軸体
1に固定したロータとハウジング4に固定したステータ
とが軸方向の微小すき間ケ隔てて平面で対向しているの
で、ロータとステータとの相対変位、すなわち軸体1の
浮上量を小さくして安定させる必要がある。
When the above bearing is used in a flat motor etc., the rotor fixed to the shaft body 1 and the stator fixed to the housing 4 face each other on a plane with a small gap in the axial direction. It is necessary to stabilize the relative displacement, that is, the flying height of the shaft body 1 by reducing it.

しかし、スラスト軸受部6に動圧発生用のみぞ6のみが
設けられている従来の軸受では、軸体1の停止時と回転
時とにおける軸方向の位置が大きく変化し、スラスト荷
重が変化した場合や周囲温度により油やグリース等の潤
滑剤の粘度が変化した場合には軸体の浮上量に大きな変
動が生ずるため、軸方向の位置が安定しないという欠点
がある。
However, in a conventional bearing in which only the groove 6 for generating dynamic pressure is provided in the thrust bearing part 6, the axial position of the shaft body 1 changes greatly between when it is stopped and when it rotates, and the thrust load changes. If the viscosity of the lubricant, such as oil or grease, changes depending on the weather or ambient temperature, the flying height of the shaft body will fluctuate greatly, resulting in an unstable axial position.

とくに、第1図の軸受では、スラスト軸受部3の内周縁
から軸体1との間のすき間を通って潤滑剤が漏出するの
で、潤滑剤の圧力上昇が妨げられてスラスト負荷能力が
低下する欠点がある。さらに、4− 第1図および第2図の軸受の両者とも、スラスト受部材
2のスラスト端面7が、スラスト軸受部6のスラスト受
面5に大きな面積で接触しているだめ、起動トルクが大
きい欠点がある。
In particular, in the bearing shown in FIG. 1, the lubricant leaks through the gap between the inner peripheral edge of the thrust bearing part 3 and the shaft body 1, which prevents the pressure of the lubricant from increasing and reduces the thrust load capacity. There are drawbacks. Furthermore, in both of the bearings shown in FIG. 1 and FIG. There are drawbacks.

この発明は、上記の欠点を除去するためになされたもの
であり、この発明の目的は、軸体の浮上量が安定する動
圧形スラスト軸受を提供することにあり、また、この発
明の目的は、起動トルクが小さく、大きいスラスト負荷
能力が得られる動圧形スラスト軸受を提供することにあ
る。
This invention was made to eliminate the above-mentioned drawbacks, and an object of the invention is to provide a hydrodynamic thrust bearing in which the flying height of the shaft body is stable; The object of the present invention is to provide a dynamic pressure type thrust bearing that has a small starting torque and a large thrust load capacity.

すなわち、この発明は、図示する実施例のように、スラ
スト軸受部材15を有するハウジング10の内周にスラ
スト受部材60を有する軸体40を配設し、スラスト軸
受部材15に設けたスラスト受面16とスラスト受部材
60に設けたスラスト端面62とが対向し、スラスト受
面16とスラスト端面32との少なくとも一方に動圧発
生用のみぞ20を設けた動圧形スラスト軸受において、
前記スラスト受面16とスラスト端面62との少なくと
も一方には動圧発生用のみぞ20の流出端側に沿って環
状凸部18が同心状に突設され、軸体40の停止時に前
記環状凸部18を介してスラスト軸受部材15とスラス
ト受部材60とを接触させ、軸体40の回転時にスラス
ト軸受すき間64から環状凸部18を通って流出する潤
滑剤をスラスト軸受すき間64に還流させる循環通路を
設けたことを特徴とする動圧形スラスト軸受に係る。
That is, in the present invention, as in the illustrated embodiment, the shaft body 40 having the thrust bearing member 60 is disposed on the inner periphery of the housing 10 having the thrust bearing member 15, and the thrust bearing surface provided on the thrust bearing member 15 is 16 and a thrust end surface 62 provided on the thrust receiving member 60 are opposed to each other, and a dynamic pressure generating groove 20 is provided in at least one of the thrust receiving surface 16 and the thrust end surface 32,
At least one of the thrust receiving surface 16 and the thrust end surface 62 is provided with an annular protrusion 18 concentrically protruding along the outflow end side of the groove 20 for generating dynamic pressure. A circulation system in which the thrust bearing member 15 and the thrust bearing member 60 are brought into contact via the portion 18 and the lubricant flowing out from the thrust bearing gap 64 through the annular convex portion 18 when the shaft body 40 rotates is returned to the thrust bearing gap 64. The present invention relates to a dynamic pressure type thrust bearing characterized by providing a passage.

以下、この発明の実施例について、図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

第3図は、この発明の第1実施例である。ハウジング部
月9には、同一中心軸線を有する小径の円筒穴11と大
径の円筒穴12とが、それぞれ上下方向に開口して設け
られている。小径の円筒孔11には、円筒状体のスリー
ブ16を嵌合して固定し、大径の円筒孔12には、スラ
スト軸受部材15を嵌合し、該円筒孔12の底面に密着
させて固定しである。ノ・ウジング10はノ・ウジング
部材9とスリーブ16とスラスト軸受部材15とから構
成され、スリーブ16は、その内周面にラジアル内面1
4が形成されたう・シアル軸受部材である。
FIG. 3 shows a first embodiment of the invention. The housing portion 9 is provided with a small-diameter cylindrical hole 11 and a large-diameter cylindrical hole 12 having the same central axis and opening in the vertical direction, respectively. A cylindrical sleeve 16 is fitted and fixed in the small diameter cylindrical hole 11, and a thrust bearing member 15 is fitted in the large diameter cylindrical hole 12 and brought into close contact with the bottom surface of the cylindrical hole 12. It is fixed. The housing 10 is composed of a housing member 9, a sleeve 16, and a thrust bearing member 15, and the sleeve 16 has a radial inner surface 1 on its inner peripheral surface.
4 is a cylindrical bearing member.

スラスト軸受部4」15は、前記スリーブ16と同一の
内径を有する円盤状体であり、スラスト受面16には、
内周縁に沿って環状凸部18を同心状に設け、該環状凸
部18の外側縁からスラスト受面16の外周縁までの間
にスノξイラル状の動圧発生用のみぞ20が設けである
(同図(b)参照)。この環状凸部18のスラスト受面
16からの高さは、数10μmを限度として適宜選定す
る。また、スラスト軸受部材15の底面には、半径方向
に連通溝21を設け、該連通溝21を外周面の軸方向に
設けた流通溝22に連通させである。この連通溝21と
流通溝22とは、図示実施例のように1組に限らず、複
数組として設けてもよい。
The thrust bearing section 4'' 15 is a disc-shaped body having the same inner diameter as the sleeve 16, and the thrust bearing surface 16 has a
An annular convex portion 18 is provided concentrically along the inner circumferential edge, and a groove 20 for generating dynamic pressure in a snot ξ spiral shape is provided between the outer edge of the annular convex portion 18 and the outer circumferential edge of the thrust receiving surface 16. (See figure (b)). The height of this annular convex portion 18 from the thrust receiving surface 16 is appropriately selected with a limit of several tens of micrometers. Furthermore, a communication groove 21 is provided in the bottom surface of the thrust bearing member 15 in the radial direction, and the communication groove 21 is communicated with a communication groove 22 provided in the axial direction on the outer peripheral surface. The communication groove 21 and the circulation groove 22 are not limited to one set as in the illustrated embodiment, but may be provided as a plurality of sets.

上記のハウジング10のスリーブ16およびスラスト軸
受部材15には、スラスト受部材60を一体に成形した
軸体40を、スラスト受部材60を大径の円筒穴12内
に配置して貫通させてあ不、スラスト受部材60には、
前記スラスト軸受部材15のスラスト受面16に対向す
る平面状のスラスト端面62が形成され、軸体40の停
止時においては、スラスト端面32は、前記スラスト軸
受部材15の環状凸部18の上端面に接触して、スラス
ト軸受部材15のスラスト受面16との間にスラスト軸
受すき間34を形成している。また、軸体40には、ス
リーブ16のラジアル内面14に対向するラジアル外面
44が形成され、スリーブ16のう・シアル内面14と
の間に、ラジアル軸受すき間46を形成している。軸体
40のラジアル外面44には、頂部がスラスト軸受部材
15側に偏位した非対称のへリングボーン状のみぞ50
が設けである。
The sleeve 16 and the thrust bearing member 15 of the housing 10 have a shaft body 40 integrally molded with the thrust bearing member 60 disposed inside the large diameter cylindrical hole 12 and passed through the shaft body 40. , the thrust receiving member 60 includes:
A planar thrust end face 62 is formed opposite to the thrust receiving surface 16 of the thrust bearing member 15, and when the shaft body 40 is stopped, the thrust end face 32 is formed on the upper end face of the annular convex portion 18 of the thrust bearing member 15. A thrust bearing gap 34 is formed between the thrust bearing surface 16 of the thrust bearing member 15 and the thrust bearing surface 16 of the thrust bearing member 15 . Further, the shaft body 40 is formed with a radial outer surface 44 that faces the radial inner surface 14 of the sleeve 16, and a radial bearing gap 46 is formed between the radial inner surface 14 of the sleeve 16 and the radial inner surface 14 of the sleeve 16. The radial outer surface 44 of the shaft body 40 is provided with an asymmetric herringbone-shaped groove 50 whose top portion is deviated toward the thrust bearing member 15 side.
is the provision.

上記の構成により、ハウジング10のスリーブ16およ
びスラスト軸受部材15を介してそれぞれ半径方向およ
び軸方向に支持された軸体40が回転すると、スラスト
軸受部材15のスラスト受面16に設けであるスノ々イ
ラル状のみぞ20のポンピング作用による動圧が発生し
て、スラスト軸受すき間34に潤滑剤(この実施例では
油、グリースまたは空気等の気体)が半径方向内側に向
って流入する。軸体40の回転初期においては、スラス
ト受部材30がスラスト軸受部材15の環状凸部18の
上端面に接触して、スラスト軸受すき間64に流入した
潤滑剤の流出を遮断しているため、軸体40の回転が進
行するにつれて潤滑剤の圧力が上昇して環状凸部18に
おける圧力が最も高くなる。このようにして、潤滑剤の
圧力が一定の高さに上昇した時点で、スラスト受部材6
0に上向きの力が作用して軸体40が浮上する。軸体4
0の浮上によって、スラスト受部材60と環状凸部18
との間にすき間(11)ができると、潤滑剤が、環状凸
部18を超えてスラスト軸受部材15と軸体40との間
のすき間48に流出するようになるから、潤滑剤の圧力
は低下する。潤滑剤が環状凸部18を超えて流出しても
、軸体40のラジアル外面44には、非対称のへリング
ボーン状のみぞ50が設けてあり、このみぞ50による
動圧がラジアル軸受すき間46に発生しているから、ハ
ウジング10の外部に漏出することはなく、スラスト軸
受部材15の連通溝21と流通溝22とを経て再びスラ
スト軸受すき間64に流入する。このように、スラスト
軸受部材15と軸体40との間のずき間48と、スラス
ト軸受部材15の連通溝21と、流通溝22とを相互に
連通させて、潤滑剤の循環通路を形成し、環状凸部18
を超えて流出した潤滑剤をスラスト軸受部材15の周り
を循環させることにより、潤滑剤の圧力を一定に保持す
ることができるから、軸体40が浮上したときのスラス
ト受部材60とスラスト軸受部材15の環状凸部18と
の間には、常時一定のすき間(h)が維持されて軸体4
0の浮上量が安定し、一定のスラスト負荷能力が得られ
るとともに、軸体40の浮上量も小さくなる。
With the above configuration, when the shaft body 40 supported in the radial direction and the axial direction via the sleeve 16 and the thrust bearing member 15 of the housing 10 rotates, the grooves provided on the thrust bearing surface 16 of the thrust bearing member 15 rotate. Dynamic pressure is generated by the pumping action of the radially shaped groove 20, and the lubricant (in this embodiment, a gas such as oil, grease or air) flows radially inward into the thrust bearing gap 34. At the beginning of rotation of the shaft body 40, the thrust bearing member 30 contacts the upper end surface of the annular convex portion 18 of the thrust bearing member 15 and blocks the outflow of the lubricant that has flowed into the thrust bearing gap 64. As the rotation of the body 40 progresses, the pressure of the lubricant increases and the pressure at the annular convex portion 18 becomes the highest. In this way, when the lubricant pressure rises to a certain level, the thrust receiving member 6
An upward force acts on the shaft 40, causing the shaft body 40 to float. Shaft body 4
0, the thrust receiving member 60 and the annular convex portion 18
If a gap (11) is created between the two, the lubricant will flow out over the annular convex portion 18 into the gap 48 between the thrust bearing member 15 and the shaft body 40, so the pressure of the lubricant will increase. descend. Even if the lubricant flows out beyond the annular convex portion 18, the radial outer surface 44 of the shaft body 40 is provided with an asymmetric herringbone-shaped groove 50, and the dynamic pressure due to this groove 50 is applied to the radial bearing clearance 46. Therefore, it does not leak out of the housing 10, but flows into the thrust bearing gap 64 again through the communication groove 21 and the circulation groove 22 of the thrust bearing member 15. In this way, the gap 48 between the thrust bearing member 15 and the shaft body 40, the communication groove 21 of the thrust bearing member 15, and the circulation groove 22 are made to communicate with each other, thereby forming a lubricant circulation path. and annular convex portion 18
By circulating the lubricant that has flowed out around the thrust bearing member 15, the pressure of the lubricant can be kept constant. A constant gap (h) is always maintained between the shaft body 4 and the annular convex portion 18 of the shaft body 4.
The flying height of 0 is stabilized, a constant thrust load capacity is obtained, and the flying height of the shaft body 40 is also reduced.

なお、スラスト軸受部材15の内径寸法をスリーブ13
の内径寸法よりも大きくしてもよい。
Note that the inner diameter dimension of the thrust bearing member 15 is the same as that of the sleeve 13.
It may be larger than the inner diameter dimension of.

第4図は、第3図で説明した第1実施例の変形例である
。この変形例では、スラスト軸受部材15のスラスト受
面16にヘリングボーン状の動圧発生用のみぞ20を設
け、該みぞ20の頂部(流出端側)に2条の環状凸部1
8を適宜の間隔をおいて隣接させて設けである。この環
状凸部180間の凹部に軸方向の循環孔26を設け、該
循環孔26を底部の半径方向に設けた連通溝21に連通
させ、連通溝21は外周面の軸方向に設けた流通溝22
に連通させである。牛だ、ノ・ウジング10の小径の円
筒穴11は、その内周面をラジアル内面として軸体40
を貫通させ、軸体40のラジアル外面44には、スノ々
イラル状のみぞ50が設けである。
FIG. 4 shows a modification of the first embodiment explained in FIG. In this modification, a herringbone-shaped groove 20 for generating dynamic pressure is provided on the thrust bearing surface 16 of the thrust bearing member 15, and two annular protrusions 1 are provided at the top (outflow end side) of the groove 20.
8 are provided adjacent to each other at appropriate intervals. An axial circulation hole 26 is provided in the recess between the annular protrusions 180, and the circulation hole 26 is communicated with a communication groove 21 provided in the radial direction on the bottom. Groove 22
It is communicated with. The small-diameter cylindrical hole 11 of the cow-using 10 has its inner circumferential surface as the radial inner surface of the shaft body 40.
The radial outer surface 44 of the shaft body 40 is provided with a groove 50 in a serpentine shape.

上記構成の軸受において、軸体40が回転すると、ヘリ
ングボーン状のみぞ20の動圧によってスラスト軸受す
き間64に流入した潤滑剤は、みぞ20の頂部において
最も高い圧力に上昇する。
In the bearing configured as described above, when the shaft body 40 rotates, the lubricant flowing into the thrust bearing gap 64 due to the dynamic pressure in the herringbone-shaped groove 20 increases to the highest pressure at the top of the groove 20.

これにより、軸体40が浮上し、スラスト受部材60と
環状凸部18との間にすき間(!1)ができると、潤滑
剤が環状凸部18を超えて循環孔26に流出するので、
その後は圧力が上昇することはなく、一定のすき間(h
)が維持された平衡状態となり、軸体40の浮上量が安
定する。循環孔23に流出した潤滑剤は、スラスト軸受
部材15の連通溝21から分岐してスラスト軸受部材1
5と軸体40との間のすき間48と流通溝22とを経て
スラスト軸受すき間34に還流する。スラスト軸受部材
15と軸体40との間のすき間48に流出した潤滑剤は
、軸体40のラジアル外面44に設けだスノ々イラル状
のみぞ50の動圧によって、外部への漏出が阻止される
As a result, when the shaft body 40 floats and a gap (!1) is created between the thrust receiving member 60 and the annular protrusion 18, the lubricant flows out over the annular protrusion 18 and into the circulation hole 26.
After that, the pressure does not increase and there is a constant gap (h
) is maintained in an equilibrium state, and the flying height of the shaft body 40 becomes stable. The lubricant flowing into the circulation hole 23 branches from the communication groove 21 of the thrust bearing member 15 and flows into the thrust bearing member 1.
5 and the shaft body 40 and the flow groove 22, the flow returns to the thrust bearing gap 34. The lubricant leaking into the gap 48 between the thrust bearing member 15 and the shaft body 40 is prevented from leaking to the outside by the dynamic pressure of the serpentine groove 50 provided on the radial outer surface 44 of the shaft body 40. Ru.

なお、循環孔26から連通溝21を通って流通溝22に
通ずる循環通路と、循環孔23から連通溝21を通って
スラスト軸受部材と軸体との間のすき間48に通ずる循
環通路とを別々に設けてもよい。
Note that the circulation passage from the circulation hole 26 to the communication groove 22 through the communication groove 21 and the circulation passage from the circulation hole 23 to the gap 48 between the thrust bearing member and the shaft body through the communication groove 21 are separated. may be provided.

第5図は、この発明の第2実施例である。この実施例で
は、ハウジング部材9の円筒穴11の下端を溝形断面の
ラジアル軸受部材16で閉塞して、軸体40のラジアル
外面44側の端部を密閉し、軸体40のラジアル外面4
4には、上下対称のへリングヂーン状のみぞ50を設け
ている。スラスト軸受部材15の構成は、第3図の場合
と同一であるから同一部分には同一符号を付して示す。
FIG. 5 shows a second embodiment of the invention. In this embodiment, the lower end of the cylindrical hole 11 of the housing member 9 is closed with a radial bearing member 16 having a groove-shaped cross section, the end on the radial outer surface 44 side of the shaft body 40 is sealed, and the radial outer surface 44 of the shaft body 40 is sealed.
4 is provided with a vertically symmetrical herringbone-shaped groove 50. The configuration of the thrust bearing member 15 is the same as that shown in FIG. 3, so the same parts are designated by the same reference numerals.

軸体40の回転時における潤滑剤は、第3図の実施例と
同一の循環通路を経て還流する。
When the shaft body 40 rotates, the lubricant flows back through the same circulation path as in the embodiment shown in FIG.

第6図は、第5図の実施例の変形例であり、軸体40の
ラジアル外面44部分を小径に成形して、軸67に別体
のスラスト受部材60を固着した場合を示し、軸体40
のラジアル外面44には動圧発生用のみそを設けないで
、ノ・ウジング10の円筒孔11に直接挿入しである。
FIG. 6 shows a modification of the embodiment shown in FIG. 5, in which the radial outer surface 44 portion of the shaft body 40 is formed to have a small diameter, and a separate thrust receiving member 60 is fixed to the shaft 67. body 40
The radial outer surface 44 of the housing 10 is directly inserted into the cylindrical hole 11 of the housing 10 without providing any pressure generating material on the radial outer surface 44 of the housing 10.

上記第3図ないし第5図の実施例においては、軸体40
のラジアル外面44に動圧発生用のみぞ50が設けであ
るが、とのみぞ50は、ハウジング10側に設けること
もできる。
In the embodiments shown in FIGS. 3 to 5 above, the shaft body 40
A groove 50 for generating dynamic pressure is provided on the radial outer surface 44 of the housing 10, but the groove 50 may also be provided on the housing 10 side.

なお、スラスト軸受部材15の内径寸法を円筒孔11の
内径寸法より小さくシ、スラスト軸受部材15のラジア
ル内面と、スラスト軸受部材15のラジアル内面に対向
する軸体40のラジアル外面との少なくとも一方にヘリ
ングボーン状のみぞ又はスノξイラル状のみぞを形成し
てもよい。
The inner diameter of the thrust bearing member 15 is made smaller than the inner diameter of the cylindrical hole 11, and at least one of the radial inner surface of the thrust bearing member 15 and the radial outer surface of the shaft body 40 facing the radial inner surface of the thrust bearing member 15 is made smaller than the inner diameter of the cylindrical hole 11. A herringbone-shaped groove or a sno-iral groove may be formed.

第7図は、この発明をスピンドルユニットニ適用した場
合を示す第3実施例である。このスピンドルユニットは
、ラジアル軸受部60aとスラスト軸受部60bとを一
体に成形した動圧軸受部材60とラジアル軸受部材62
とを、それぞれハウング部材9の上下両側に嵌着して、
軸体40の上方のラジアル外面44aを動圧軸受部材6
0のラジアル軸受部60aにより、下方のラジアル外面
44bをラジアル軸受部材62によりそれぞれ半径方向
に支持している。軸体40の上方のラジアル外面44a
には上下非対称のへリングボーン状のみぞ50aが設け
られ、また下方のラジアル外面44bには、上下対称の
へリングボーン状のみぞ50bが設けである。ハウジン
グ10の両側端部には、磁性流体シール65を設け、ハ
ウジング10内に封入された油、グリース等の潤滑剤の
漏出を防止している。
FIG. 7 shows a third embodiment in which the present invention is applied to a spindle unit. This spindle unit includes a dynamic pressure bearing member 60 and a radial bearing member 62, which are integrally molded with a radial bearing part 60a and a thrust bearing part 60b.
and are fitted on both the upper and lower sides of the housing member 9, respectively,
The upper radial outer surface 44a of the shaft body 40 is connected to the hydrodynamic bearing member 6.
The lower radial outer surface 44b is supported in the radial direction by the radial bearing member 62, respectively, by the radial bearing portion 60a. Upper radial outer surface 44a of shaft body 40
The lower radial outer surface 44b is provided with a herringbone-shaped groove 50b which is vertically symmetrical. Magnetic fluid seals 65 are provided at both ends of the housing 10 to prevent leakage of lubricants such as oil and grease sealed within the housing 10.

上記の動圧軸受部材60のスラスト軸受部60bのスラ
スト受面には、前記第3図の実施例と同様にスノξイラ
ル状の動圧発生用のみぞ20と環状凸部18とが設けで
ある。
The thrust receiving surface of the thrust bearing portion 60b of the above-mentioned hydrodynamic bearing member 60 is provided with a groove 20 for generating dynamic pressure in the shape of a serpentine ξ and an annular convex portion 18, as in the embodiment shown in FIG. be.

動圧軸受部材60のスラスト軸受部60bと対向するス
ラスト受部月30は、軸67と一体に成形されているが
、このスラスト受部材30には、軸67との接合部に軸
方向の循環孔65が設けである。
The thrust bearing part 30 facing the thrust bearing part 60b of the dynamic pressure bearing member 60 is molded integrally with the shaft 67. A hole 65 is provided.

上記構成の軸受において、軸体40が回転してスラスト
軸受すき間に34流入した潤滑剤の圧力が上昇し、スラ
スト受部月60とスラスト軸受部601)の環状凸部1
8との間にすき間ができて軸体40が浮上すると、環状
凸部18を超えて流出した潤滑剤は、スラスト受部材3
0の循環孔35に流出し、該循環孔65からスラスト受
部材30の反スラスト端面と・・ウジング10との間の
すき間を経て、スラスト受部材60の外周面と・・ウジ
ング10との間のすき間を通り、スラスト軸受すき間6
4に還流して一定の圧力を保持する。
In the bearing configured as described above, as the shaft body 40 rotates, the pressure of the lubricant flowing into the thrust bearing gap 34 increases, and the annular convex portion 1 of the thrust bearing portion 60 and the thrust bearing portion 601) increases.
When a gap is created between the shaft member 8 and the shaft body 40, the lubricant flowing out beyond the annular convex portion 18 is transferred to the thrust receiving member 3.
0 flows out into the circulation hole 35 of No. 0, passes from the circulation hole 65 through the gap between the anti-thrust end surface of the thrust receiving member 30 and the housing 10, and then flows between the outer peripheral surface of the thrust receiving member 60 and the housing 10. Thrust bearing clearance 6
Reflux to 4 to maintain constant pressure.

なお潤滑剤として空気を使用し、上方の磁性流体シール
65を省略すると、軸体40の回転時にスラスト軸受す
き間64から環状凸部18を通って流出する潤滑剤が循
環孔35から外部に排出される。
Note that when air is used as the lubricant and the upper magnetic fluid seal 65 is omitted, the lubricant flowing out from the thrust bearing gap 64 through the annular convex portion 18 when the shaft body 40 rotates is discharged to the outside from the circulation hole 35. Ru.

第8図は、第7図の実施例の変形例であり、軸67が大
径部41と小径部42とからなり、スラスト受部材60
を軸67の小径部42に嵌合して固着した場合における
潤滑剤の循環通路を示したものである。スラスト受部材
60の内周面の軸方向に循環孔65を設け、該循環孔6
5の中間位置とスラスト受部材30の外周面との間に半
径方向の連通孔36が設けである。このようにすると、
循環孔65に流入した潤滑剤が連通孔66を経てスラス
ト受部材60の外周面に流出するから、潤滑剤の流出方
向を第7図のように軸方向ではなく、半径方向に規制す
ることができる。しだがって、ハウジング10の両側端
部、とくに、スラスト受部材30側の端部を容易に密封
できる。ノ・ウジング10の両側端部にシール体65を
同定し、このシール体65と対向する軸体40の外周面
には、スノξイラル状のみぞ51a、51bが設けであ
る。
FIG. 8 shows a modification of the embodiment shown in FIG. 7, in which the shaft 67 consists of a large diameter part 41 and a small diameter part 42,
This figure shows a lubricant circulation path when the shaft 67 is fitted and fixed to the small diameter portion 42 of the shaft 67. A circulation hole 65 is provided in the axial direction of the inner peripheral surface of the thrust receiving member 60, and the circulation hole 6
A radial communication hole 36 is provided between the intermediate position of 5 and the outer peripheral surface of the thrust receiving member 30. In this way,
Since the lubricant that has flowed into the circulation hole 65 flows out to the outer circumferential surface of the thrust receiving member 60 through the communication hole 66, the direction of the lubricant flow can be restricted to the radial direction rather than the axial direction as shown in FIG. can. Therefore, both ends of the housing 10, especially the end on the thrust receiving member 30 side, can be easily sealed. Seal bodies 65 are identified at both ends of the housing 10, and the outer circumferential surface of the shaft body 40 facing the seal bodies 65 is provided with snot-shaped grooves 51a and 51b.

第7図および第8図の実施例においては、動圧軸受部材
を一体形のものとして構成しているから、軸受の組立が
簡単にできるだけでなく、動圧軸受部材を合成樹脂製と
する場合においては、スラスト軸受部とラジアル軸受部
との双方に同時加工により動圧発生用のみそを設けるこ
とができ、成形加工もきわめて容易になる。
In the embodiments shown in FIGS. 7 and 8, since the hydrodynamic bearing member is constructed as an integral piece, it is not only possible to assemble the bearing easily, but also when the hydrodynamic bearing member is made of synthetic resin. In this case, a groove for generating dynamic pressure can be provided on both the thrust bearing part and the radial bearing part by simultaneous processing, and the molding process becomes extremely easy.

前記第3図ないし第8図の各実施例において、軸体を回
転させる場合に限らず、ハウジングを回転させるように
してもよい。
In each of the embodiments shown in FIGS. 3 to 8, the housing is not limited to being rotated; the housing may also be rotated.

またハウジング10をハウジング↑y(+材9とスリー
ブ16とスラスト軸受部材15とから構成しないで、ハ
ウジング10を一つの部材から構成してもよく、複数の
部材から構成してもよい。
Further, the housing 10 may not be composed of the housing ↑y (+ material 9, the sleeve 16, and the thrust bearing member 15), but may be composed of one member or a plurality of members.

さらに、動圧形スラスト軸受を縦形でなく、横形でも倒
置しても使用できる。
Furthermore, the dynamic pressure type thrust bearing can be used not only vertically but also horizontally or upside down.

第9図ないし第13図は、この発明をフロッピーディス
ク駆動用モータ(フラットモータ)の軸受に適用した使
用例である。
FIGS. 9 to 13 show usage examples in which the present invention is applied to a bearing for a floppy disk drive motor (flat motor).

第9図は、第1使用例を示し、同図において、符号40
は軸体、70は軸体40に固着された回転盤、72は回
転盤の頭部、74は固定盤、75は固定盤74に固層さ
れた・・ウジング部材、16は軸体40を半径方向に支
持するスリーブ、15は回転盤70を軸方向に支持する
スラスト軸受部利、76はシール体、78はロータ、8
0はステータをそれぞれ示す。
FIG. 9 shows a first example of use, in which reference numeral 40
70 is a rotating disk fixed to the shaft 40; 72 is the head of the rotating disk; 74 is a fixed plate; 75 is a housing member fixed to the fixed plate 74; a sleeve for supporting in the radial direction, 15 a thrust bearing part for supporting the rotary disk 70 in the axial direction, 76 a seal body, 78 a rotor, 8
0 indicates a stator, respectively.

第1θ図は、第9図のハウジング部材75、スリーブ1
6およびスラスト軸受部材15を拡大して示したもので
ある。スリーブ16の内周面には、ヘリングボーン状の
動圧発生用のみぞ50が設けられている。スラスト軸受
部材15のスラスト受面16には、内周縁に環状凸部1
8を設け、外周縁にはスパイラル状の動圧発生用のみぞ
20が設けである。このみぞ20は、トルクを小さくす
る必要からスラスト受面16の全面でなく、外周縁に近
接した一部分にのみ狭い幅で設ける。また、スラスト軸
受部材15の内周面の軸方向に循環溝24を設け、該循
環溝24を底面の半径方向に設けた連通溝21を介して
外周面の軸方向に設けた流通溝22に連通させである。
FIG. 1θ shows the housing member 75 and sleeve 1 of FIG.
6 and the thrust bearing member 15 are shown enlarged. The inner peripheral surface of the sleeve 16 is provided with a herringbone-shaped groove 50 for generating dynamic pressure. The thrust bearing surface 16 of the thrust bearing member 15 has an annular convex portion 1 on the inner peripheral edge.
8, and a spiral groove 20 for generating dynamic pressure is provided on the outer peripheral edge. This groove 20 is provided with a narrow width not on the entire surface of the thrust receiving surface 16 but only on a portion close to the outer peripheral edge in order to reduce the torque. Further, a circulation groove 24 is provided in the axial direction on the inner peripheral surface of the thrust bearing member 15, and the circulation groove 24 is connected to the circulation groove 22 provided in the axial direction on the outer peripheral surface via the communication groove 21 provided in the radial direction on the bottom surface. Let's communicate.

第11図および第12図は、それぞれ第10図の第1変
形例および第2変形例である。
11 and 12 are a first modification and a second modification of FIG. 10, respectively.

第11図は、スラスト軸受部材15のスラスト受面16
の外周縁の一部に設けたスパイラル状のみぞ20の内側
縁に沿って環状凸部18を設け、該環状凸部18の内側
に循環孔23を設けて該循環孔26を連通溝21を介し
て流通溝22に連通させた場合を示し、第12図は、ス
ラスト軸受部材15のスラスト受面16の外周縁の一部
にヘリングボーン状のみぞ20を設け、該みぞ20の頂
部に2条の環状凸部18をそれぞれ設け、該環状凸部1
8の間に設けた循環孔23aとみぞ20の内側に設けた
循環孔23bと流通溝22とをそれぞれ連通溝21に連
通させた場合を示す。
FIG. 11 shows the thrust bearing surface 16 of the thrust bearing member 15.
An annular convex portion 18 is provided along the inner edge of a spiral groove 20 provided on a part of the outer peripheral edge of the annular convex portion 18 , a circulation hole 23 is provided inside the annular convex portion 18 , and the circulation hole 26 is connected to the communication groove 21 . FIG. 12 shows a case in which a herringbone-shaped groove 20 is provided in a part of the outer peripheral edge of the thrust bearing surface 16 of the thrust bearing member 15, and a groove 20 is provided at the top of the groove 20. An annular protrusion 18 of a strip is provided, and the annular protrusion 1
8, the circulation hole 23b provided inside the groove 20, and the circulation groove 22 are respectively communicated with the communication groove 21.

第13図は、第2使用例を示し、軸体40のラジアル外
面側部を固定盤74に貫通して、スラスト軸受部材15
を倒置形とした場合である。符号13はスリーブ、30
は軸体40に固着されたスラスト受部材、70はスラス
ト受部材30に固着された回転盤、72は軸体40の上
端に固着された頭部、75は固定盤74に固着されたノ
・ウジング部材、78はロータ、80はステータをそれ
ぞれ示す。スラスト軸受部材15の構成は前記第3図の
場合と同様であり、軸体40のラジアル外面19− には非対称のへリングヂーン状のみぞ50が設けである
FIG. 13 shows a second usage example in which the radial outer surface side of the shaft body 40 is penetrated into the fixed platen 74 and the thrust bearing member 15 is
This is the case when it is inverted. Reference numeral 13 is a sleeve, 30
70 is a rotating disk fixed to the thrust receiving member 30; 72 is a head fixed to the upper end of the shaft 40; 75 is a fixed plate 74 fixed to the rotating disk; 78 is a rotor, and 80 is a stator. The configuration of the thrust bearing member 15 is the same as that shown in FIG. 3, and an asymmetric herringbone-shaped groove 50 is provided on the radial outer surface 19- of the shaft body 40.

上記第9図ないし第13図の軸受において、軸体40が
回転したときの軸体40の浮上および潤滑剤の循環の作
動は、前述した第3図ないし第6図の場合と同様である
が、とくにこのようなフラットモータにこの発明を適用
することにより、回転盤70がスラスト軸受部材15の
環状凸部18との間の微少すき間に油膜または気体膜を
形成して、スラスト軸受部材15のスラスト受面16に
対して平行状態を保持して回転するから、スラスト軸受
部材15のスラスト受面16がスリーブ16のラジアル
内面14に対して正確に垂直になるようにしておけば、
回転盤70のアキシアル振れが小さくなり、これによっ
て、回転盤70の頭部72の側面におけるラジアル振れ
を小さくすることができ、きわめて高い回転精度を安定
して得ることが可能となる。
In the bearings shown in FIGS. 9 to 13 above, the floating of the shaft 40 and the circulation of lubricant when the shaft 40 rotates are the same as in the case of FIGS. 3 to 6 described above. In particular, by applying the present invention to such a flat motor, the rotary disk 70 forms an oil film or a gas film in a minute gap between the annular convex portion 18 of the thrust bearing member 15, and the thrust bearing member 15 is heated. Since it rotates while maintaining a state parallel to the thrust bearing surface 16, if the thrust bearing surface 16 of the thrust bearing member 15 is made to be exactly perpendicular to the radial inner surface 14 of the sleeve 16,
The axial runout of the rotary disk 70 is reduced, thereby making it possible to reduce the radial deflection on the side surface of the head 72 of the rotary disk 70, making it possible to stably obtain extremely high rotation accuracy.

第14図はこの発明の応用例であるが、スラスト軸受す
き間64から環状凸部18を通って流出20− する潤滑剤の循環通路がなく、まだラジアル外面44に
動圧発生用のみそがない。なお図示の実施例の他の個所
は第3図の実施例とほぼ同様に構成されている。
FIG. 14 shows an application example of the present invention, but there is no circulation path for the lubricant to flow out from the thrust bearing gap 64 through the annular convex portion 18, and there is no groove for generating dynamic pressure on the radial outer surface 44. . The other parts of the illustrated embodiment are constructed almost the same as the embodiment shown in FIG.

従って潤滑剤として空気を使用すると、軸体40の回転
時にスラスト軸受すき間64から環状凸部18を通って
流出する潤滑剤がう・シアル内面14とラジアル外面4
4との間のすき間から外部に排出される。
Therefore, when air is used as a lubricant, when the shaft body 40 rotates, the lubricant flows out from the thrust bearing gap 64 through the annular convex portion 18.
It is discharged to the outside from the gap between 4 and 4.

以上、説明したところから明らかなように、この発明は
、スラスト軸受部材のスラスト受面とスラスト受部材に
設けたスラスト端面との少なくとも一方に形成された動
圧発生用のみぞの流出端側に環状凸部を突設して、該環
状凸部を介してスラスト軸受部材とスラスト受部材とを
接触させ、軸体の回転時においてスラスト軸受すき間に
流入した潤滑剤の圧力を環状凸部により上昇させて軸体
を軸方向に変位させ、環状凸部を通って流出した潤滑剤
を循環通路を経て還流させる構成としている。したがっ
て、この発明によれば、スラスト軸受すき間の潤滑剤の
圧力が、スラスト受部材とスラスト軸受部材との間のす
き間によって調整されるから一定であり、軸体の軸方向
変位が安定し、一定のスラスト負荷能力が得られる。
As is clear from the above description, the present invention provides a groove for generating dynamic pressure formed on at least one of the thrust receiving surface of the thrust bearing member and the thrust end surface provided on the thrust receiving member. An annular projection is provided to bring the thrust bearing member into contact with the thrust receiving member through the annular projection, and the pressure of the lubricant flowing into the thrust bearing gap when the shaft rotates is increased by the annular projection. The shaft body is displaced in the axial direction, and the lubricant flowing out through the annular convex portion is circulated through the circulation passage. Therefore, according to the present invention, the pressure of the lubricant in the thrust bearing gap is constant because it is adjusted by the gap between the thrust bearing member and the thrust bearing member, and the axial displacement of the shaft body is stable and constant. thrust load capacity is obtained.

まだ、この発明によれば、軸体が回転1〜て軸方向に変
位した時点から潤滑剤の還流が始まり、潤滑剤の圧力が
調整されるので軸体の軸方向変位を小さくすることがで
き、さらに、周囲温度により潤滑剤の粘度が変化した場
合でも、軸体の軸方向変位が変動することはない。また
、スラスト負荷能力が高いとともに、潤滑剤の漏出もな
い。
However, according to this invention, the reflux of the lubricant starts from the time when the shaft body is displaced in the axial direction after one rotation, and the pressure of the lubricant is adjusted, so that the axial displacement of the shaft body can be reduced. Furthermore, even if the viscosity of the lubricant changes depending on the ambient temperature, the axial displacement of the shaft does not change. In addition, the thrust load capacity is high and there is no leakage of lubricant.

また、この発明によれば、軸体の停止時には、スラスト
受部材とスラスト軸受部材とが環状凸部を介して接触し
、接触面積が小さいから起動トルクを小さくすることが
できる。
Further, according to the present invention, when the shaft body is stopped, the thrust receiving member and the thrust bearing member are in contact with each other via the annular convex portion, and since the contact area is small, the starting torque can be reduced.

さらに、スラスト軸受部材の動圧発生用のみそと環状凸
部とは、プレスまたはモールディングにより一体成形す
ることができるから、簡易な工程で安価な生産が可能と
なる。
Further, since the dynamic pressure generating portion and the annular convex portion of the thrust bearing member can be integrally formed by pressing or molding, it is possible to produce the thrust bearing member at a low cost with a simple process.

【図面の簡単な説明】[Brief explanation of drawings]

7g 1図および第2図は、それぞれ従来の動圧形スラ
スト軸受を示し、第1図(a)および第2図(a)はそ
の断面図、第1図(1))および第2図(b)はスラス
ト受面の平面図、第3図はこの発明の第1実施例を示し
、同図(a)はその断面図、同図(b)はスラスト受面
の平面図、第4図はこの発明の第1実施例の変形例を示
し、同図(a)はその断面図、同図(b)はスラスト受
面の平面図、第5図はこの発明の第2実施例を示す断面
図、第6図はこの発明の第2笑施例の変形例を示す断電
I図、第7図はこの発明の第3実施例を示す断−cm図
、第8図はこの発明の第3実施例の変形例を示す断面図
、第9図はこの発明の第1使用例を示す断面図、第10
図(、)は第9図の要部拡大断面図、第10図(b)ζ
・ゴその平面図、第11図および第12図はそれぞれこ
の発明の第1使用例の第1変形例および第2変形例を示
し、第11図(a)および第12図(a)はその断面図
、第11図(1))および第12図(b)はその平面図
、第13図はこの発明の第2使用例を示す断面図、第1
4図はこの発明の応用例を示す断面図である。 23− 図中、10はハウジング、14はラジアル内面、15は
スラスト軸受部材、16はスラスト受面、18は環状凸
部、20は動圧発生用のみぞ、21は連通溝、22は流
通溝、23は循環孔、60はスラスト受部材、32はス
ラスト端面、34はスラスト軸受すき間、65は循環孔
、66は連通孔、40は軸体、44はラジアル外面、4
8はスラスト軸受部材と軸体との間のすき間である。 特許出願人  日本精工株式会社 代理人 弁理士   森    哲 也弁理士   内
 藤 嘉 昭 弁理士    清 水    正 弁理士    梶  山 拮 是 24−
7g Figures 1 and 2 respectively show conventional hydrodynamic thrust bearings, Figures 1 (a) and 2 (a) are cross-sectional views, and Figure 1 (1)) and Figure 2 ( b) is a plan view of the thrust receiving surface, FIG. 3 shows the first embodiment of the invention, FIG. 5 shows a modification of the first embodiment of the invention, FIG. 5(a) is a sectional view thereof, FIG. 5(b) is a plan view of the thrust receiving surface, and FIG. 6 is a cross-sectional view showing a modification of the second embodiment of the present invention, FIG. 7 is a cross-sectional view showing a third embodiment of the invention, and FIG. 8 is a cross-sectional view showing a modification of the second embodiment of the invention. FIG. 9 is a sectional view showing a modification of the third embodiment; FIG. 9 is a sectional view showing a first usage example of the invention;
Figure (,) is an enlarged sectional view of the main part of Figure 9, Figure 10 (b) ζ
・The plan view of FIG. 11 and FIG. 12 respectively show a first modification and a second modification of the first usage example of this invention, and FIG. 11(a) and FIG. 11(1)) and FIG. 12(b) are plan views thereof, and FIG. 13 is a sectional view showing a second usage example of the present invention.
FIG. 4 is a sectional view showing an example of application of the present invention. 23- In the figure, 10 is a housing, 14 is a radial inner surface, 15 is a thrust bearing member, 16 is a thrust bearing surface, 18 is an annular convex portion, 20 is a groove for generating dynamic pressure, 21 is a communication groove, and 22 is a distribution groove. , 23 is a circulation hole, 60 is a thrust receiving member, 32 is a thrust end face, 34 is a thrust bearing gap, 65 is a circulation hole, 66 is a communication hole, 40 is a shaft body, 44 is a radial outer surface, 4
8 is a gap between the thrust bearing member and the shaft body. Patent applicant NSK Ltd. representative Patent attorney Tetsuya Mori Patent attorney Yoshiaki Naito Patent attorney Shimizu Masaru Kajiyama Kore24-

Claims (6)

【特許請求の範囲】[Claims] (1)  スラスト軸受部材を有するノ・ウジングの内
周にスラスト受部材を有する軸体を配設し、スラスト軸
受部材に設けたスラスト受面とスラスト受部材に設けた
スラスト端面とが対向し、スラスト受面とスラスト端面
との少なくとも一方に動圧発生用のみそを設けた動圧形
スラスト軸受において、前記スラスト受面とスラスト端
面との少なくとも一方には動圧発生用のみその流出端側
に沿って環状凸部が同心状に突設され、軸体の停止時に
前記環状凸部を介してスラスト軸受部材とスラスト受部
材とを接触させ、軸体の回転時にスラスト軸受傘すき間
から環状凸部を通って流出する潤滑剤全スラストs受す
き間に還流させる循環通路を設けたことを特徴とする動
圧形スラスト軸受。
(1) A shaft body having a thrust bearing member is disposed on the inner periphery of a nozzle having a thrust bearing member, and a thrust bearing surface provided on the thrust bearing member and a thrust end face provided on the thrust bearing member are opposed to each other, In a dynamic pressure type thrust bearing in which at least one of the thrust receiving surface and the thrust end surface is provided with a groove for generating dynamic pressure, at least one of the thrust receiving surface and the thrust end surface is provided with a groove for generating dynamic pressure on the outflow end side thereof. An annular convex portion is concentrically protruded along the shaft, and when the shaft body is stopped, the thrust bearing member and the thrust bearing member are brought into contact through the annular convex portion, and when the shaft body is rotated, the annular convex portion is formed from the thrust bearing umbrella gap. A dynamic pressure type thrust bearing characterized in that a circulation passage is provided through which all of the lubricant flowing out flows back into the bearing gap.
(2)  スラスト受面にスノξイラル状のみそを形成
し、スラスト受面の内周縁に環状凸部を設け、スラスト
軸受部材と軸体との間のすき間と、スラスト軸受部材の
底面の半径方向に設けた連通溝および外周面の軸方向に
設けた流通溝とにより潤滑剤の循環通路が形成されてい
る特許請求の範囲第1項記載の動圧形スラスト軸受。
(2) A cylindrical shape is formed on the thrust bearing surface, and an annular convex portion is provided on the inner peripheral edge of the thrust bearing surface, and the gap between the thrust bearing member and the shaft body and the radius of the bottom surface of the thrust bearing member are 2. The dynamic pressure type thrust bearing according to claim 1, wherein a lubricant circulation passage is formed by a communication groove provided in the axial direction and a circulation groove provided in the axial direction on the outer circumferential surface.
(3)スラスト受面にヘリングボーン状のみそを形成し
、該みその頂部に2条の環状凸部を隣接して設け、スラ
スト軸受部材と軸体との間のすき間と、環状凸部相互間
の四部に軸方向に設けた循環孔と、スラスト軸受部材の
底面の半径方向に設けた連通溝および外周面の軸方向に
設けた流通溝とにより潤滑剤の循環通路が形成されてい
る特許請求の範囲第1項記載の動圧形スラスト軸受。
(3) A herringbone-shaped groove is formed on the thrust bearing surface, and two annular protrusions are provided adjacent to each other at the top of the aperture, so that the gap between the thrust bearing member and the shaft body and the mutual relationship between the annular protrusions are A patent in which a lubricant circulation passage is formed by circulation holes provided in the axial direction in the four parts between them, communication grooves provided in the radial direction on the bottom surface of the thrust bearing member, and circulation grooves provided in the axial direction on the outer peripheral surface. A dynamic pressure type thrust bearing according to claim 1.
(4)スラスト受面にスノξイラル状のみぞを形成し、
スラスト受面の内周縁に環状凸部を設け、スラスト受部
材の軸との接合部の軸方向に設けた循環孔と、スラスト
受部材の反スラスト端面および外周面とハウジングとの
間のすき間とにより潤滑剤の循環通路が形成されている
特許請求の範囲第1項記載の動圧形スラスト軸受。
(4) Forming a groove in the shape of a cylindrical shape on the thrust receiving surface,
An annular convex portion is provided on the inner peripheral edge of the thrust receiving surface, and a circulation hole is provided in the axial direction at the joint with the shaft of the thrust receiving member, and a gap between the anti-thrust end surface and outer peripheral surface of the thrust receiving member and the housing. 2. A dynamic pressure type thrust bearing according to claim 1, wherein a lubricant circulation passage is formed by a lubricant circulation passage.
(5)スラスト受面にス・ぐイラル状のみぞを形成し、
スラスト受面の内周縁に環状凸部を設け、スラスト受部
材の軸との接合部の軸方向に設けた循環孔と、該循環孔
とスラスト受部材の外周面との間に設けた連通孔とによ
り潤滑剤の循環通路が形成されている特許請求の範囲第
1項記載の動圧形スラスト軸受。
(5) Forming a spiral groove on the thrust receiving surface,
An annular convex portion is provided on the inner peripheral edge of the thrust receiving surface, a circulation hole is provided in the axial direction of the joint with the shaft of the thrust receiving member, and a communication hole is provided between the circulation hole and the outer peripheral surface of the thrust receiving member. 2. The dynamic pressure type thrust bearing according to claim 1, wherein a lubricant circulation passage is formed by the lubricant circulation passage.
(6)軸体のラジアル外面側部が・・ウジングを貫通し
、ハウジングのラジアル内面と軸体のラジアル外面との
少々くとも一方に、スラスト軸受部材側に頂部が偏位し
た非対称のへリングボーン状のみぞが形成されている特
許請求の範囲第1項ないし第5項の倒れかに記載の動圧
形スラスト軸受。
(6) The radial outer surface side of the shaft body passes through the housing, and the asymmetrical Hering whose top part is deviated toward the thrust bearing member side at least to one side between the radial inner surface of the housing and the radial outer surface of the shaft body. A hydrodynamic thrust bearing according to any one of claims 1 to 5, wherein a bone-shaped groove is formed.
JP11958082A 1982-07-09 1982-07-09 Dynamic-pressure thrust bearing Granted JPS5913113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11958082A JPS5913113A (en) 1982-07-09 1982-07-09 Dynamic-pressure thrust bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11958082A JPS5913113A (en) 1982-07-09 1982-07-09 Dynamic-pressure thrust bearing

Publications (2)

Publication Number Publication Date
JPS5913113A true JPS5913113A (en) 1984-01-23
JPH0143847B2 JPH0143847B2 (en) 1989-09-22

Family

ID=14764869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11958082A Granted JPS5913113A (en) 1982-07-09 1982-07-09 Dynamic-pressure thrust bearing

Country Status (1)

Country Link
JP (1) JPS5913113A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194021A (en) * 1986-02-17 1987-08-26 Ebara Res Co Ltd Spiral group bearing
JPH01238712A (en) * 1988-03-16 1989-09-22 Canon Inc Rotation device
JPH025615U (en) * 1988-06-27 1990-01-16
EP0378273A2 (en) * 1989-01-12 1990-07-18 Philips Patentverwaltung GmbH Rotary anode X-ray tube with a gliding bearing, particularly a spirally grooved bearing
KR100467363B1 (en) * 2001-04-16 2005-01-24 머신나우 주식회사 Sliding Bearing using Leaf Springs
JP2007051772A (en) * 2005-07-20 2007-03-01 Ntn Corp Dynamic pressure bearing device and motor having the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62194021A (en) * 1986-02-17 1987-08-26 Ebara Res Co Ltd Spiral group bearing
JPH01238712A (en) * 1988-03-16 1989-09-22 Canon Inc Rotation device
JPH025615U (en) * 1988-06-27 1990-01-16
EP0378273A2 (en) * 1989-01-12 1990-07-18 Philips Patentverwaltung GmbH Rotary anode X-ray tube with a gliding bearing, particularly a spirally grooved bearing
KR100467363B1 (en) * 2001-04-16 2005-01-24 머신나우 주식회사 Sliding Bearing using Leaf Springs
JP2007051772A (en) * 2005-07-20 2007-03-01 Ntn Corp Dynamic pressure bearing device and motor having the same

Also Published As

Publication number Publication date
JPH0143847B2 (en) 1989-09-22

Similar Documents

Publication Publication Date Title
US7201517B2 (en) Hydrodynamic bearing device and a recording disk drive equipped with it
US5908247A (en) Sinusoidal grooving pattern for grooved journal bearing
US6456458B1 (en) Disk-drive motor rotating on a magnetically counterbalanced single hydrodynamic thrust bearing
US20060210205A1 (en) Fluid dynamic bearing system
US5806987A (en) Hydrodynamic bearing apparatus
US6890104B2 (en) Hydrodynamic bearing device
US6271612B1 (en) Spindle motor
US5847479A (en) Self-pressure-balanced hydrodynamic bearing spindle motor
JP3665549B2 (en) Thrust dynamic pressure bearing and spindle motor provided with the same
US6672767B2 (en) Dynamic bearing device and motor having the same
US5697708A (en) Hydrodynamic bearing with reduced temperature sensitivity
US5791785A (en) Hydrodynamic bearing apparatus
US8240920B2 (en) Fluid dynamic bearing, motor, and recording disk drive apparatus
US7160031B2 (en) Thrust dynamic pressure bearing, spindle motor using the same, and information recording and reproducing apparatus using them
US20070071378A1 (en) Hydrodynamic bearing device
JPS5913113A (en) Dynamic-pressure thrust bearing
US7237955B2 (en) Hydrodynamic bearing and disc rotation apparatus using the same
EP0523739B1 (en) Dynamic pressure bearing device
US7237956B2 (en) Hydrodynamic bearing and disc rotation apparatus using the same
JP2006112614A (en) Dynamic pressure bearing device
JPH033805B2 (en)
JP2001140860A (en) Spindle motor
JP2900560B2 (en) Bearing device for magnetic disk
JP2004183867A (en) Dynamic pressure fluid bearing device, and motor provided with the same
JP2002061647A (en) Dynamic pressure type bearing unit