JPS59128922A - Air-conditioning method of gas turbine power plant in desert - Google Patents

Air-conditioning method of gas turbine power plant in desert

Info

Publication number
JPS59128922A
JPS59128922A JP216183A JP216183A JPS59128922A JP S59128922 A JPS59128922 A JP S59128922A JP 216183 A JP216183 A JP 216183A JP 216183 A JP216183 A JP 216183A JP S59128922 A JPS59128922 A JP S59128922A
Authority
JP
Japan
Prior art keywords
air
gas turbine
temperature
cooling
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP216183A
Other languages
Japanese (ja)
Inventor
Shoichi Hoshina
保科 昭一
Tetsu Imai
今井 鉄
Michio Hori
堀 三千男
Hikoji Matsushima
松島 彦二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP216183A priority Critical patent/JPS59128922A/en
Publication of JPS59128922A publication Critical patent/JPS59128922A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ventilation (AREA)

Abstract

PURPOSE:To aim at improvements in an operation environment, by blowing off cold air in a direction toward a smokestack from air outlets at both side walls of a building, through plural air outlets, while inhaling hot air back ventilation from a suction port neaby the floor surface. CONSTITUTION:An air conditioner 3 is installed outdoors, then cooling air is led into an air outlet 8 by way of a feed duct 4 and released inside a room. The air warmed up inside the room is taken into the air conditioner 3 and turns to feed air again after being mixed with the outside air. According to this method, air conditioning for a workspace of about 1-2m on the floor of a gas turbine room can be performed, and in combination with a natural draft effect in and around a smokestack, such exhaust 11 as in a fairly higher temperature than that of the outside air taken in is discharged out of a roof fan 6, thereby conducing to a reduction in air cooling load.

Description

【発明の詳細な説明】 し発明の利用分野〕 本発明は、ガスタービン発電所に係り、特に、酷熱と土
または砂嵐が支配的な砂漠環境に健設される、ピーク負
荷発電所として利用するのに好適なガスタービン発′屯
所に関する。
[Detailed Description of the Invention] Field of Application of the Invention The present invention relates to a gas turbine power plant, and in particular is used as a peak load power plant installed in a desert environment where severe heat and dirt or sand storms are dominant. The present invention relates to a gas turbine power plant suitable for

し従来技術〕 従来の砂漠のガスタービン発電所は、ガスタービンおよ
び発tm本体を各々機械ペース上に組立てて固定し、周
囲を箱形の耐候性のエンクロージャで包囲した、いわゆ
る、ガスタービンパッケージとして現地に翰送、据付け
て、野外で運転する屋外用パッケージ形ガスタービン方
式と、更に、これをお\つて日除けの屋根をかけ、側壁
のないランシェード方式かめるが、酷熱と砂嵐の環境下
ではいづれも運転・保寸員の作業環境または機械の運転
環境が好ましいものではなかった。
[Prior Art] Conventional desert gas turbine power plants are constructed as a so-called gas turbine package, in which the gas turbine and generator main body are assembled and fixed on a mechanical platform, and surrounded by a box-shaped weatherproof enclosure. There is an outdoor packaged gas turbine system that is delivered to the site, installed, and operated outdoors, and a run shade system that has a roof to protect it from the sun and has no side walls, but it is difficult to operate under intense heat and sandstorm environments. In all cases, the working environment for the operators and size-maintainers and the operating environment for the machines were not favorable.

一般居住窒間の空調技術と比較して、カスタービン呈の
窒W4技術レノ問題点は、 (1)ガスタービン残尿またはガスタービン室の空調ゾ
ーンの空間容積または平[fO積と市さは格段に広くか
つ高く、従って、ゾーン内の気流。
Compared with the air-conditioning technology of the general residential room, the problems of the gas turbine W4 technology are as follows: Airflow within the zone is therefore much wider and higher.

温良分布の変化が太きい。これ全考慮した効率のよい空
調が必要である。
The change in temperature distribution is large. Efficient air conditioning that takes all of these into consideration is necessary.

(11)主たる冷房熱負荷が外界から侵入するゆるやか
なものでになく、ガスタービンからの内部発生熱に起因
する赦しいものである。待に、ピーク負荷発電所の場合
には、カスタービンが運転すれは急激に冷房負荷が増大
し、逆に、ガスタービンが停止すれば、密室内では急激
に冷房負荷が無くなる そして、その負荷変動中が太き
い。また、この冷房負荷サイクルがいつピークになQい
つ無くなるか予測できないので冷房システムの運転制御
が難がしい。
(11) The main cooling heat load is not a gradual one that invades from the outside world, but a gentle one that is caused by internally generated heat from the gas turbine. Furthermore, in the case of a peak-load power plant, when the gas turbine starts operating, the cooling load increases rapidly, and conversely, when the gas turbine stops, the cooling load suddenly disappears in a closed room.Then, the load changes. It's thick inside. Furthermore, it is difficult to control the operation of the cooling system because it is impossible to predict when the cooling duty cycle will reach its peak and when it will disappear.

0++)燃焼温度が1000C’i越えるガスタービン
が主たる発生熱源であるから、冷房が止れはガスタービ
ン室の温度は、急減に上昇して室内機器を破損するか、
逆に、冷え過ぎれば電気機器内の露結・事故が起こる危
険性があるので、運転信頼性のめる負荷応答性の優れた
冷房システムが要求される。
0++) Since the gas turbine, whose combustion temperature exceeds 1000C'i, is the main heat source, if the air conditioning stops, the temperature in the gas turbine room will rapidly drop and rise, which may damage the indoor equipment.
On the other hand, if it gets too cold, there is a risk of condensation inside electrical equipment and accidents, so a cooling system with excellent load response that improves operational reliability is required.

(IXl)砂漠地での産業レベル、または、運転保守”
アフタサービスシステムにマツチした標準機器によるシ
ステム構成が要求される。
(IXl) Industrial level or operation and maintenance in desert areas”
A system configuration using standard equipment that matches the after-sales service system is required.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、砂漠地用ガスタービンユニット用残尿
、同排熱・空調システムおよびレイrウド構造を綜合的
に最適化し、効率的で、かつ、運転fs頼性の筒いガス
タービンの排熱方式、同残尿の冷房方式を提供するにあ
る。
The purpose of the present invention is to comprehensively optimize the residual waste, exhaust heat/air conditioning system, and lay-over structure for a gas turbine unit for desert areas, and to create a cylindrical gas turbine that is efficient and has operational fs reliability. The purpose is to provide a heat exhaust system and a residual urine cooling system.

〔発明の概要〕[Summary of the invention]

本発明者は、九スタービンを内蔵した容積致方立方メー
トルにおよぶ密閉残尿の冷房負荷サイクルならひに室内
の気流・温度分布等全詳細に解析実験し、−力、砂漠地
の気象条件下における標準形の冷凍機や空調器の性能、
運転制御特性、および、運転信頼性を経験した結果に基
ついて、下記の吋?aをもつ発電所及谷その空調システ
ムを発明した。
The present inventor conducted detailed analyzes and experiments on the cooling load cycle of a sealed residual air conditioner with a volume of cubic meters and a built-in nine turbines, including the indoor airflow and temperature distribution. Performance of standard refrigerators and air conditioners,
Based on our experience with operational control characteristics and operational reliability, the following He invented a power plant with a power plant and an air conditioning system.

(1)主たる冷房負荷はノIスタービンユニットのエン
クロージャ外衣面および排ガス煙突外衣面からガスター
ビン屋内に放射される残尿内部機器の発熱に起因する。
(1) The main cooling load is caused by the heat generated by residual urine internal equipment that is radiated into the interior of the gas turbine from the outer surface of the enclosure of the NOI turbine unit and the outer surface of the exhaust gas chimney.

このガスタービン放熱量を抑制し、また、ガスタービン
室の室温の上、下限に巾を持たせてカスタービンのピー
ク負荷で運転している時の最大冷房負荷からガスタービ
ン休止時の最小冷房負荷までの負荷変動範囲を標準テラ
ーの容量調節範囲以内に入るようにした。
The amount of heat dissipated from the gas turbine is suppressed, and the upper and lower limits of the gas turbine room temperature are set to vary from the maximum cooling load when the gas turbine is operating at its peak load to the minimum cooling load when the gas turbine is stopped. The load fluctuation range up to this point was made to be within the capacity adjustment range of the standard teller.

そして、冷凍機として標準チラ一群の採用を可能にした
This also made it possible to use a group of standard chillers as refrigerators.

(11)ガスタービン鶏家空間内のガスタービンおよび
排出ガススタックのレイ°rウド、空調器からガスター
ビン室への冷風給気の吹出口、温風還気の吸込の位置、
吹出方向や速度および同残尿のルーフ7’Tンの位置、
外気導入や排気ルートによって、ガスタービン室床面近
くの作業空間の気流または温度分布は大巾に変化する。
(11) The layout of the gas turbine and exhaust gas stack in the gas turbine house space, the outlet for cold air supply from the air conditioner to the gas turbine room, and the position of the hot air return air intake;
The blowing direction and speed and the position of the roof 7'T of the residual urine,
The air flow or temperature distribution in the working space near the gas turbine chamber floor varies greatly depending on the outside air introduction and exhaust routes.

本発明によれは効率的に済的に作業空間の快適な冷房が
実現出来る。また、冷房設備吟を最小規模に抑えたコン
パクトな発電所が実現できる。
According to the present invention, comfortable cooling of a work space can be realized efficiently and economically. Additionally, it is possible to create a compact power plant that minimizes the amount of cooling equipment required.

(m因数の空調器、または、ファンコイルユニットに対
して複数の標準空冷チラーを並列したチラ一群によって
冷水を供給する。このシステムは季節的な冷房負荷の変
効に対応できるし、運転保守が容易であり、冗長糸を設
けてシステムの信頼度を高め得る、。
(Child water is supplied by an air conditioner with a factor of It is easy to use, and redundant threads can be provided to increase the reliability of the system.

また冷水システムの熱容量t−集中することになり、シ
ステム運転制御上の基本的制御量たるべき循環冷水の温
度変化をゆるやかにして、安定な制御ヲ行なえる。
In addition, the heat capacity t of the chilled water system is concentrated, and the temperature change of the circulating chilled water, which is a basic control variable for system operation control, is made gentler and stable control can be performed.

(1■)標準チラーが正常な冷凍ザイクル運転を持続す
る前提条件は、まず、テラー出側の冷水温度を数C以上
として循環冷水の凍結全防止することでメジ、次に水温
を10数C以下に維持して冷媒カスの圧力を一定値以一
トに抑制することである。
(1) The prerequisite for a standard chiller to maintain normal refrigeration cycle operation is to first prevent the circulating cold water from freezing by setting the chilled water temperature on the outlet side of the teller to a few degrees Celsius or more, and then increase the water temperature by a few dozen degrees centigrade. The purpose is to suppress the pressure of refrigerant sludge to a certain value or less by maintaining the pressure below.

(■)従つで、レシプロ形の圧縮機を用いた空冷冷凍4
歳またはチラーの容量制御方法として、チラー出側の冷
水温1t−検出する冷水サーモスタット’r設けて、冷
水出口温度が降下傾向のときは、例えば温度レベル8C
で冷凍能力を100→75%、7Cで75→50丸、6
Cで50→2596と段階的にアンローヒレ50以下で
圧縮@全停止させる。
(■) Air-cooled refrigeration using a reciprocating compressor 4
As a method of controlling the capacity of the chiller, a chilled water thermostat is installed to detect the chilled water temperature at the outlet side of the chiller.
100 → 75% freezing capacity, 75 → 50 circles at 7C, 6
At C, compress 50 → 2596 and completely stop when the unrolled fin is below 50.

逆に、冷水温度が上昇傾向のときは、例えば、4C程度
の切替え温度差または動作すき間を持たせて9Cで圧縮
機起動25%能力、10Cで25−)50%、11cで
5゜→75%、121:T75−+100%と段階的に
オンロードする。基本的にががるチラー容量制御方法を
用いれば、(1■)の前提条件?満足させ得る 同時に
、冷房負荷サイクルに応じた容′j#、調節を実現でき
る。
On the other hand, when the chilled water temperature tends to rise, for example, with a switching temperature difference of about 4C or an operating gap, the compressor can be started at 25% capacity at 9C, 25-50% at 10C, and 5° → 75 at 11C. %, 121:T75-+100% and onload in stages. Basically, if we use the chiller capacity control method, the prerequisite for (1■)? At the same time, the capacity can be adjusted according to the cooling load cycle.

(■1)上記標準チラーが安定運転を行なうためには、
変化する冷房負荷サイクルに対して冷凍能力調整過程で
の1時間当カの圧縮機の起1th@filが数回以下で
なければならない。
(■1) In order for the above standard chiller to operate stably,
In response to changing cooling duty cycles, the compressor must be activated several times or less per hour during the refrigeration capacity adjustment process.

さもないと冷凍サイクルが確立しない状態で冷凍機の圧
mn*起動・停止制御するこ  、とになυ、圧縮機の
l太故障またはトリップにつながる。
Otherwise, controlling the start and stop of the refrigerator without the refrigeration cycle being established will lead to serious failure or tripping of the compressor.

(VlllV1項の条件が守れるか否かは全冷房システ
ムの時定数や容量制御方法、特に、(V)項の切替え温
度浬の大きさによって決まる。
(Whether or not the condition of the VlllV1 term can be maintained is determined by the time constant of the entire cooling system and the capacity control method, especially the magnitude of the switching temperature difference of the (V) term.

(Vll+)本発明のシステム構成およびレイ゛rウド
構造に基ついた、砂漠地の200MW級のガスタービン
発電所の例では、夏の日中、外気温度約50Cでの20
0MWピーク負荷運転から朝方外気温度約35CのOM
W最低負荷運転を毎日繰返すガスタービン発電サイクル
条件下で、発電所用冷房システムまたはチラーは夏期を
通じて自動連続運転しても殆んど問題になる起動停止な
しで確実にガスタービン室温’t−4011’以下で、
かつ、最低約25C以上にコントロール出来る。
(Vll+) In an example of a 200 MW class gas turbine power plant in a desert area based on the system configuration and raid structure of the present invention, the
OM from 0MW peak load operation to morning outside temperature of approximately 35C
W Under gas turbine power generation cycle conditions where minimum load operation is repeated every day, the power plant cooling system or chiller can reliably maintain the gas turbine room temperature at 't-4011' without starting or stopping, which is a problem even if automatic continuous operation is performed throughout the summer. Below,
Moreover, it can be controlled to a minimum of about 25C or more.

〔発明の実施例〕[Embodiments of the invention]

第1図ないし第4図に基ついて本発明を説明する。 The present invention will be explained based on FIGS. 1 to 4.

第1図で、ガスタービンユニット1には、屋外に設置さ
れた、空気取入設備で渥過された多葉の作動空気ガイン
レットダクト9を経て1.ガスタービンインレットケー
シング内部に供給され、さらに、機内で圧縮され、10
00ce超える燃焼温度まで加熱され、ガスタービン内
で仕事をした後、数100Cの排出ガス12となって煙
突5t−経て屋外に排出される。ガスタービンユニット
1μ、ガスタービン機械本体とその機械ベースおよびガ
スタービンケーシング全体を箱形の断熱パネルで包囲す
る、いわゆる、エンクロージャから構成される。ガスタ
ービンケーシングからの一次的な放熱を排除するため、
図示はしないが、エンクロージャ内部に強制的に濾過さ
れた外気を導ひき、冷却した後、屋外に排出する強制貫
流冷却ループが設けられる。ガスタービンユニットエン
クロージャ、または、排ガスダクト煙突および強制貫流
冷却系表面に適正な断熱保温を施工して、それらを通じ
てガスタービン室に放射するこ次的な熱量を抑制する。
In FIG. 1, a gas turbine unit 1 is supplied with working air 1. It is supplied to the inside of the gas turbine inlet casing, and further compressed in the machine to generate 10
After being heated to a combustion temperature exceeding 000 ce and performing work in the gas turbine, it becomes exhaust gas 12 of several 100 C and is discharged outdoors through a chimney of 5 tons. The gas turbine unit 1μ is composed of a so-called enclosure that surrounds the gas turbine machine body, its machine base, and the entire gas turbine casing with a box-shaped heat insulating panel. To eliminate primary heat dissipation from the gas turbine casing,
Although not shown, a forced once-through cooling loop is provided that forcibly introduces filtered outside air into the enclosure, cools it, and then discharges it outdoors. Appropriate heat insulation is installed on the gas turbine unit enclosure, exhaust gas duct chimney, and forced once-through cooling system surfaces to suppress the secondary heat radiated into the gas turbine room through them.

この熱量が残尿内の主袂な内部発生熱源でロシガスター
ビン室冷房負荷の大部分を占める。この他に残尿を通じ
ての屋外からの入熱、新鮮な外気全導入するための入熱
等を含めた全冷房熱負荷を排除するために、屋外に第1
または第2図の空調器3を設ける。空調器コイル27に
よって冷却した望見をブロワ26によって給気タクト4
ヶ経て残尿内の吹田口8または空調器プロ126に導ひ
き、冷風給気とじて室内に放出する。
This amount of heat is the main internally generated heat source in the residual urine and accounts for most of the cooling load in the Rossi gas turbine room. In addition, in order to eliminate the total cooling heat load, including heat input from the outdoors through residual urine and heat input due to the introduction of all fresh outside air, there is a
Alternatively, the air conditioner 3 shown in FIG. 2 is provided. The view cooled by the air conditioner coil 27 is transferred to the air supply tact 4 by the blower 26.
After a period of time, the residual urine is introduced into the Suita outlet 8 or the air conditioner pro 126, where it is cooled and discharged into the room.

吹出気流13は概略図示の軌跡で終速度に近づく。The blown airflow 13 approaches the final velocity along the trajectory shown schematically.

ガスタービン室内で温められた空気を工吸込ロアよυ温
風還気として空調器27に吸い込まれ、定量の外気29
と混合され、コイル27で冷却されて給気となる。第1
図のように吸込口の商略は必ずしも床面でなくでもよい
The air heated in the gas turbine room is sucked into the air conditioner 27 through the mechanical suction lower as υ warm return air, and a fixed amount of outside air 29 is drawn into the air conditioner 27.
The air is mixed with the air and cooled by the coil 27 to become supply air. 1st
As shown in the figure, the location of the suction port does not necessarily have to be on the floor.

本発明のガスタービン室、同室空調系全体のレイrウド
構造によれは、ガスタービン室、床上1〜2m高さまで
の作業空間の気流、温度分布全局所的、集中的、効率的
に空調または冷房できる。
The airflow and temperature distribution in the gas turbine room and work space up to 1 to 2 meters above the floor can be air-conditioned locally, centrally, and efficiently depending on the layout structure of the entire gas turbine room and room air conditioning system of the present invention. Can be cooled.

をた、煙突周辺の自然のドラフト効果とめいまって、尋
人外気温度10よシもかなシ尚い温度の排気11が屋根
のルーフファ/6より排出される。
Coupled with the natural draft effect around the chimney, exhaust gas 11 with a temperature even higher than the outside air temperature 10 is discharged from the roof fan/6 of the roof.

これは冷房負荷の低減に役立つ。This helps reduce the cooling load.

複数の全調器群27に冷水36を供給するために、複数
の標単形空冷チラー31または冷凍機を設ける。空冷チ
ラーの構成要素はレシプロ形圧縮機32、コンデンサ3
3、#脹弁30.エバポレータまたはチラー31および
冷媒回路34等である。冷熱源は外気29でるる。
In order to supply chilled water 36 to all the plurality of regulator groups 27, a plurality of standard air-cooled chillers 31 or refrigerators are provided. The components of the air-cooled chiller are a reciprocating compressor 32 and a condenser 3
3, #bulge valve 30. These include an evaporator or chiller 31, a refrigerant circuit 34, and the like. The source of cold and heat is outside air 29.

空調器コイルで熱を吸収して温度上昇した一定流量の循
環温水は、冷水ポンプ群35によって加圧され、並列チ
ラ一群のエバポレータまたはチラー31に流入し、冷媒
によって冷却され冷水36となる。冷媒をサイクルさせ
る圧縮機32は、複数のシリンダをもら、概念的にはそ
のうちのいくつかをロードまたはアンロードすることに
より冷媒循環量、ひいては、冷凍能力を100%、75
%、50%、25Xのように数段階に調節できる。
A constant flow of circulating hot water whose temperature has increased by absorbing heat in the air conditioner coil is pressurized by the cold water pump group 35, flows into the evaporator or chiller 31 of the parallel chiller group, and is cooled by the refrigerant to become cold water 36. The compressor 32 that cycles refrigerant has a plurality of cylinders, and conceptually, by loading or unloading some of them, the amount of refrigerant circulation, and therefore the refrigerating capacity, can be increased to 100%.
It can be adjusted in several steps such as %, 50%, and 25X.

図示はしないが、ガスタービン璽の温度が季節的に設定
される一定の温度以下になったこと全検知したら空調器
27に入る直前で冷水36全バイパスして冷水ポンプサ
クション側に戻す手段が付設される。
Although not shown, there is a means to completely bypass the cold water 36 and return it to the cold water pump suction side immediately before entering the air conditioner 27 when it is detected that the temperature of the gas turbine has fallen below a certain seasonal temperature. be done.

第4図は本冷房システムの主要パラメタとその熱流、熱
容量、むだ時間等プロセスの特性を示した流れ図または
説明図である。図中、tは冷水系の温度、Tは空気系の
温度、Vはシステムの熱容量、gw 、GAは水及び空
気の質量流量、C’w 。
FIG. 4 is a flowchart or explanatory diagram showing the main parameters of this cooling system and its process characteristics such as heat flow, heat capacity, and dead time. In the figure, t is the temperature of the chilled water system, T is the temperature of the air system, V is the heat capacity of the system, gw, and GA is the mass flow rate of water and air, C'w.

CAは水および空気の比熱、T/2はむた時間そしてq
は熱流量を7J<す。Δは平衡状態からの偏差mを示す
CA is the specific heat of water and air, T/2 is the waste time and q
The heat flow is 7J<. Δ indicates the deviation m from the equilibrium state.

通常の運転状態では循環冷水または空気流量gw、GA
は一足に保つ。平衡状態では、室温T RA %冷水温
t、。tとするとき、冷房負荷q0゜。l空調器負荷q
A Hu %チラー能カQCLRの間にはは/Yqeo
o+=qAFEu=qcr、nが成立している。ガスタ
ービン室内に冷房負荷Δqeaelの入カ増犬がめった
場合はΔTRAが増大し、(ΔTRムーΔtAIHIJ
Ijまたは(ΔTRA−Δ1・・t)に比列して、Δq
−〇が増大しA従って冷水熱容蓋の温度レベルが増大し
、従って冷水出口温度Δt0゜電上昇する。チラーのホ
デイサーモスタットにより、この温度レベル、例えはΔ
t、、t=it:’を検出して容量コントローラ37は
テラー31の谷Jtを1段階、例えばΔQcta=25
光相当だけ上昇させる。更に、温度レベルがIC上昇す
れは、ΔQc L Rfもう1段階増大させる1、もし
、この後、温度レベル1outが減少傾向になれば、数
Cの切替え温就差、または、動作すき間をおいてから、
ΔqcLR”” −25%相当だけ容量を絞る。続けて
t6utレベルが一1c低下すれば1qCLR金もう1
段階絞る。かくして、Δqo0゜l−ΔqAiU:Δ(
tc’LRの平衡ポイントラ求めてチラーの容量コント
ローラ37が自動的に制御動作を繰り返す。
Under normal operating conditions, circulating cold water or air flow rate gw, GA
Keep it in one pair. At equilibrium, room temperature T RA % cold water temperature t,. When t, cooling load q0°. l Air conditioner load q
Between A Hu % chiller capacity QCLR / Yqeo
o+=qAFEu=qcr, n holds true. If the input of cooling load Δqeael into the gas turbine room is rare, ΔTRA will increase, and (ΔTRmu ΔtAIHIJ
In proportion to Ij or (ΔTRA-Δ1...t), Δq
-〇 increases, A thus increases the temperature level of the cold water heat container, and therefore the cold water outlet temperature increases by Δt0°. The chiller's body thermostat controls this temperature level, e.g.
t,,t=it:', the capacity controller 37 changes the valley Jt of the teller 31 by one step, for example, ΔQcta=25.
Increase by the amount of light. Furthermore, if the temperature level increases by IC, ΔQc L Rf will be increased by one more step. If the temperature level 1out tends to decrease after this, the switching temperature difference of several C or the operation gap will be increased. from,
Reduce the capacity by ΔqcLR"" -25%. If the t6ut level continues to drop by 11c, 1qCLR gold will be added to
Narrow down in stages. Thus, Δqo0゜l−ΔqAiU:Δ(
The capacity controller 37 of the chiller automatically repeats the control operation to find the equilibrium point of tc'LR.

既述のように、ガスタービン室温がめる下限値以下にな
ったら、空調器への冷水供給全入口直前でバイパスさせ
る。この場合、チラーは冷水を冷水温度の下限値に至る
まで冷却して停止する。
As mentioned above, when the gas turbine room temperature falls below the lower limit, the system is bypassed immediately before all the cold water supply inlets to the air conditioner. In this case, the chiller cools the cold water until it reaches the lower limit of the cold water temperature and then stops.

なお・、図中2は密閉建屋、38は冷水温度検出器、1
6は吹出口、17は還気流、28に外気取入設備でるる
In addition, in the figure, 2 is a closed building, 38 is a cold water temperature detector, 1
6 is an air outlet, 17 is a return air flow, and 28 is an outside air intake facility.

本実施例によれは、冷房負荷サイクルに於いてチラル出
口の冷水温度tou(は既述のように数Cから10数C
の範囲で変化し、低温レベルは低負荷、商温レベルは筒
負荷に対応する。概念的には平慟点ではガスタービン室
温とチラ出目の温if、(TRA  ’eat)が冷房
負荷q8゜。lに比例する。
According to this embodiment, the chilled water temperature tou (as described above) at the chiller outlet during the cooling duty cycle ranges from several C to several tens of C.
The low temperature level corresponds to a low load, and the commercial temperature level corresponds to a cylinder load. Conceptually, at the Heikyo point, the gas turbine room temperature and the temperature if (TRA 'eat) are the cooling load q8°. It is proportional to l.

〔発明の効果〕 本発明によれは容量調節方式のように数Cの切替え温度
差を持たせれは、全冷房システムの熱容量とチラー容量
調節方式から定まるチラーの起動停止頻度は許容値以下
になり、信頼性のめる自動運転制御が可能となる。
[Effects of the Invention] According to the present invention, when a switching temperature difference of several C is provided as in the capacity adjustment method, the start/stop frequency of the chiller determined from the heat capacity of the entire cooling system and the chiller capacity adjustment method becomes below the allowable value. This enables highly reliable automatic driving control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のカスタービン発電所のレイアウト構造
を示す立面図、第2図は第1図の平面図、第3図は、本
発明の空調冷房システムの系統図、第4図は本発明の冷
房システムの運転制御の流れ図である。 1・・・ガスター(ン室、3・・・空調器、31・・・
テラー、37・・・容量コントローラ、38・・・冷水
温展検出器。 代理人 弁理士 島橋明1β \−−/ 宅1図 1            7
Fig. 1 is an elevational view showing the layout structure of the Kasturbine power plant of the present invention, Fig. 2 is a plan view of Fig. 1, Fig. 3 is a system diagram of the air conditioning and cooling system of the invention, and Fig. 4 is It is a flowchart of operation control of the air conditioning system of the present invention. 1...Gaster (room), 3...Air conditioner, 31...
Teller, 37... Capacity controller, 38... Cold water temperature expansion detector. Agent Patent Attorney Akira Shimahashi 1β \--/ House 1 Figure 1 7

Claims (1)

【特許請求の範囲】 1、パッケージ形ガスタービン発電機ユニット複数基金
主要素とするカスタービン発電所において、0ガスター
ビン排出ガス金建家を貫通して配列した煙突から屋外に
排出し、 oカスタービン機械ケーシングからユニットのエンクロ
ージャ内への1次放熱を外気を冷媒とする1次強制貫流
冷却ループによって屋外に排出し、 0前記エンクロージヤのパネル面等を通してカスタービ
ン室内に放射される二次的な放熱量または冷房負荷を、
抑制して複数の空調器を用いて健家内側壁の複数の吹田
日より前記煙突方向に回けて、はソ水平に冷風を吹き出
し、床面に近い吸込口より温風還気を吸い込むことを特
徴とする、砂漠のガスタービン発電所の空調方法。 2、特許請求の範囲第1項において、さらに、ピーク負
荷発電所の空調器群に冷水を供給する冷凍機群として、
レシプロ形圧縮機にょシ冷凍サイクルを行なう複数の壁
塗式のチラーを並列して用い、さらに前記チラー各機に
付設される冷水サーモスタットによって冷水出口温度レ
ベルを検知して容量制御方式に従って前記チラーの冷凍
能カ會数段階に調節し、冷房負荷サイクルを通しての循
環冷水の前記チラーの出口温度を数Cから1o数Cの範
囲内に維持し、ピーク負荷時のガスタービン室の最高温
度を所定の値以下に制限し、かつ、前記ガスタービン室
の温度の下限rtii’i設定してこの温度以下では、
前記空調器群に対する冷水供給全パイバヌすることを%
徴とする砂漠のガスタービン発電所の空調方法。
[Scope of Claims] 1. In a Kasturbine power plant having a plurality of packaged gas turbine generator units as main elements, the gas turbine exhaust gas is discharged outdoors from chimneys arranged through the metal construction house, and the Ogasturbine machine The primary heat radiation from the casing into the unit enclosure is discharged outdoors by a primary forced once-through cooling loop using outside air as the refrigerant, and the secondary radiation radiated into the cast turbine room through the panel surface of the enclosure, etc. heat amount or cooling load,
Using multiple air conditioners, blow out cold air horizontally from multiple air conditioners on the inside wall of the house toward the chimney, and suck in hot return air from the inlet near the floor. Features an air conditioning method for gas turbine power plants in the desert. 2. In claim 1, the refrigerator group further includes:
A plurality of wall-painted chillers that perform a reciprocating refrigeration cycle are used in parallel, and a chilled water thermostat attached to each chiller detects the chilled water outlet temperature level and controls the chiller according to the capacity control method. Refrigeration capacity is adjusted in number steps to maintain the outlet temperature of the chiller of the circulating cold water throughout the cooling duty cycle within the range of several C to several C, and to maintain the maximum temperature of the gas turbine room at the peak load at a predetermined level. and the lower limit rtii'i of the temperature of the gas turbine chamber is set below this temperature,
% of the total amount of cold water supply to the air conditioner group
Air conditioning method for a gas turbine power plant in the desert.
JP216183A 1983-01-12 1983-01-12 Air-conditioning method of gas turbine power plant in desert Pending JPS59128922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP216183A JPS59128922A (en) 1983-01-12 1983-01-12 Air-conditioning method of gas turbine power plant in desert

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP216183A JPS59128922A (en) 1983-01-12 1983-01-12 Air-conditioning method of gas turbine power plant in desert

Publications (1)

Publication Number Publication Date
JPS59128922A true JPS59128922A (en) 1984-07-25

Family

ID=11521628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP216183A Pending JPS59128922A (en) 1983-01-12 1983-01-12 Air-conditioning method of gas turbine power plant in desert

Country Status (1)

Country Link
JP (1) JPS59128922A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082821A (en) * 2010-10-12 2012-04-26 General Electric Co <Ge> System and method for turbine compartment ventilation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082821A (en) * 2010-10-12 2012-04-26 General Electric Co <Ge> System and method for turbine compartment ventilation

Similar Documents

Publication Publication Date Title
CA1157649A (en) Method and apparatus for controlling an air conditioning unit with multi-speed fan and economizer
US11867415B2 (en) Systems and methods for detecting and responding to refrigerant leaks in heating, ventilating, and air conditioning systems
US11689145B2 (en) Systems and methods for controlling fan motors with variable frequency drives
US11906184B2 (en) Exhaust fans for HVAC system with energy recovery wheel
JP4463920B2 (en) Cooling control system for communication relay base station
US20240288194A1 (en) Quick heat algorithm for modulating heating equipment
JPH05322335A (en) Automatic cooling stopping sequency
US12025347B2 (en) Condensate drain system for a furnace
US11668496B2 (en) Supplemental cooling for an HVAC system
US20200348087A1 (en) Furnace control systems and methods
US20200240684A1 (en) Low ambient operation of hvac system
CA3095390C (en) Modulating reheat operation of hvac system
US20200064009A1 (en) Systems and methods for providing airflow in furnace systems
US10753623B2 (en) Flame control systems and methods for furnaces
US20190383536A1 (en) Adjustable duct for hvac system
JPS59128922A (en) Air-conditioning method of gas turbine power plant in desert
US10914487B2 (en) Low load mode of HVAC system
US11143427B2 (en) Fan motor control
JP3243729B2 (en) Central heat source type air conditioner
US11920833B2 (en) Heat exchanger for a HVAC unit
JP3087998B2 (en) Control system for absorption type cold / hot water generator
JP2651717B2 (en) Air cooling system
US20200025408A1 (en) Fan reverse maintenance mode of a climate management system
JPS58198799A (en) Air conditioning facility of central control room in atomic power plant
JPS60171345A (en) Air conditioner