JPS59128100A - Orbit charging method of space ship - Google Patents

Orbit charging method of space ship

Info

Publication number
JPS59128100A
JPS59128100A JP58000175A JP17583A JPS59128100A JP S59128100 A JPS59128100 A JP S59128100A JP 58000175 A JP58000175 A JP 58000175A JP 17583 A JP17583 A JP 17583A JP S59128100 A JPS59128100 A JP S59128100A
Authority
JP
Japan
Prior art keywords
spacecraft
orbit
wire
star
charging method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58000175A
Other languages
Japanese (ja)
Inventor
蓑毛 正洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58000175A priority Critical patent/JPS59128100A/en
Publication of JPS59128100A publication Critical patent/JPS59128100A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/242Orbits and trajectories
    • B64G1/2427Transfer orbits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/242Orbits and trajectories

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、人工衛星、人工惑星るるいは惑星間飛行宇宙
機等を、他の宇宙機等から所望の軌道に投入する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for inserting an artificial satellite, an artificial planet, or an interplanetary spacecraft into a desired orbit from another spacecraft.

従来、この種の宇宙機の軌道投入方法には、大型の打上
げロケットを用いる方法、宇宙機自体にペリジモータや
アボジモータ等の推進装置を装備し高い軌道に投入する
方法、あるいはスペースシャトルや宇宙プラット・フオ
ーム等からアッパーステージと称される推進装置で打出
す方法等があるが、これらはいずれも被投入宇宙機に大
きな推進装置およびその制御装置等を設ける必要がある
ため、重量や体積の増大、燃焼時の衝撃負荷および構造
の複雑さ等を必然的に伴うという欠点があった。
Conventionally, the methods for inserting this type of spacecraft into orbit include using a large launch rocket, equipping the spacecraft itself with a propulsion device such as a perige motor or aboge motor and inserting it into a high orbit, or using a space shuttle or space platform. There is a method of launching using a propulsion device called an upper stage based on the form, etc., but all of these require a large propulsion device and its control device to be installed on the spacecraft to be launched, resulting in an increase in weight and volume. This method has disadvantages in that it inevitably involves impact loads during combustion and complexity of the structure.

本発明は、これらの欠点を除去するために、重力傾度に
よる安定を利用し、母船たる宇宙機(第1の宇宙機)か
ら被投入宇宙機(第2の宇宙機)を線材でつないだ状態
でくシ出し、所要の軌道半径、接線速度等が得られたと
ころで線材を切シ離すことによって、所望の軌道に投入
することを特徴とし、被投入宇宙機(第2の宇宙機)自
体には軌道投入用の推進装置が不要であるかあるいは簡
易になるため、軌道投入時の負荷が小さくなると共に、
重量の軽減化、構造の簡易化等が可能となるもので、以
下図面について説明する。
In order to eliminate these drawbacks, the present invention utilizes stability due to gravitational gradient, and connects a mother spacecraft (first spacecraft) to a receiving spacecraft (second spacecraft) with a wire. It is characterized by inserting it into the desired orbit by cutting the wire when the required orbital radius, tangential velocity, etc. are obtained, and the spacecraft to be inserted (second spacecraft) itself Since the propulsion device for orbit insertion is unnecessary or simplified, the load upon orbit insertion is reduced, and
This makes it possible to reduce weight and simplify the structure, and the drawings will be explained below.

第1図、第2図、第3図および第4図は本発明の実施例
を示す概念図であり、簡単のため一初期の軌道が円軌道
であって、それより高い軌道に宇宙機を投入するという
場合を例にとって説明する。
1, 2, 3, and 4 are conceptual diagrams showing embodiments of the present invention. For simplicity, the initial orbit is a circular orbit, and the spacecraft is placed in a higher orbit. An explanation will be given using an example of input.

第1図は初期の状況を示し、1は星、2は初期の円軌道
、3は母船の宇宙機(第1の宇宙機)で、初期状態では
被投入宇宙機(第2の宇宙機)4を搭載しており、Rは
軌道2の半径、■は宇宙機3の接線速度である。
Figure 1 shows the initial situation, where 1 is the star, 2 is the initial circular orbit, 3 is the mother ship spacecraft (first spacecraft), and in the initial state, the inserted spacecraft (second spacecraft). 4, R is the radius of orbit 2, and ■ is the tangential velocity of spacecraft 3.

第2図は第1の宇宙機3から第2の宇宙機4を線材5で
つないだ状態でくり出した様子を示し、4は被投入宇宙
機である第2の宇宙機、3′は第2の宇宙機4を分離し
た後の第1の宇宙機、5は線材を示す。
Figure 2 shows a state in which a second spacecraft 4 is connected to a first spacecraft 3 by a wire rod 5, and 4 is the second spacecraft which is the inserted spacecraft, and 3' is the second spacecraft. The first spacecraft after separating the spacecraft 4, 5 indicates a wire rod.

第3図は第2の宇宙機4を所望の回転半径まで線材5を
くシ出して重力傾度で安定化した状態を示し、Ra5V
aはそれぞれ第2の宇宙機4の回転半径、接線速度を、
Rb、 Vbはそれぞれ第1の宇宙機3′の回転半径、
接線速度を示している。第4図は線材5を切シ離したと
きの状態を示し、6は第2の宇宙機4の投入された軌道
、7は第1の宇宙機3′かとる軌道を示す。
Figure 3 shows a state in which the second spacecraft 4 is stabilized by the gravitational gradient after the wire 5 has been drawn out to the desired radius of rotation, and Ra5V
a is the radius of rotation and tangential speed of the second spacecraft 4, respectively,
Rb and Vb are the radius of rotation of the first spacecraft 3', respectively,
Shows tangential velocity. FIG. 4 shows the state when the wire 5 is cut, 6 shows the orbit into which the second spacecraft 4 has been inserted, and 7 shows the orbit taken by the first spacecraft 3'.

簡単のため、大気の抵抗、太陽輻射圧等の擾乱は無視で
きるとすると、第1図の状態で星1を周回している第1
の宇宙機3から第2図のように、搭載していた第2の宇
宙機4を線材5でくシ出していくとき、重力傾度により
線材5には張力が働き、第1の宇宙機3′と第2の宇宙
機4とを結ぶ直線は、星1の重力中心方向を向くように
安定化され、星1のまわシを周回する〇更に簡単のため
、元の角速度が変化しないように速度コントロールして
線材5をくシ出していって、第3図の状態までもってき
たとき、第2の宇宙機4と第1の宇宙機3′ の接線速
度Va。
For the sake of simplicity, we assume that disturbances such as atmospheric resistance and solar radiation pressure can be ignored.
As shown in Figure 2, when the second spacecraft 4 on board is pulled out from the spacecraft 3 by the wire 5, tension acts on the wire 5 due to the gravitational gradient, and the first spacecraft 3 The straight line connecting ' and the second spacecraft 4 is stabilized so that it points toward the center of gravity of star 1, and orbits around the star 1. 〇For further simplicity, the line is made so that the original angular velocity does not change. When the wire 5 is combed out under speed control and the state shown in FIG. 3 is reached, the tangential velocity Va of the second spacecraft 4 and the first spacecraft 3'.

vbはそれぞれ Va=Ka@V  、  KaHRa/R)IVb =
Kb−V  、  KbE Rb/R<1と表わされる
が、Ra5RbすなわちKaSKbは線材5の長さ、線
密度、および第2の宇宙機4と第1の宇宙機3′の質量
比で決まる値である。
vb is Va=Ka@V, KaHRa/R)IVb=
Kb-V, KbE is expressed as Rb/R<1, but Ra5Rb, or KaSKb, is a value determined by the length of the wire 5, the linear density, and the mass ratio of the second spacecraft 4 and the first spacecraft 3'. be.

ここで、第4図のように第2の宇宙機4から線材5を切
)離せば、所望の軌道に投入される。
At this point, if the wire 5 is separated from the second spacecraft 4 as shown in FIG. 4, it will be inserted into a desired orbit.

一般に質量M1万有引力常数Gの星のまわりを運動する
質点のペリジ点での軌道半径をr1接線速度を1とする
と、その軌道の離心率eはG で表わされ、第1図の軌道2は円軌道であるから G であって、 MG=RV2 となシ、第2の宇宙機4が投入される軌道6の離心率C
ムは G aVa2 =Ka3−1>0 となシ、KaO値によって、 1<Ka<v’丁 : 楕円軌道 Ka = J 2    :  放物線軌道f丁(Ka
    :  双曲線軌道 というような軌道を描く。
In general, if the orbital radius at the perige point of a mass point moving around a star with mass M1 and universal gravitational constant G is r1 and the tangential velocity is 1, then the eccentricity e of the orbit is expressed as G, and orbit 2 in Figure 1 is Since it is a circular orbit, G, MG=RV2, and the eccentricity C of the orbit 6 into which the second spacecraft 4 is inserted.
GaVa2 = Ka3-1>0, and depending on the KaO value, 1<Ka<v': Elliptical orbit Ka = J2: Parabolic orbit f(Ka
: Draw a trajectory like a hyperbolic trajectory.

ここでKaを適当に選ぶことによって 所望の軌道に第
2の宇宙機4を投入できる。
By appropriately selecting Ka, the second spacecraft 4 can be inserted into a desired orbit.

本実施例では第1の宇宙機3′ については、線材5の
質量が無視できる場合、もしくは線材5を切シ離して宇
宙空間に棄てるような場合には、切り離した後の軌道7
は、切シ離したところをアボジ点とするような楕円軌道
となシ、また、質量の無視できない線材5をつけたまま
、あるいは第1の宇宙機3′ 内に巻き込んで回収する
ような場合には、楕円軌道が擾乱を受けるが、必要なら
ば適当な推進装置を装備することにより、周回軌道に再
投入すればよい。
In this embodiment, for the first spacecraft 3', if the mass of the wire 5 is negligible, or if the wire 5 is to be separated and discarded in space, the trajectory after separation is 7.
In the case where the orbit is an ellipse such that the aboriginal point is the point where the wire is separated, or when the wire 5 whose mass cannot be ignored is attached, or when it is recovered by being rolled into the first spacecraft 3'. , the elliptical orbit will be disturbed, but if necessary, it can be re-entered into orbit by installing an appropriate propulsion device.

同様にして、楕円形の周回軌道、あるいは放物線軌道や
双曲線軌道のような非周回軌道からも、星の重力傾度を
利用して、母船の宇宙機から、被投入宇宙機を線材でく
シ出し所要の軌道半径、接線速度等が得られたところで
線材を切り離すことによシ、新たな軌道に投入すること
ができる 以上説明したように星の重力圏内を質点運動する宇宙機
から別の宇宙機を新たな軌道に投入する場合に、重力傾
度による安定を利用しながら投射するため、被投入宇宙
機の軌道投入用推進装置は不要もしくは簡易になシ、そ
れに付随した装置類、構造等が不要もしくは簡易になる
と共に、推進装置による衝撃負荷もなくなるかあるいは
低減されることになシ、宇宙機の重量も軽減されるとい
う利点がある。
Similarly, from an elliptical orbit, a parabolic orbit, or a non-orbital orbit such as a hyperbolic orbit, the gravitational gradient of the star is used to eject the inserted spacecraft from the mother ship's spacecraft with a wire rod. Once the required orbital radius, tangential velocity, etc. are obtained, the wire can be separated and the wire can be inserted into a new orbit. When inserting into a new orbit, it is projected while utilizing the stability provided by the gravitational gradient, so the orbit insertion propulsion device of the inserted spacecraft is unnecessary or simple, and the accompanying equipment and structures are unnecessary. Alternatively, it becomes simpler, the impact load caused by the propulsion device is eliminated or reduced, and the weight of the spacecraft is also reduced.

本方法は、地球等の星の低高度軌道を周回すする宇宙プ
ラットフォーム、宇宙連絡船等の宇宙機から、人工衛星
等の宇宙機をより高い軌道に投入したシ、逆に高い軌道
から低い軌道に投入したシ、更には重力圏から脱出させ
て惑星間飛行の軌道に乗せたシ、惑星間飛行している宇
宙機が、ある星の重力圏内にとられれたときに、その宇
宙機から別の宇宙機を低い軌道あるいは高い軌道に投入
するような場合にも応用することができる。
This method involves launching a spacecraft such as an artificial satellite into a higher orbit from a space platform or space vehicle such as a space ferries orbiting in a low-altitude orbit around a star such as the Earth, or conversely from a high orbit to a lower orbit. In addition, when a spacecraft flying between planets is taken into the gravitational field of a star, it is separated from the spacecraft. It can also be applied to cases where a spacecraft is placed in a low or high orbit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、宇宙機が初期の円軌道を周回している状態を
示す図、第2図は第1の宇宙機から第2の宇宙機を線材
でくり出している様子を示す図、第3図は第2の宇宙機
が所要の軌道半径、接線速度をもち、線材を切シ離す直
前の様子を示す図、および第4図は宇宙機どうしをつな
いでいた線材を切シ離したときの図である。
Figure 1 is a diagram showing the spacecraft orbiting in an initial circular orbit, Figure 2 is a diagram showing how the second spacecraft is extended from the first spacecraft with a wire, and Figure 3 The figure shows the situation when the second spacecraft has the required orbital radius and tangential velocity and is just before the wires are separated, and Figure 4 shows the situation when the wires connecting the spacecrafts are separated. It is a diagram.

Claims (1)

【特許請求の範囲】[Claims] 星の重力圏内を、周回し又は通過する軌道上にある第1
の宇宙機から第2の宇宙機を柚の軌道に投入する方法で
あって、第1の宇宙機から第2の宇宙機を前記星の重力
゛方向に線材でつないだ状態で放ち、重力傾度で安定化
された状態で、前記線材をくり出して、第2の宇宙機に
所要の軌道半径、接線速度等が得られたところで、第1
の宇宙機と第2の宇宙機をつないでいる線材を切り離す
ことによって、第2の宇宙機をその接線速度方向に投射
して所望軌道に投入することを特徴とする宇宙機の軌道
投入方法。
The first orbit that orbits or passes through the star's gravitational field.
A method of inserting a second spacecraft from a spacecraft into Yuzu's orbit, in which the first spacecraft and the second spacecraft are released while being connected by a wire in the direction of gravity of the star, and the gravitational gradient is The wire is pulled out in a stabilized state, and when the required orbital radius, tangential velocity, etc. for the second spacecraft are obtained, the first
A method for inserting a spacecraft into an orbit, the method comprising the step of projecting the second spacecraft in a tangential velocity direction and inserting it into a desired orbit by cutting off a wire connecting the spacecraft and the second spacecraft.
JP58000175A 1983-01-06 1983-01-06 Orbit charging method of space ship Pending JPS59128100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58000175A JPS59128100A (en) 1983-01-06 1983-01-06 Orbit charging method of space ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58000175A JPS59128100A (en) 1983-01-06 1983-01-06 Orbit charging method of space ship

Publications (1)

Publication Number Publication Date
JPS59128100A true JPS59128100A (en) 1984-07-24

Family

ID=11466670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58000175A Pending JPS59128100A (en) 1983-01-06 1983-01-06 Orbit charging method of space ship

Country Status (1)

Country Link
JP (1) JPS59128100A (en)

Similar Documents

Publication Publication Date Title
Pearson The orbital tower: a spacecraft launcher using the Earth's rotational energy
SAUER, JR Optimum solar-sail interplanetary trajectories
US5199672A (en) Method and apparatus for deploying a satellite network
EP0640524A1 (en) Method for injecting payloads into orbit
ZUBRIN The use of magnetic sails to escape from low Earth orbit
US20170327250A1 (en) System for imparting linear momentum transfer for higher orbital insertion
Carroll et al. Tethers for small satellite applications
US7392964B1 (en) Method and apparatus for utilizing a lifeboat for a space station in earth orbit to serve as a lunar spacecraft
US20050211828A1 (en) Aerodynamic orbit inclination control
US6149103A (en) Free return lunar flyby transfer method for geosynchronous satellites havint multiple perilune stages
JPS59128100A (en) Orbit charging method of space ship
US6059235A (en) Interplanetary transfer method
JPH0215440B2 (en)
Shoyama et al. Conceptual study on low-melting-point thermoplastic Fuel/Nitrous oxide hybrid rockoon
Cornille A method of accurately reducing the spin rate of a rotating spacecraft
JP2850069B2 (en) Launch method of micro satellite
Horikawa et al. The Successful Launch of the Fourth Epsilon Launch Vehicle and its Future Rideshare Plans
JPS6250299A (en) Artificial satellite support system in rocket
Lindberg Overview of the pegasus air-launched space booster
Rosen Placing the satellite in its orbit
Boltz Miniature launch vehicles for very small payloads
Bilen Space-borne tethers
Yajima et al. A pointing control system for a balloon-Borne telescope
DiNonno et al. Low-Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID) Mission Overview, Science Return, and Future Applications of This Technology
Cianciolo et al. Impact of Utilizing Photos and Deimos as Waypoints for Mars Human Surface Missions