JPS59128778A - Button type solid electrolyte battery - Google Patents

Button type solid electrolyte battery

Info

Publication number
JPS59128778A
JPS59128778A JP58003540A JP354083A JPS59128778A JP S59128778 A JPS59128778 A JP S59128778A JP 58003540 A JP58003540 A JP 58003540A JP 354083 A JP354083 A JP 354083A JP S59128778 A JPS59128778 A JP S59128778A
Authority
JP
Japan
Prior art keywords
solid electrolyte
battery
active material
ion conductor
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58003540A
Other languages
Japanese (ja)
Inventor
Masayuki Fukuoka
福岡 正行
Tatsumi Arakawa
荒川 辰美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP58003540A priority Critical patent/JPS59128778A/en
Publication of JPS59128778A publication Critical patent/JPS59128778A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a battery operating at 150-200 deg.C and having long life and high reliability by accommodating Na as a negative active material, S as a positive active material, and Na<+> ion conductor as a solid electrolyte with an insulating gasket in a metal container. CONSTITUTION:A teflon gasket 4 is arranged in a copper container 6, then metallic sodium 3, a solid electrolyte layer 1, sulpher impregnated graphite felt layer 2 are placed in order in an atomsphere of argon in a dry box, and a copper cover 5 is placed thereon and sealed by pressure to form a buttom type battery. As the solid electrolyte layer 1, Na<+> ion conductor such as Na-beta-alumina, Na5GdSi4O12 is used. A 0.1-0.3mm. thick pellet is used in a thin solid electrolyte battery, and resistance of solid electrolyte is remarkably decreased, and a battery operates at about 200 deg.C. When Na5GdSi4O12 is used, operating temperature is decreased to about 150 deg.C and life of battery is increased.

Description

【発明の詳細な説明】 本発明はボタン型のNa −S系固体電解質電池に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a button-type Na-S solid electrolyte battery.

Na −8固体電解質電池は公知の技術であるが、実用
化を目標として研究されている構造は殆んど一プの内側
、Sがチューブの外側に収納されているタイプが多い。
Although the Na-8 solid electrolyte battery is a well-known technology, most of the structures being studied for practical use are of the type in which S is housed inside the tube and S is housed outside the tube.

固体電解質はβ−アルミナを使用しているものが殆んど
であるが、この物質は500ないし650℃において高
いHa+イオン導電性を有する。従ってNa −8固体
電解質電池の操作温度は必然的に300〜350℃の高
温になる為この操作温度を維持する為に電池は断熱性ケ
ースで囲まれている。このため電池自体の容積、重量が
大きくなり、保温の為のエネルギー消費が大きい。又、
チューブ状の固体電解質を用いるため、チューブの位置
を固定することや、Naと日の接触による短絡を防止す
る等の為に、図1に示て容器に固定されている。この構
造ではセラミック電解質は容器と強固に結合している為
に、温度差あるいは充放電状態の臂化による圧力差を全
て受けるため、セラミック雷、解質が破損して電池が短
絡してしまう危険が多かった。
Most solid electrolytes use β-alumina, and this material has high Ha + ion conductivity at 500 to 650°C. Therefore, the operating temperature of the Na-8 solid electrolyte battery is inevitably as high as 300 to 350°C, and in order to maintain this operating temperature, the battery is surrounded by a heat insulating case. This increases the volume and weight of the battery itself, and consumes a large amount of energy to keep it warm. or,
Since a tubular solid electrolyte is used, it is fixed in a container as shown in FIG. 1 in order to fix the position of the tube and prevent short circuits due to contact between Na and Sun. In this structure, the ceramic electrolyte is strongly bonded to the container, so it is exposed to all the pressure differences due to temperature differences or changes in charging/discharging conditions, so there is a risk of ceramic lightning, electrolyte damage, and a short circuit in the battery. There were many.

本発明者らは上述のような欠点を克服すべく観念検討し
た結果、チューブ状固体電解質の替りに薄板状の固体電
解質を用い、絶縁性のガスケットと組み合わせることに
よって、セラミック電解質にかかる応力を回避すること
ができるので、電池が長寿命、高信頼性となり、又、薄
型の電池を構成できる為、電解質は勿論、正負両極の活
物質の抵抗が小さくできるので、電池が150外いし2
00℃の温度でも十分作動しうるようになることを見出
し本発明をなすに至った。
As a result of conceptual studies to overcome the above-mentioned drawbacks, the inventors of the present invention have found that by using a thin plate-shaped solid electrolyte instead of a tubular solid electrolyte and combining it with an insulating gasket, stress on the ceramic electrolyte can be avoided. As a result, the battery has a long life and high reliability.Also, since it is possible to construct a thin battery, the resistance of not only the electrolyte but also the active materials of the positive and negative electrodes can be reduced, so that the battery can be
The present invention was accomplished by discovering that the device can be operated satisfactorily even at temperatures as low as 00°C.

即ち本発明は、負極活物質としてNaを、正極活物質と
してSを、固体電解質としてNa+イオン導電体を、絶
縁性のがスケットと共に金属容器に収納したことを特徴
とするボタン型固体電解質電池であり、150〜200
℃の温度で十分作動する長寿命と高信頼性を有する電池
である。
That is, the present invention provides a button-type solid electrolyte battery characterized by containing Na as a negative electrode active material, S as a positive electrode active material, and a Na + ion conductor as a solid electrolyte together with an insulating sket. Yes, 150-200
It is a long-life and highly reliable battery that can operate satisfactorily at temperatures of 30°F.

本発明のボタン型固体電解質電池は、常温付近では固体
電解質のイオン伝導度が低いため、殆んど電池出力がな
いが、温度が上昇するに従って電池出力が増加するため
、、電池作用による温度センサーとしても用いることが
できる。またチューブ状固体電解質を用いる電池では、
焼結性の良い均質なセラミックチューブを得ることは困
難であり、更に小型、薄型の電池を作成することは難か
しいが、本発明のセタン型電池では、円板状のセラミッ
ク電解質を用いているので焼結し易く、小型、薄型化も
可能であり、従って低コストである。
The button-type solid electrolyte battery of the present invention has almost no battery output at room temperature due to the low ionic conductivity of the solid electrolyte, but as the temperature rises, the battery output increases. It can also be used as In addition, in batteries using tubular solid electrolytes,
It is difficult to obtain a homogeneous ceramic tube with good sinterability, and it is also difficult to create a small and thin battery, but the cetane battery of the present invention uses a disc-shaped ceramic electrolyte. Therefore, it is easy to sinter, and can be made smaller and thinner, resulting in lower cost.

以下本発明のどタン型固体電解質を図面(図2)に従っ
て説明する。
The throat-type solid electrolyte of the present invention will be explained below with reference to the drawing (FIG. 2).

図2において1は固体電解質からなる層であシ、材質と
しては公知のNa+イオン導電体、例えばNa−β−ア
ルミナ、Na5Zr2PSi2012、Na5GaSi
4012等を用いることができる。Na−β−アルミナ
やNa5Zr2PSi2012は通常、チューブ状電解
質として用いる場合は強度維持の点からも肉厚を1朋以
上とする為、必然的に電解質の抵抗が大きく、300°
C以上の温度で使用しなければ実用的電池にならなかっ
た。しかし本発明の如き薄型固体電解質では0.1〜0
.6朋程度の肉厚の成型体も利用することができ、固体
電解質の抵抗が大幅に低下する為、200℃程度の比較
的低い温度でも十分に実用電池として作動しうる。’N
a+イオン導電体としてNa5GaSi4012を用い
ると、Na5G(lsi4012自体がNa−β−アル
ミナや1’1la3Zr2PSi2012に比べて10
倍程度Na+イオン伝導度が大きい上に、比較的低い1
050°C程度の温度でも薄板状の高密度焼結体を得る
ことがアきるので、本発明のlぐタン型電池の作動温度
は150℃程変の温度まで下げられ、かつ電池は長寿命
である。
In FIG. 2, 1 is a layer made of a solid electrolyte, and the material is a known Na+ ion conductor, such as Na-β-alumina, Na5Zr2PSi2012, Na5GaSi.
4012 etc. can be used. When Na-β-alumina and Na5Zr2PSi2012 are used as a tubular electrolyte, the wall thickness is usually 1 mm or more in order to maintain strength, so the resistance of the electrolyte is inevitably large, and the 300°
It was not possible to make a practical battery unless it was used at a temperature of C or higher. However, in the thin solid electrolyte of the present invention, 0.1 to 0
.. A molded body with a wall thickness of about 6 mm can also be used, and since the resistance of the solid electrolyte is significantly reduced, it can sufficiently operate as a practical battery even at a relatively low temperature of about 200°C. 'N
When Na5GaSi4012 is used as an a+ ion conductor, Na5G (lsi4012 itself is 10
The Na+ ion conductivity is about twice as high and is relatively low.
Since it is possible to obtain a thin plate-like high-density sintered body even at a temperature of about 0.050°C, the operating temperature of the tan-type battery of the present invention can be lowered to a temperature of about 150°C, and the battery has a long life. It is.

実施例 直径22mm、高さ2.5講の銅製容器(図2の6以下
番号のみ記す)の中にテフロン製ガスケット4を設け、
ドライセックス中、アルイン雰囲気下、順次金属ナトリ
ウム3、NaδG(1日140121 、グラファイト
フェルトにイオウを含浸させた層2を設け、更に銅製の
上ブタ5を積層して加圧シールすることによってボタン
型電池を作成した。陪電池の温度と電力の関係を図6に
示す。
Example: A Teflon gasket 4 was provided in a copper container (only numbers below 6 in Figure 2 are shown) with a diameter of 22 mm and a height of 2.5 mm.
During dry sex, a layer 2 of metallic sodium 3 and NaδG (140121 per day) is provided in an aluene atmosphere, and a layer 2 of graphite felt impregnated with sulfur is further laminated with a copper top 5 and sealed under pressure to form a button shape. A battery was created. Figure 6 shows the relationship between the temperature and power of the battery.

図3より本発明の電池は150℃ないし200°Cの温
度でも十分に作動することがわかる。
It can be seen from FIG. 3 that the battery of the present invention operates satisfactorily even at temperatures of 150°C to 200°C.

【図面の簡単な説明】[Brief explanation of the drawing]

回1は従来のチューブ状固体電解質を使用したNa −
8電池の断面図である。 図2は本発明のボタン型固体電解質電池の断面図である
。 1 同体電解質層 2 正極活物質層 3 負極活物質層 4.4′  がスケット 5.6 金属容器 図3は本発明(実施例1)のブタン型固体電解質電池の
温度と電力の関係を示した図である。 特許出願人 旭化成工業株式会社 図1 図2 図3 +00    200    300    400 
  500:星度(0C)
In the first round, Na −
8 is a cross-sectional view of a battery. FIG. 2 is a cross-sectional view of the button-type solid electrolyte battery of the present invention. 1 Consistent electrolyte layer 2 Positive electrode active material layer 3 Negative electrode active material layer 4.4' is the sket 5.6 Metal container Figure 3 shows the relationship between temperature and power of the butane solid electrolyte battery of the present invention (Example 1). It is a diagram. Patent applicant Asahi Kasei Corporation Figure 1 Figure 2 Figure 3 +00 200 300 400
500: Star degree (0C)

Claims (1)

【特許請求の範囲】 1、 負栖活物質としてHaを、正極活物質としてSを
、固体電解質としてNa+イオン導電体を、絶縁性のが
スケットと共に金属容器に収納したことを特徴とするギ
タン型固体電解質電池 2、  Na+イオン導電体がNa5G+181401
2であることを特徴とする特許請求の範囲第1項記載の
だタン型固体電解質電池
[Claims] 1. A Gitan type, characterized in that Ha is housed as an anode active material, S is a cathode active material, and a Na + ion conductor is housed as a solid electrolyte in a metal container together with an insulating sket. Solid electrolyte battery 2, Na+ ion conductor is Na5G+181401
2. The solid electrolyte battery according to claim 1, characterized in that:
JP58003540A 1983-01-14 1983-01-14 Button type solid electrolyte battery Pending JPS59128778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58003540A JPS59128778A (en) 1983-01-14 1983-01-14 Button type solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58003540A JPS59128778A (en) 1983-01-14 1983-01-14 Button type solid electrolyte battery

Publications (1)

Publication Number Publication Date
JPS59128778A true JPS59128778A (en) 1984-07-24

Family

ID=11560239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58003540A Pending JPS59128778A (en) 1983-01-14 1983-01-14 Button type solid electrolyte battery

Country Status (1)

Country Link
JP (1) JPS59128778A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541825A (en) * 2010-11-05 2013-11-14 セラマテック・インク Solid sodium secondary battery with sodium ion conductive ceramic separator
US10020543B2 (en) 2010-11-05 2018-07-10 Field Upgrading Usa, Inc. Low temperature battery with molten sodium-FSA electrolyte
US10056651B2 (en) 2010-11-05 2018-08-21 Field Upgrading Usa, Inc. Low temperature secondary cell with sodium intercalation electrode
US10224577B2 (en) 2011-11-07 2019-03-05 Field Upgrading Usa, Inc. Battery charge transfer mechanisms

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013541825A (en) * 2010-11-05 2013-11-14 セラマテック・インク Solid sodium secondary battery with sodium ion conductive ceramic separator
US10020543B2 (en) 2010-11-05 2018-07-10 Field Upgrading Usa, Inc. Low temperature battery with molten sodium-FSA electrolyte
US10056651B2 (en) 2010-11-05 2018-08-21 Field Upgrading Usa, Inc. Low temperature secondary cell with sodium intercalation electrode
US10224577B2 (en) 2011-11-07 2019-03-05 Field Upgrading Usa, Inc. Battery charge transfer mechanisms

Similar Documents

Publication Publication Date Title
US3703415A (en) Primary sodium-water battery
US4482615A (en) Lithium anode comprising copper strip in contact with lithium body and lithium-sulfur dioxide battery utilizing same
CA1039804A (en) Lithium-iodine battery
US3841912A (en) Sodium sulfur storage battery
FR2430102A1 (en) ELECTRIC ACCUMULATOR AND ACCUMULATOR BATTERY
JPS59500152A (en) electrochemical cell
US3635765A (en) Method of making e m f cell
SE9100722L (en) ELECTROCHEMICAL ENERGY STORAGE CELL
US3762955A (en) Sealed primary sodium halogen battery
US3455742A (en) High energy density solid electrolyte cells
US3592693A (en) Consumable metal anode with dry electrolytic enclosed in envelope
US4020246A (en) Low temperature primary electrolyte cell
US3463670A (en) High energy density thermal cell
FR2008427A1 (en) Thin film fuel cell with solid electrolyte
US3533845A (en) Low-current,low-capacity metal/air battery
US4169920A (en) Hermetically sealed electrochemical battery
US3817790A (en) Sealed primary sodium iodine battery
US2572017A (en) Dry battery cell
US3765945A (en) Electric cells and batteries
US5382479A (en) Advanced stacked multicell thermal battery
JPS59128778A (en) Button type solid electrolyte battery
US3712836A (en) Solid electrolyte cell packaging device
US3468710A (en) Sea water battery
US2847493A (en) Battery
US3513027A (en) Solid electrolyte and solid electrolyte battery system