JPS59128454A - Potential transformer - Google Patents

Potential transformer

Info

Publication number
JPS59128454A
JPS59128454A JP58002881A JP288183A JPS59128454A JP S59128454 A JPS59128454 A JP S59128454A JP 58002881 A JP58002881 A JP 58002881A JP 288183 A JP288183 A JP 288183A JP S59128454 A JPS59128454 A JP S59128454A
Authority
JP
Japan
Prior art keywords
electric field
light
voltage
transformer
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58002881A
Other languages
Japanese (ja)
Inventor
Toru Uenishi
徹 上西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58002881A priority Critical patent/JPS59128454A/en
Publication of JPS59128454A publication Critical patent/JPS59128454A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To realize a small high voltage and high preciseness transformer reduced in a heat generating amount, by a method wherein light applied electric field sensors are arranged at almost equal intervals to an electric field to be measured and the sum total obtained after the light outputs thereof are subjected to photoelectric conversion is used as the secondary output of the transformer. CONSTITUTION:Light applied electric field sensors 151-15n are attached to the interior of the support member 13 provided between a primary terminal 11 and an earth part 12 at almost equal intervals. An electric field detecting apparatus 18 consisting of the sensors, an optical fibers 16 and a photoelectric converter 17 receives modulation corresponding to the size of an electric field E acting on the sensor 15 when the light from a light emitting part 19 passes the sensor 15 and the light to be modulated is demodulated while introduced into a light receiving part 20 to be supplied to a signal treating part 21. In this case, the secondary output of a transformer is obtained by adding the output of each photoelectric converter 17 corresponding to each sensor 15.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は計器用変圧器に係・す、特に高電圧を高精度で
計測する計器用変圧器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a voltage transformer, and particularly to a voltage transformer that measures high voltage with high precision.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、高電圧を計測する方式にはコンデンサ分圧器1′
、抵抗分圧器を用いたものがある。コンデンサ分圧器を
用いた計器用変圧器は、主として巻線形の計器用変圧器
よシも低コストであるという理由で、154 kV以上
の電圧階級に適用される。
Conventionally, a capacitor voltage divider 1' was used to measure high voltage.
, some use a resistive voltage divider. Potential transformers using capacitor voltage dividers are applied to voltage classes above 154 kV, primarily because they are also lower in cost than wound type potential transformers.

抵抗分圧器を用いた計器用変圧器は、直流計器用変圧器
として使用される。第1図にコンデンサ分圧器または抵
抗分圧器を用いた従来の計器用変圧器の概略構成図を示
す。第1図において、−次端子(1)と接地(8)との
間に高電圧側インピーダンス(2)と低電圧側インピー
ダンス(3)とを直列接続してそれぞれ分圧器を構成す
る。特に図示していないが、分圧器がコンデンサ分圧器
の場合には、キャパシタンスであシ、また抵抗分圧器の
場合にはレジスタンスで構成される。低圧側インピーダ
ンス(3)の両端に変成装置(4)を接続し、この変成
装置(4)はコンデンサ形計器用変圧器のときは共振り
アクドルであり、また抵抗分圧器のときは直流計器用変
圧器を構成する直流増幅器である。なお変成装置(4)
には二次端子(5a)、(5b)を設け、この二次端子
(5a)、(5b)間に二次電圧v2が現われる。高電
圧側インピーダンス(2)と接地(8)の電位間に絶縁
抵抗(6)または浮遊容量(7)がある。この絶縁抵抗
(6)も浮遊容量(力も実際には分布定数として存在し
ているが、第1図では説明の都合上集中定数として表わ
した。
Potential transformers using resistive voltage dividers are used as DC potential transformers. FIG. 1 shows a schematic configuration diagram of a conventional potential transformer using a capacitor voltage divider or a resistor voltage divider. In FIG. 1, a high voltage side impedance (2) and a low voltage side impedance (3) are connected in series between a negative terminal (1) and a ground (8) to form a voltage divider. Although not particularly shown, if the voltage divider is a capacitor voltage divider, it is composed of capacitance, and if it is a resistive voltage divider, it is composed of resistance. A transformer (4) is connected to both ends of the low voltage side impedance (3), and this transformer (4) is a resonant handle when it is a capacitor-type instrument transformer, and a DC instrument transformer when it is a resistive voltage divider. This is a DC amplifier that makes up a transformer. Furthermore, metamorphosis device (4)
are provided with secondary terminals (5a) and (5b), and a secondary voltage v2 appears between the secondary terminals (5a) and (5b). There is an insulation resistance (6) or stray capacitance (7) between the high voltage side impedance (2) and the potential of the ground (8). Although this insulation resistance (6) and stray capacitance (force) actually exist as distributed constants, they are shown as lumped constants in FIG. 1 for convenience of explanation.

絶縁抵抗(6)は例えば高電圧側インピーダンス(2)
の支持部材や、絶縁媒体の絶縁抵抗であシ、まだ浮遊容
量(力は支持部材や、絶縁媒体の誘電率および高電圧側
インピーダンス(2ンの形状、接地間の距離などで決ま
り必ず存在するものである。
Insulation resistance (6) is, for example, high voltage side impedance (2)
The stray capacitance (the force is determined by the supporting member, the dielectric constant of the insulating medium, and the impedance on the high voltage side (the shape of the two, the distance between the ground, etc.) and is always present. It is something.

ところで絶縁抵抗(6)及び浮遊容量(力は温度、湿度
、汚損及び経年変化などの要因により大幅友変化する。
By the way, insulation resistance (6) and stray capacitance (power) vary greatly depending on factors such as temperature, humidity, pollution, and aging.

また絶縁抵抗(6)は電圧に対して一般には非直線形で
ある。このような絶縁抵抗(6)及び浮遊容量(7)の
変化が計器用変成器の誤差特性に影響を及ぼさないよう
に高電圧側インピーダンス(2)は絶縁抵抗(6)や浮
遊容量(力のインピーダンスに比べて十分小さく選定さ
れている。高電圧側インピーダンス(2)を十分小さく
設計することにより、−次電圧V工と二次電圧■□との
関係は で表わされ、絶縁抵抗(6)や浮遊容量(力の影響を受
けない計器用変圧器を得ることができる。ここにZ、は
高電圧側インピーダンス(2)のインピーダンス値、Z
2は低電圧側インピーダンス(2)のインピーダンス値
、Kは変成装置(4)の伝達関数で一定である。
Furthermore, the insulation resistance (6) is generally non-linear with respect to voltage. In order to prevent such changes in insulation resistance (6) and stray capacitance (7) from affecting the error characteristics of the instrument transformer, the high voltage side impedance (2) is It is selected to be sufficiently small compared to the impedance. By designing the high voltage side impedance (2) to be sufficiently small, the relationship between the - secondary voltage V and the secondary voltage ) and stray capacitance (potential transformer that is not affected by force can be obtained. Here, Z is the impedance value of the high voltage side impedance (2), Z
2 is the impedance value of the low voltage side impedance (2), and K is the transfer function of the transformer (4), which is constant.

しかし、高電圧側インピーダンス(2)を十分小さくす
るということは次のことを意味している。
However, making the high voltage side impedance (2) sufficiently small means the following.

(1)高電圧側インピーダンス(2)がキャパシタンス
の場合、その静電容量を大きくしなければならない。必
要な削電圧性能を確保して静電容量を大きくするには、
電極間距離の縮小という手段には限界があり、結局電極
の対向面積を増やすしかない。
(1) If the high voltage side impedance (2) is a capacitance, the capacitance must be increased. In order to secure the necessary cutting force performance and increase capacitance,
There is a limit to the means of reducing the distance between the electrodes, and the only option is to increase the opposing area of the electrodes.

つまシ機器の大形化を招くことになる。This will lead to an increase in the size of the tamashi equipment.

(ii)  高電圧側インピーダンス(2)がレジスタ
ンスの場合、抵抗値を小さくしなければならない。抵抗
値が小さいほど発生熱量が増え、大がかシな冷却装置を
付属させなければならない。また発生熱量は電圧の二乗
に比例し、抵抗値に反比例するので、高電圧になるほど
、放熱対策に多大の配慮が必要であった。
(ii) If the high voltage side impedance (2) is a resistance, the resistance value must be made small. The smaller the resistance value, the more heat is generated, and a large cooling device must be attached. Furthermore, since the amount of heat generated is proportional to the square of the voltage and inversely proportional to the resistance value, the higher the voltage, the more consideration must be given to heat radiation measures.

このように従来の高電圧、高精度の計器用変圧器は大形
で、特に抵抗分圧器を使った直流計器用変圧器にあって
は、発生熱量が多いという問題点があった。
As described above, conventional high-voltage, high-precision voltage transformers are large in size, and DC voltage transformers that use resistive voltage dividers in particular have the problem of generating a large amount of heat.

〔発明の目的〕[Purpose of the invention]

不発明は上記の点を考慮してなされたもので、その目的
とするところは、小形で、発生熱量の少ない、高電圧高
精度の計器用変圧器を提供することにある。
The invention has been made in consideration of the above points, and its purpose is to provide a compact, high-voltage, high-precision voltage transformer that generates a small amount of heat.

〔発明の概要〕[Summary of the invention]

かかる目的を達成するために本発明は、被υ1j定電圧
が印加される一次端子と、この−次端子と接地電位部間
に生じる電界中に選定された間隔をおいて配設された複
数個の光応用電界センサと、これら光応用電界センサに
光を導く第1の光フアイバ群と、光応用電界センサを通
過した光を他に伝達する第2の光フアイバ群と、第1の
各光フアイバ群に光を供給する複数の発光部と、第2の
各光フアイバ群によって導かれた光を受光する複数の受
光部と1.この各受光部の出力信号を入力とする複数の
信号処理部と、この各信号処理部の出力を加算する加算
器とから構成し、この加算器の出力を二次出力とするこ
とにより、小形で、発生熱量パの少ない、高電圧高精度
の計器用変圧器を得ることをその特徴とする。
In order to achieve such an object, the present invention provides a primary terminal to which a constant voltage υ1j is applied, and a plurality of terminals arranged at selected intervals in an electric field generated between this secondary terminal and a ground potential section. a first group of optical fibers that guide light to these optical electric field sensors, a second group of optical fibers that transmit the light that has passed through the optical electric field sensor, and each of the first optical fibers. a plurality of light emitting sections that supply light to the fiber groups; a plurality of light receiving sections that receive light guided by each second optical fiber group; 1. It consists of a plurality of signal processing sections that input the output signals of each light receiving section, and an adder that adds the outputs of each signal processing section, and by using the output of this adder as a secondary output, it is possible to The feature is to obtain a high-voltage, high-precision instrument transformer that generates a small amount of heat.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例の計器用変圧器を図面を参照して
説明する。第2図において、端部に丸味を形成した一次
端子αυと接地電位部(1渇との間に、例えば絶縁筒の
ような支持部材(13)を設ける。支持部材(13)内
部に、例えば偏光子、ポッケルス素子及び検光子からな
る複数個の光応用電界センサ(151)、(152)、
(153)+・・+(15n)を−次端子aυから接地
電位部(121への方向忙沿ってほぼ等間隔で、支持部
材(t3)内側に取付けて収納する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A voltage transformer according to an embodiment of the present invention will be described below with reference to the drawings. In FIG. 2, a support member (13) such as an insulating tube is provided between the primary terminal αυ whose end is rounded and the ground potential part (1).Inside the support member (13), for example, A plurality of optical electric field sensors (151), (152), consisting of a polarizer, a Pockels element, and an analyzer.
(153) + .

光応用電界センサ(1つは第3図に示すように光応用電
界センサ(tSを光ファイバ(16a) 、 (16b
)を介して接続した光電変換器α力とによって電界検出
装置(18)を構成する。光電変換器α力は光ファイバ
(16a)と接続される発光部α9)と光ファイバ(1
6b)と接続される受光部(20)とこれと接続される
信号処理部(21)とからなっている。
Optical electric field sensor (one type is optical electric field sensor (tS) as shown in Fig. 3).
), an electric field detection device (18) is constituted by the photoelectric converter α power connected to the photoelectric converter α power. The photoelectric converter α power is connected to the light emitting part α9) connected to the optical fiber (16a) and the optical fiber (1
6b) and a signal processing section (21) connected thereto.

電界検出装置(181の動作は次のようである。発光部
d傷からの光は光ファイバ(16a)を透過し、光応用
電界センサ(L!19に導かれる。光応用電界センサ(
15)を通過した光はそこに作用している電界Eの大き
さに応じた変調を受ける。変調光は光ファイバ(16b
)を通って受光部(20)に導かれ、そこで電気信号と
して復調され、さらに信号処理部(2υで処理された後
出力される。
The operation of the electric field detection device (181) is as follows.The light from the light emitting part d is transmitted through the optical fiber (16a) and guided to the optical electric field sensor (L!19).
15) is modulated according to the magnitude of the electric field E acting thereon. The modulated light is transmitted through an optical fiber (16b
) is guided to the light receiving section (20), where it is demodulated as an electrical signal, further processed by the signal processing section (2υ), and then output.

第4図は、計器用変圧器の二次出力となる各光応用電界
センサ(151)、(152)、・・・、(15n)が
検出した電界値の加算を示すブロック図である。第2図
に示した各光応用電界センサ(151)、(152)、
・、(15n)はそれぞれ第4図に示すように各光ファ
イバ(16a+)、(16a2)、 、−、、(16a
n)、(16b1)、(,16b2)、 −、、、(1
6bn)及び接地電位側にある各電変換器(i7i)、
(Ty2)、・・・(x’;rn)とによって各電界検
出装置(181)、(182)。
FIG. 4 is a block diagram showing the addition of electric field values detected by each optical electric field sensor (151), (152), . . . , (15n) serving as the secondary output of the instrument transformer. Each optical electric field sensor (151), (152) shown in FIG.
, (15n) are the respective optical fibers (16a+), (16a2), , -, , (16a) as shown in FIG.
n), (16b1), (,16b2), −, , (1
6bn) and each electrical converter (i7i) on the ground potential side,
(Ty2), . . . (x'; rn), each electric field detection device (181), (182).

・・・、(18n)を構成しておシ、各光電変換器(1
7s)。
..., (18n), each photoelectric converter (1
7s).

(172)、・・・、(17n)の各出力を加算器(2
2)において加算することによシ、計器用変圧器の二次
出力を得るようになっている。
(172), ..., (17n) to the adder (2
By adding in step 2), the secondary output of the potential transformer is obtained.

そして第2図及び第4図の構成において、−次端子(1
7)に電圧V工が印加されると、各光応用電界センサ(
151)t(152)1.、、 、(15n)が置かれ
ている近傍の電界がそれぞれEl、E2.・・TEnの
とき、各光応用電界センナ(15+)、(152)、−
、(15n)の間隔をΔlとすると、各光電変換器(1
71)、(172)、−・、(17n)の出力y、 、
y2.、、、Vnは、各電界に比例するから、次式%式
% ここにkは比例定数である。
In the configurations shown in FIGS. 2 and 4, the -order terminal (1
When voltage V is applied to 7), each optical electric field sensor (
151)t(152)1. , , , (15n) are placed in the vicinity of the electric fields El, E2 . ...When TEn, each optical applied electric field sensor (15+), (152), -
, (15n), each photoelectric converter (1
71), (172), -, (17n) output y, ,
y2. , , Vn is proportional to each electric field, so the following formula % Formula % Here, k is a proportionality constant.

したがって加算器e2の出力VIけ nが大きい(すなわちΔlが小さい゛(場合、+;+:
)式はとなる− fiii)式の右辺の積分は電圧の定義そのものであり
、である。したがって(iii) 、 (+v)式から
v  = k・v■(vll ■ となり、加算器(2zの出力■□は■□に比例しており
、■ を二次出力とする計器用変圧器が得られること■ を示している。なお、光応用電界センサを高電圧部に置
いているが、光ファイバは良好な、絶縁部材であるから
この光ファイバによって接続しているので、耐電圧上問
題ないことは言うまでもない。
Therefore, the output VI of adder e2 is large (that is, Δl is small) (in the case of +; +:
) The equation becomes - fiii) The integral on the right side of the equation is the definition of voltage itself, and is. Therefore, from equation (iii) and (+v), v = k・v■(vll What can be obtained ■ Note that the optical electric field sensor is placed in a high voltage section, but since the optical fiber is a good insulating material, it is connected using this optical fiber, so there is no problem in terms of withstand voltage. Needless to say, there is no such thing.

ここで注目すべき点は、(iv)式が積分経路lの始点
と終点の位置と電位が定まれば、途中の積分経路や電界
分布には無関係に成立することである。
What should be noted here is that equation (iv) holds true regardless of the intermediate integration path or electric field distribution once the positions and potentials of the starting and ending points of the integral path l are determined.

このことは、浮遊容量や、絶縁抵抗の変化によって、電
界分布が変化しても計器用変圧器の二次出力に影響を及
ぼさないことを示している。すなわち、従来の計器用変
圧器のように専用の大形コンデンサ分圧器や、発生熱量
の多い低抵抗分圧器は不要であるから、小形で発熱量の
少ない高電圧、高精度の計器用変圧器が得られる。
This shows that even if the electric field distribution changes due to changes in stray capacitance or insulation resistance, it does not affect the secondary output of the potential transformer. In other words, there is no need for a dedicated large capacitor voltage divider or a low resistance voltage divider that generates a large amount of heat as in conventional voltage transformers, so it is possible to create a high voltage, high precision voltage transformer that is small and generates little heat. is obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の計器用変圧器によれれば、
被測定電圧が印加された電界場に複数個の光応用電界セ
ンサをほぼ等間隔に配置し、これら光応用電界センサの
光出力を入力とする各光電変換器の出力の総和を計器用
変圧器二次出力としたことによシ、浮遊容量や、絶縁抵
抗の変化によって電界分布が変化17ても、それに影響
されない、小形で発生熱量の少ない高電圧、高精度の計
器用変圧器を提供することができる。
As explained above, according to the voltage transformer of the present invention,
A plurality of optical electric field sensors are arranged at approximately equal intervals in an electric field to which a voltage to be measured is applied, and the sum of the outputs of each photoelectric converter that receives the optical output of these optical electric field sensors is converted to an instrument transformer. To provide a high-voltage, high-precision instrument transformer that is small, generates little heat, and is not affected by changes in electric field distribution due to changes in stray capacitance or insulation resistance due to secondary output. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の計器用変圧器の概略構成図、第2図は本
発明の計器用変圧器の概略構成図、第3図は第2図の電
界検出装置のブロック図、i 41ZJは本発明の計器
用変圧器の出力となる各電界検出装置における出力電圧
の加算を示すブロック線図である。 α1)・−次端子、    (12+・・・接地電位部
、(I3)・・支持部材、 05)、(15+)、(1s2)、−、(15n) 、
、、光応用電界センサ、(16a) 、(i6at) 
、 −、(16an)、(16b) 、(16b+ )
、 (16bz)。 ・・、(16bn)・・・光ファイバ、(17)、(1
71)、(172)、 −、(17n) −光電変換器
、0ね、(181)、(182)、・・・、(18n)
・・・電界検出装置、tI翅・・・発光部、     
(20・・・受光部、(21)信号処理部、   (2
21・加算器、代理人 弁理士 井 上 −男 第1図 第  3  図 8 t−Dt’7 第  2  図
Fig. 1 is a schematic diagram of a conventional voltage transformer, Fig. 2 is a schematic diagram of a voltage transformer of the present invention, and Fig. 3 is a block diagram of the electric field detection device shown in Fig. 2. FIG. 2 is a block diagram showing the addition of output voltages in each electric field detection device that is the output of the voltage transformer of the invention. α1) - next terminal, (12+... ground potential part, (I3)... support member, 05), (15+), (1s2), -, (15n),
, , Optical electric field sensor, (16a) , (i6at)
, −, (16an), (16b), (16b+)
, (16bz). ..., (16bn) ... optical fiber, (17), (1
71), (172), -, (17n) -Photoelectric converter, 0ne, (181), (182),..., (18n)
... electric field detection device, tI wing... light emitting part,
(20... light receiving section, (21) signal processing section, (2
21・Adder, Agent Patent Attorney Inoue-M Figure 1 Figure 3 Figure 8 t-Dt'7 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 被測定電圧が印加される一次端子と、この−次端子と接
地電位部間に生じる電界中に選定された間隔をおいて配
設された複数個の光応用電界センサと、これら光応用電
界センナに光を導く第1の光フアイバ群と、前記光応用
電界センサを通過した光を他に伝達する第2の光フアイ
バ群と、前記第1の各光フアイバ群に光を供給する複数
の発光部と、前記第2の各党ファイバ群によって導かれ
た光を受光する複数の受光部と、この各受光部の出力信
号を入力とする複数の信号処理部と、この各信号処理部
の出力を加算する加算器とからなシ、この加算器の出力
を二次出力としたことを特徴とする計器用変圧器。
A primary terminal to which a voltage to be measured is applied, a plurality of optical electric field sensors arranged at selected intervals in an electric field generated between this secondary terminal and a ground potential part, and these optical electric field sensors. a first optical fiber group that guides light to the optical fiber sensor, a second optical fiber group that transmits the light that has passed through the optical electric field sensor, and a plurality of light emitting units that supply light to each of the first optical fiber groups. a plurality of light receiving sections that receive the light guided by the second fiber group, a plurality of signal processing sections that receive the output signals of the respective light receiving sections, and an output of each of the signal processing sections. An instrument transformer characterized in that it includes an adder for addition, and the output of the adder is used as a secondary output.
JP58002881A 1983-01-13 1983-01-13 Potential transformer Pending JPS59128454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58002881A JPS59128454A (en) 1983-01-13 1983-01-13 Potential transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58002881A JPS59128454A (en) 1983-01-13 1983-01-13 Potential transformer

Publications (1)

Publication Number Publication Date
JPS59128454A true JPS59128454A (en) 1984-07-24

Family

ID=11541694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58002881A Pending JPS59128454A (en) 1983-01-13 1983-01-13 Potential transformer

Country Status (1)

Country Link
JP (1) JPS59128454A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101024729B1 (en) * 2008-10-17 2011-03-24 엘에스산전 주식회사 Metering out fit
JP2019121739A (en) * 2018-01-10 2019-07-22 株式会社明電舎 Vacuum capacitor type instrument transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101024729B1 (en) * 2008-10-17 2011-03-24 엘에스산전 주식회사 Metering out fit
JP2019121739A (en) * 2018-01-10 2019-07-22 株式会社明電舎 Vacuum capacitor type instrument transformer

Similar Documents

Publication Publication Date Title
Zeng et al. Design and application of an integrated electro-optic sensor for intensive electric field measurement
US3466541A (en) Voltage measuring apparatus utilizing electro-optical components
US3916310A (en) Electronic measuring instrument arrangement for measuring electrical A-C quantities
Wunsch et al. Kerr cell measuring system for high voltage pulses
Cutkosky An ac resistance thermometer bridge
JPH112648A (en) Electrooptic voltage sensor with optical fiber
US3732490A (en) Impedance probe for swept network analyzer system
JPS59128454A (en) Potential transformer
US3283242A (en) Impedance meter having signal leveling apparatus
CN108828493A (en) The method that elimination temperature and other phase electric fields influence optical voltage transformer precision
US3842344A (en) Bridge circuit for measuring dielectric properties of insulation
EP0414236B1 (en) Optical transformer
Slomovitz et al. Shielded electronic current transformer
Blalock et al. Low-noise wide-band amplification system for acquiring prebreakdown current pulses in liquid dielectrics
US3568057A (en) Phase measurement apparatus incorporating square wave voltage difference compensation
JPS61288175A (en) Measuring instrument for insulation deterioration of electric power cable
Mariscotti et al. A Rogowski coil for high voltage applications
Zeng et al. The development of integrated electro-optic sensor for intensive electric field measurement
JPS5918366Y2 (en) Phototransformable electric field measuring device
SU731402A1 (en) Device for measuring the concentration of current carriers in semiconductor
SU951156A1 (en) Ac bridge
SU552571A1 (en) Apparatus for testing current transformers in transient conditions
SU1161897A2 (en) Device for polarization measurements
SU1273986A1 (en) Device for measuring absolute value of electrical impedance of magnetic heads
US4250448A (en) Voltmeter apparatus for cascaded transformers