JPS5912994A - Working fluid for rankine cycle - Google Patents

Working fluid for rankine cycle

Info

Publication number
JPS5912994A
JPS5912994A JP57123440A JP12344082A JPS5912994A JP S5912994 A JPS5912994 A JP S5912994A JP 57123440 A JP57123440 A JP 57123440A JP 12344082 A JP12344082 A JP 12344082A JP S5912994 A JPS5912994 A JP S5912994A
Authority
JP
Japan
Prior art keywords
working fluid
cycle
rankine cycle
expansion device
freon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57123440A
Other languages
Japanese (ja)
Other versions
JPS6312509B2 (en
Inventor
Hisanori Enjo
遠上 尚徳
Masahiro Noguchi
真裕 野口
Satoru Ide
井手 哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP57123440A priority Critical patent/JPS5912994A/en
Priority to DE8383106843T priority patent/DE3362538D1/en
Priority to EP83106843A priority patent/EP0101856B1/en
Publication of JPS5912994A publication Critical patent/JPS5912994A/en
Priority to US06/632,276 priority patent/US4557851A/en
Publication of JPS6312509B2 publication Critical patent/JPS6312509B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Lubricants (AREA)

Abstract

PURPOSE:A novel working fluid for Rankine cycle having improved energy conversion efficiency, heat exchange characteristics, heat stability, etc., obtained by blending trichlorofluoromethane with difluoroethane. CONSTITUTION:The desired working fluid obtained by blending (A) usually 95- 50wt% trichlorofluoromethane with (B) usually 5-50wt% difluoroethane. A rotary or reciprocating volume type expansion device or a turbine expansion device is used as the expansion device 1 for Rankine cycle, a vapor generator of the same type as that of steam generator is used as the vapor generator 4, a condenser for refrigerator as the condenser 2, and a pump for transporting organic solvents by pressure for chemical devices as the pump 3.

Description

【発明の詳細な説明】 本発明はうシ牛ンサイクル用の新規な動作流体に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel working fluid for cattle cow cycles.

熱エネルギーを用いて液状媒体を加熱蒸発させ膨張装置
内で膨張させることにより機械工ネル甲−を得、ついで
この媒体を凝縮させ、ポンプにより加圧して液状媒体と
するサイクルをくり返すことにより熱エネルギーな機械
工ネル千−に変換するラシ牛ンサイクルにおいては、媒
体すなわちラン+ンサイクル用動作流体として従来から
使用されてきたほとんど唯一のものは水である。動作流
体としての水は水蒸気機関に古くから実用化されてきた
。然しなから、水は凝固点が高く、蒸気比容積が太きい
ためその使用範囲が限定され、とくに低温熱源を使用す
る場合は設備が大きくなり効率も低下するという欠点が
あり、更に低温で使用するときは氷結するため使用温度
に限界がある。
The liquid medium is heated and evaporated using thermal energy and expanded in an expansion device to obtain a mechanical funnel.Then, this medium is condensed and pressurized by a pump to form a liquid medium.The cycle is repeated to generate heat. In the run cycle, which converts energy into mechanical machinery, water is almost the only medium that has traditionally been used as the medium or working fluid for the run cycle. Water as a working fluid has been used in steam engines for a long time. However, water has a high freezing point and a large vapor specific volume, which limits its range of use.Especially when using a low-temperature heat source, the disadvantage is that the equipment becomes bulky and efficiency decreases; There is a limit to the temperature at which it can be used because it sometimes freezes.

このような水の欠点を改善するものとして、多くの有機
動作流体が提案されているが、多くのものは可燃性であ
ったり、腐蝕性であったりして、いまだ満足して使用で
きるものは得られていない。
Many organic working fluids have been proposed to improve these drawbacks of water, but many are flammable or corrosive, and so far none can be used satisfactorily. Not obtained.

しかしこれらのもののうち、実用化されているものとし
てトリク00フルオ0メタシ(以下フロン−11とい4
う)があるが、フロン−11からなろラン士ンサイクル
用動作流体は熱エネルギーから機械工ネルf−への変換
効率が低い難点がある。
However, among these, the one that has been put into practical use is Triku-00 Fluo-0 Metasi (hereinafter referred to as Freon-11).
However, the working fluid for the Narorun cycle from Freon-11 has the drawback of low conversion efficiency from thermal energy to mechanical energy f-.

フロシー11は以上のような欠点があるためエネルで一
変換効率がよい動作流体の出現が期待されている。
Since Flothy 11 has the above-mentioned drawbacks, it is expected that a working fluid with high energy conversion efficiency will emerge.

本発明者らはそのような要望に応えるべく種々研究を重
ねた結果、従来の動作流体はすべて単一物質が研究され
用いられて来たが、異った特性をもつ物質を混合した混
合系は岸−物質に比べて優れた特性を示すことを見出し
、特にトリク00フルオDメタン(以下フロン−11と
いう)とジフルオ0エタシ(以下フロン−152という
)との混合物がラシ中シサイクル用の動作流体としてき
わめてすぐれた特性を有していることを見出し本発明を
完成するにいたった。
The inventors of the present invention have conducted a variety of research in response to such demands.While conventional working fluids have all been researched and used using a single substance, we have developed a mixed system in which materials with different properties are mixed. It was found that the mixture of trifluoro-D methane (hereinafter referred to as Freon-11) and difluoro-methane (hereinafter referred to as Freon-152) exhibited superior properties compared to other materials. It was discovered that this fluid has extremely excellent properties as a working fluid, leading to the completion of the present invention.

本発明のフロシー11とフロシー152との混合系けう
ン士シサイクル用動作流体として次の特性を有している
The working fluid for a mixed cycle of the Flossy 11 and Flossy 152 of the present invention has the following characteristics.

第一に、フロン−11とフロン−152との混合系を用
いたうシ+シサイクルは、熱源エネル甲変換効率が従来
ラン+シサイクル用動作流体として公知のフロシー11
及びフロシー114(、;り0ロテトラフルオロエタシ
)に比し十分高い特性を有している。
First, the Flocy cycle using a mixed system of Freon-11 and Freon-152 has a heat source energy conversion efficiency of Flothy 11, which is conventionally known as a working fluid for the Run+cy cycle.
It has sufficiently high properties compared to Flossy 114 and Flocy 114 (20%).

第二に、フロシー152は燃焼性をもっている。Second, Flossie 152 is flammable.

しかしフロシー11と混合することによりその燃焼性は
小さくなり、フロシー11の混合比が69係以上では全
く燃焼しない。また、フロシー11の混合比69〜50
%では燃焼性は非常に小さく実用上大きな障害とはなら
ない。
However, when mixed with Flossy 11, its combustibility decreases, and if the mixing ratio of Flossy 11 is 69 parts or higher, it will not burn at all. Also, the mixing ratio of Flossy 11 is 69-50
%, the flammability is very small and does not pose a major problem in practical use.

t7’cフ[1,y −11ヲ95〜50重量%、フロ
シー152を5〜50重量%の範囲の混合比率で特に出
力効率の顕著な向上が得られる。
Particularly remarkable improvement in output efficiency can be obtained at a mixing ratio of 95 to 50% by weight of t7'c [1,y -11] and 5 to 50% by weight of Flossy 152.

第1図は本発明の70シー11とフロン−152との混
合物(混合比70重量%/30重量%)の圧カーエシタ
ルピ線図(P−H線図)であり、図中に記入した点A1
B、C,D%Eはそれぞれ下記実施例で実施されたうシ
+シサイクルの下記第2図及び第3図に説明するラシ中
シサイクルの各状態点に対応する。
Figure 1 is a pressure curve diagram (P-H diagram) of a mixture of 70 Sea 11 and Freon-152 of the present invention (mixing ratio 70%/30% by weight), and the point A1 drawn in the diagram is
B, C, and D%E correspond to each state point of the Rashi-in-cycle cycle illustrated in FIGS. 2 and 3 below of the Ushi-+-shi cycle carried out in the following example.

第2図は熱エネルf−を機械工ネルf−に変換するため
のラシ士シサイクル系統図であり、第3図はフロシー1
1とフロシー152との混合物を動作流体として用いた
うン士シサイクルを温度エツト0ピ線図上に記入して示
したものである。なお、第2図における記号(A−E 
)は、第3図における記号(A−E)で示した各状態点
に対応する・。
Figure 2 is a flow diagram for converting heat energy f- into mechanical energy f-, and Figure 3 is a flow cycle system diagram for converting heat energy f- into mechanical energy f-.
This figure shows an engine cycle using a mixture of No. 1 and Flossy No. 152 as the working fluid, plotted on a temperature graph. In addition, the symbols (A-E
) correspond to each state point indicated by symbols (A-E) in FIG.

蒸気発生装置(4)で加熱された動作流体は蒸発し、高
温高圧の蒸気とがる。この状態は第3図において(D)
、(E)、(、()の変化で示される。この間で液状動
作流体は加熱され温度が上昇し、沸騰が始まり全量が気
化する。この動作流体蒸気はつぎに膨張装置(1)に入
り、断熱膨張を行かい、温度、圧力が低下し第3図に示
す(A) −(B)間の仕事を行々う。膨張装置f4)
内で仕事を行ない低温低圧になった動作流体は次に凝縮
装装置(2)に入り、第3図のCB> −(C)で示す
ように凝縮液化する。この液化した動作流体はポジづ(
3)に入り、昇圧されて再び蒸気発生装置(4)に入り
、前述の如きサイクルが繰り返される。なお、第3図中
、点(a)は熱源である熱水がラン士ンサイクルの蒸気
発生装置に入ったときの熱水の状態を示し、(h)はこ
の熱水が蒸気発生装置を出た時の熱水の状態を示し、点
(α)から点(h)にひいた直線上の矢印は熱水の流れ
の方向を示している。また、点(d)、(−1は凝縮器
内の冷却水の状態を示し、(d)は凝縮器入口の冷却水
の、(=)は凝縮器出口の冷却水の状態を示し、点(、
Z)から点(−)にひいた直線上の矢印は冷却水の流れ
の方向を示している。
The working fluid heated by the steam generator (4) evaporates, producing high-temperature, high-pressure steam. This state is shown in Figure 3 (D).
, (E), (, ()).During this time, the liquid working fluid is heated and its temperature rises, and boiling begins and the entire amount is vaporized.This working fluid vapor then enters the expansion device (1). Through adiabatic expansion, the temperature and pressure decrease, and work between (A) and (B) shown in Figure 3 is performed.Expansion device f4)
The working fluid, which has undergone work and has become low temperature and low pressure, then enters the condensing device (2) and is condensed and liquefied as shown by CB>-(C) in FIG. This liquefied working fluid is positive (
3), is pressurized, enters the steam generator (4) again, and the cycle as described above is repeated. In Figure 3, point (a) shows the state of the hot water when it enters the steam generator of the run cycle, and point (h) shows the state of the hot water when it enters the steam generator of the run cycle. The state of the hot water when it comes out is shown, and the arrow on the straight line drawn from point (α) to point (h) shows the direction of flow of hot water. In addition, point (d), (-1 indicates the state of the cooling water in the condenser, (d) indicates the state of the cooling water at the condenser inlet, (=) indicates the state of the cooling water at the condenser outlet, and (,
The straight arrow drawn from point (Z) to point (-) indicates the direction of the flow of cooling water.

上記のラシ士シサイクル用に用いられる膨張装置として
は、回転式または往復式の容積型膨張機やターじシ膨張
機が使用可能であり、蒸気発生装置としては水蒸気の発
生に用いられるボイラーと同じ形式のものも使用可能で
あり、また凝縮装置としては冷凍装置に使用されている
形式のものが使用■]能である。そしてポンつとしては
、化学装置に一般に用いられている有機溶剤の加圧送液
ポ、l/づが使用可能である。
As the expansion device used for the above-mentioned Rashishi cycle, a rotary or reciprocating positive displacement expander or a tarsi expander can be used, and as a steam generator, a boiler used to generate steam can be used. It is also possible to use the same type of condensing device, and the type used in refrigeration equipment can be used as the condensing device. As for the pump, a pressurized organic solvent pump generally used in chemical equipment can be used.

本発明のラシ牛ンサイクル動作流体は単独で使用するこ
とが出来るが、他に添加剤を必要に応じて加えるととが
出来る。たとえばフロン−152が可燃性でありフロシ
ー11より本沸点が低いので、気相ではフロシー152
の割合が大となり粘性が大となる。そこで他のフロシガ
スたとえばフロシー114、フ0υ−12、フロシー2
2またはフロシー13B+を添加して粘性をおさえるこ
とが出来る。添加幇は通常フロン−152の量に対して
50重量%以下が打首しい。
The rinsing cycle working fluid of the present invention can be used alone, but other additives can be added as needed. For example, Freon-152 is flammable and has a lower main boiling point than Flothy-11, so in the gas phase, Flothy-152
The higher the ratio, the higher the viscosity. Therefore, other Flossy gases such as Flossy 114, Flossy 0υ-12, Flossy 2
2 or Flossie 13B+ can be added to suppress viscosity. The addition amount is usually 50% by weight or less based on the amount of Freon-152.

次に、本発明を実施例、比較例及び各種の試験π(1に
よって本発明を説明する。なお各成分の配合比は重量%
を以て表示する。
Next, the present invention will be explained using Examples, Comparative Examples, and various tests π (1).The blending ratio of each component is % by weight.
Displayed with.

実施例1〜3及び比較例1 前記の第1〜3図に示したうン士ンサイクルに従い、本
発明の)0シー11及びフロシー152の各種混合比率
の混合物およびフロシー114をそれぞれ動作流体とし
て同一装置によりこのサイクルを運転した。運転条件と
しては第3図(α)点における熱水温度を120℃とし
、(d)点で示される冷却水の温度を25℃として、前
記熱水の+ 000t/時の熱エネル千−から得られる
機械工ネルf−によって発電する際の出力特性を求め、
第1表に示す結果を得た。なお、このサイクルの蒸発温
度は80℃とし凝縮温度は42℃である。
Examples 1 to 3 and Comparative Example 1 According to the engine cycle shown in FIGS. 1 to 3 above, mixtures of 0 sea 11 and Flo sea 152 of the present invention at various mixing ratios and Flo sea 114 were used as working fluids, respectively. This cycle was run on the same equipment. As for the operating conditions, the temperature of the hot water at point (α) in Figure 3 is 120°C, the temperature of the cooling water shown at point (d) is 25°C, and the thermal energy of the hot water is + 000 t/hour, 1,000 -. Determine the output characteristics when generating electricity using the obtained mechanical channel f-,
The results shown in Table 1 were obtained. Note that the evaporation temperature in this cycle is 80°C, and the condensation temperature is 42°C.

第  1  表 熱源温度 120℃ 第17.)結果より、□ワ。ッニ1、エエ。、合。Table 1 Heat source temperature 120℃ 17th. ) From the results, □wa. 1, eh. , match.

比してフO,:/−11とフ田、7=’152との混合
系による出力特性の向上が顕著であり、フロシー152
の混合比率が5〜50重量%の範囲で出力の増大が認め
られる。またフロシー114とフロシー152との混合
系に於ては蒸発器と凝縮器の圧力差が小さくポンづ動力
が小さくて済む特徴が窮められた。
In comparison, the improvement in output characteristics by the mixed system of FuO,:/-11 and Futa,7='152 is remarkable, and the improvement in output characteristics is remarkable.
An increase in output is observed when the mixing ratio is in the range of 5 to 50% by weight. Furthermore, in the mixed system of Flossy 114 and Flossy 152, the pressure difference between the evaporator and the condenser is small, and the pumping power is small, which is a feature that is difficult to achieve.

次にフO′J−11単独及び本発明のフロン−11/フ
0υ−152(重量比70/30)の動作流体をそれぞ
れ硝子製シールドチューづ中に鉄および潤滑油と共に封
入し、150℃で100時間加熱した後、シールドチュ
ーブ中の動作流体のハロゲン濃度及び分解生成物の号を
ガスクロマドづラフにより測定した。その結果を第2表
に示す。
Next, the working fluids of Fluoro'J-11 alone and Freon-11/Furon-152 of the present invention (weight ratio 70/30) were sealed together with iron and lubricating oil in glass shielded tubes, and heated to 150°C. After heating for 100 hours, the halogen concentration of the working fluid in the shield tube and the number of decomposition products were measured using a gas chromatogram. The results are shown in Table 2.

第  2  表 第2表に示すとおり、フロシー11単独の動作流体に比
し本発明のフロシー11とフロシー152との混合系は
高温におけるハロゲン濃度シの生成が少なく、71つガ
スクロマドづラフ分析により検出される分解生成物が少
ない。フロシー11/フロン−152の混合系の場合、
高温下でのハロゲンの生成毎が少ないということは装置
の金属利料を腐蝕しにくいことを意味し、また分解生成
物がほとんどないということは使用中に分解生成物の増
加によりラシ牛シサイクル用動作流体としての熱力学的
特性が変化したり、効率が低下することが防止されるこ
とを意味する。
Table 2 As shown in Table 2, compared to the working fluid of Flothy 11 alone, the mixed system of Flochy 11 and Flochy 152 of the present invention produces less halogen concentration at high temperatures, and according to the 71 gas chromatographic rough analysis. Fewer decomposition products are detected. In the case of a mixed system of Flocy 11/Freon-152,
Fewer halogens are produced under high temperatures, which means that metals in the equipment are less likely to corrode, and the fact that there are almost no decomposition products means that during use, there is an increase in decomposition products. This means that the thermodynamic properties of the working fluid are prevented from changing and the efficiency is prevented from decreasing.

以上のように、本発明のフロン−11とフロン−152
との混合系はエネルギー変換効率、熱交換特性及び熱安
定性等多方面におい、て従来のフロン−11に比して勝
っており、すぐれたうシ士ンサイクル用動作流体として
使用することができる。
As mentioned above, Freon-11 and Freon-152 of the present invention
The mixed system with CFC-11 is superior to conventional Freon-11 in many aspects such as energy conversion efficiency, heat exchange characteristics, and thermal stability, and can be used as an excellent working fluid for incineration cycles. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のラン士シサイクル用動作流体であるフ
ロン−11/フ0ンー152混合系の圧力−ニジタルじ
線図、第2図はうシ+シサイクルの系統図、第3図はフ
ロン−11/フ0ンー152混合系を動作流体として用
いたうシ士シサイクルを温度−エンド0じ線図に記入し
た図である。 (以  −上) 第2図 A i3  図 工ンクルヒ0 手続補正書(麟) 昭和58年 3月17日 特許庁長官   若杉和夫  殿 1、事件の表示 昭和57年 特 許 願第123440  号2・ 発
明o名称 、、+y’Jイ、、、用動作流体3、補正を
する者 4、代理人 大阪市東区平野町2の10平和ビル内電話06−203
−0941(代)自発 6、補正により増加する発明の数 な  し 7・補正0対象、。、ワ、中「ア、。−7つ、」。4補
  正  の  内  容 1 明細書第7頁第1+ないし12行の「粘性」を「燃
性」と訂正する。 2 明細書第7頁第14行の「粘性」を「燃性」と訂正
する。 3 第3図を別紙の通り訂正する。 (以 上)
Fig. 1 is a pressure-digital diagram of the Freon-11/Fron-152 mixed system, which is the working fluid for the run cycle of the present invention, Fig. 2 is a system diagram of the flow + cycle, and Fig. 3 1 is a temperature-end zero diagram plot of a cylinder cycle using a fluorocarbon-11/fluorocarbon-152 mixed system as the working fluid. (Above) Figure 2 A i3 Zuko Nkuruhi 0 Procedural amendment (Rin) March 17, 1980 Commissioner of the Patent Office Kazuo Wakasugi 1, Indication of the case 1988 Patent Application No. 123440 2 Invention o Name: ,+y'JI, , Working fluid 3, Correction person 4, Agent 2-10 Heiwa Building, Higashi-ku, Osaka City Telephone: 06-203
-0941 (subject) Spontaneous 6, No number of inventions increased by amendment 7, 0 subject to amendment. , wa, medium ``A...-7''. Contents of the 4th amendment 1 "Viscosity" in lines 1+ to 12 of page 7 of the specification is corrected to "flammability." 2. "Viscosity" on page 7, line 14 of the specification is corrected to "flammability." 3 Correct Figure 3 as shown in the attached sheet. (that's all)

Claims (1)

【特許請求の範囲】 ■ トリク0ロフルオOメタシにジフルオ0エタシを混
合することを特徴とするうン士シサイクル用動作流体。 ■ トリク00フルオ0メタシを95〜50重tチ及び
ジフルオOエタシを5〜50重景チ混合することを特徴
とする特許請求の範囲第1項記載のラン+シサイクル用
動作流体。
[Claims] (1) A working fluid for a tank cycle, characterized in that trifluorofluoride and difluoroester are mixed. (2) The working fluid for a run+cycle according to claim 1, characterized in that 95 to 50 weights of Triku00 Fluoride and 5 to 50 weights of Difluoro Oetashi are mixed.
JP57123440A 1982-07-14 1982-07-14 Working fluid for rankine cycle Granted JPS5912994A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57123440A JPS5912994A (en) 1982-07-14 1982-07-14 Working fluid for rankine cycle
DE8383106843T DE3362538D1 (en) 1982-07-14 1983-07-12 Working fluids for rankine cycle
EP83106843A EP0101856B1 (en) 1982-07-14 1983-07-12 Working fluids for rankine cycle
US06/632,276 US4557851A (en) 1982-07-14 1984-07-20 Working fluids for the Rankine cycle comprising trichlorofluoromethane and 1,1-difluoroethane, isobutane or octafluorocyclobutane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57123440A JPS5912994A (en) 1982-07-14 1982-07-14 Working fluid for rankine cycle

Publications (2)

Publication Number Publication Date
JPS5912994A true JPS5912994A (en) 1984-01-23
JPS6312509B2 JPS6312509B2 (en) 1988-03-19

Family

ID=14860640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57123440A Granted JPS5912994A (en) 1982-07-14 1982-07-14 Working fluid for rankine cycle

Country Status (1)

Country Link
JP (1) JPS5912994A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997351A (en) * 1972-12-21 1974-09-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4997351A (en) * 1972-12-21 1974-09-13

Also Published As

Publication number Publication date
JPS6312509B2 (en) 1988-03-19

Similar Documents

Publication Publication Date Title
JPH02272086A (en) Operation medium composition
US4232525A (en) Working fluid for Rankine cycle
US20210115817A1 (en) Thermal Power Cycle
WO1998006791A1 (en) Pentafluoropropanes and hexafluoropropanes as working fluids for power generation
Kaynakli et al. Thermodynamic analysis of the Organic Rankine Cycle and the effect of refrigerant selection on cycle performance
US4224796A (en) Method for converting heat energy to mechanical energy with 1,2-dichloro-1,1-difluoroethane
JPS6126832B2 (en)
EP0110389B1 (en) Working fluids for rankine cycle
US20130160447A1 (en) Use of compositions comprising e-1,1,1,4,4,5,5,5-octafluoro-2-pentene and optionally, 1,1,1,2,3-pentafluoropropane in power cycles
US4896509A (en) Working fluid for Rankine cycle
US4562995A (en) Working fluids for Rankine cycle
EP0083450A1 (en) Working fluids for Rankine cycle
JPS5912994A (en) Working fluid for rankine cycle
US4459810A (en) Working fluids for use with rankine cycle
US4224795A (en) Method for converting heat energy to mechanical energy with monochlorotetrafluoroethane
JPS6312508B2 (en)
EP0101856B1 (en) Working fluids for rankine cycle
JPS58171494A (en) Working fluid for rankine cycle
JPH05279659A (en) Working fluid for rankine cycle
JPS5912993A (en) Working fluid for rankine cycle
JPS5912995A (en) Working fluid for rankine cycle
JPS6312506B2 (en)
JPS6312507B2 (en)
JPS58171497A (en) Working fluid for rankine cycle
JPS5814480B2 (en) Working fluid for Rankine cycle