JPS59126763A - Production of zirconium alloy member - Google Patents

Production of zirconium alloy member

Info

Publication number
JPS59126763A
JPS59126763A JP218583A JP218583A JPS59126763A JP S59126763 A JPS59126763 A JP S59126763A JP 218583 A JP218583 A JP 218583A JP 218583 A JP218583 A JP 218583A JP S59126763 A JPS59126763 A JP S59126763A
Authority
JP
Japan
Prior art keywords
plastic working
alloy
cold plastic
pipe
zirconium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP218583A
Other languages
Japanese (ja)
Inventor
Iwao Takase
高瀬 磐雄
Shigeo Hattori
成雄 服部
Shinzo Ikeda
池田 伸三
Isao Masaoka
正岡 功
Hajime Umehara
梅原 肇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP218583A priority Critical patent/JPS59126763A/en
Publication of JPS59126763A publication Critical patent/JPS59126763A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To improve corrosion resistance to water and steam having a high temp. and high pressure in the stage of forming a Zr alloy by >=2 stages of cold plastic working to a pipe or bar shape by subjecting the alloy to a specific heat treatment during course of the cold plastic working or after the final cold plastic working. CONSTITUTION:A Zr alloy material is worked to a pipe material or bar material by >=2 times of cold plastic working in the stage of producing a pipe or bar material of a corrosion resistant Zr alloy to be used in water or steam having a high temp. and high pressure as a structure of a nuclear plant. A part 2 made of the Zr alloy is put into a heating furnace 1 during the course of the cold plastic working stage or after the final cold plastic working, then the top and bottom ends thereof are fixed by restraining parts 7 and electricity is conducted thereto to heat the part in a temp. region of the beta phase or (alpha+beta) phase of the Zr alloy. Cooling water is thereafter ejected from many cooling nozzles 13 provided to the outside cylinder 12 of the heating furnace and in the case of the pipe material, inert gas such as Ar is passed in the pipe to cool quickly the pipe, whereby the corrosion resistance of the part 2 is improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はジルコニウム合金部材の製造法に係り、特に原
子カプラントの構造物に用いられるジルコニウム合金か
らなる管または棒の耐食性を向上させるのに好適なジル
コニウム合金部材の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for manufacturing a zirconium alloy member, and in particular to a method suitable for improving the corrosion resistance of a tube or rod made of a zirconium alloy used in the structure of an atomic couplant. The present invention relates to a method for manufacturing a zirconium alloy member.

〔従来技術〕[Prior art]

ジルコニウム合金は、その優れた耐食性と非常に小さい
中性子吸収断面積を有することから原子カプラントの構
造物、特に燃料被覆管、チャンネルスペーサ等に使用さ
れている。これら部材は炉内で長期間中性子を照射され
、かつ高温高圧の水あるいは水蒸気中にさらされること
から酸化が進み、ひいてはプラントの運転に重大な影響
を及ぼしやすい。このためジルコニウム合金の耐食性向
上の対策が重要となる。また最近、燃料棒の高燃焼度化
が進む中でこれら部材の耐食性はよシ高くする必要が生
じてきた。
Zirconium alloys have excellent corrosion resistance and a very small neutron absorption cross section, so they are used in atomic couplet structures, especially fuel cladding tubes, channel spacers, and the like. These members are irradiated with neutrons for a long period of time in the furnace and exposed to high temperature, high pressure water or steam, which leads to oxidation, which tends to have a serious effect on plant operation. Therefore, measures to improve the corrosion resistance of zirconium alloys are important. Recently, as the burnup of fuel rods has been increasing, it has become necessary to further improve the corrosion resistance of these members.

原子カプラントの構造物に使用されているジルコニウム
合金はジルカロイ−2(Zr基に約1,5%Sn、0.
1%pe、0.1%Crおよび0.05 %Niを添加
)およびジルカロイ−4(Zr基に約1.5%Sn、0
.2%Fe、0.1%Crを添加)が知られている。こ
れらのジルコニウム合金の高耐食性、強度改善を目的と
した製造法も提案されている。例えば特開昭55−10
0947および特開昭55−100967ではジルコニ
ウム合金の最終素材または製品の状態でレーザービーム
装置を使用して、表面部のみβ焼入処理(ジルコニウム
合金のβ相およ′びα+β相からの焼入)を行う方法が
提案されている。
The zirconium alloy used in the structure of the atomic couplant is Zircaloy-2 (about 1.5% Sn and 0.5% Sn on the Zr basis).
1% PE, 0.1% Cr and 0.05% Ni) and Zircaloy-4 (approximately 1.5% Sn, 0
.. 2% Fe and 0.1% Cr) is known. Manufacturing methods have also been proposed for the purpose of improving the corrosion resistance and strength of these zirconium alloys. For example, JP-A-55-10
0947 and JP-A No. 55-100967, a laser beam device is used for the final material or product of zirconium alloy to undergo β-quenching treatment (quenching from the β phase and α+β phase of the zirconium alloy). ) has been proposed.

この方法はレーザービームで表面部を急速加熱しその後
自己冷却によって焼入れるオυ点を有している。しかし
、この方法は次のような欠点がある。
This method has an optical point where the surface is rapidly heated with a laser beam and then hardened by self-cooling. However, this method has the following drawbacks.

第1はごくわずかな表層部のみ焼入処理を行うため、そ
の後の仕上加工などにおいて、焼入していない内部(耐
食性が改善されない部分)が露出し、焼入効果が十分に
だせない。第2は表層部近くに再加熱領域が形成され、
耐食性に有害な金属間化合物の析出が起こる。第3に加
熱、冷却の制御が困難で焼入むらを起こしやすく、不均
質な材料となシやすい。
First, since only a small portion of the surface layer is hardened, the unhardened interior (area where corrosion resistance is not improved) is exposed during the subsequent finishing process, and the hardening effect cannot be sufficiently achieved. Second, a reheating region is formed near the surface layer,
Precipitation of intermetallic compounds harmful to corrosion resistance occurs. Thirdly, it is difficult to control heating and cooling, which tends to cause uneven quenching, resulting in a non-uniform material.

また特公昭55−100947には製品の形状にしたも
のをβ相およびα+β相に加熱後急冷するβ焼入法が示
されている。この加熱法は高周波加熱装置によって加熱
し、その後水噴霧によシ急冷する「ゾーン熱処理」を行
うものである。しかしこの製造法は長尺のものではβ焼
入に要する時間が多く必要とし、かつ焼入が不均一にな
りやすい欠点がある。
Further, Japanese Patent Publication No. 55-100947 discloses a β-quenching method in which a product shaped into a product is heated to β phase and α+β phase and then rapidly cooled. This heating method performs a "zone heat treatment" in which the material is heated by a high-frequency heating device and then rapidly cooled by water spray. However, this manufacturing method has the disadvantage that long pieces require a lot of time for β-hardening, and the hardening tends to be uneven.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、耐食性に優れたジルコニウム合金部材
の製造法、特に高温高圧の水あるいは蒸気に対する耐食
性の優れたジルコニウム合金部材(素材または製品)の
製造法を提供することにある。
An object of the present invention is to provide a method for producing a zirconium alloy member with excellent corrosion resistance, particularly a method for producing a zirconium alloy member (material or product) with excellent corrosion resistance against high temperature and high pressure water or steam.

〔発明の概要〕[Summary of the invention]

本発明は、少なくとも2工程以上の冷間塑性加工を有す
るジルコニウム合金部材の製造法において、上記冷間塑
性加工の中間の工程またはその後の最終冷間塑性加工の
終了後に、ジルコニウム合金に対し、その合金のβ相お
よびα+β相温度領域に到達するまで通電加熱した後、
急冷することを特徴とする。
The present invention provides a method for manufacturing a zirconium alloy member that includes at least two or more cold plastic working steps, in which the zirconium alloy is subjected to an intermediate step of the cold plastic working or after the final cold plastic working is completed. After heating with electricity until reaching the β phase and α + β phase temperature range of the alloy,
It is characterized by rapid cooling.

ジルコニウム合金を素材の最終形状またけ製品の最終形
状でレーザービーム装置あるいは高周波加熱装置を用い
てβ焼入処理する場合、β焼入処理は被処理材の表層部
のみ溶体化処理となるが、内部はβ焼入前の性質がその
まま残ることになる。
When beta-quenching a zirconium alloy using a laser beam device or high-frequency heating device to straddle the final shape of the material or the final shape of the product, the beta-quenching treatment involves solution treatment of only the surface layer of the material. The interior will retain the same properties as before β-quenching.

したがって、内部はβ焼入前の工程における熱間塑性加
工あるいは焼ならしにおいて析出した金属間化合物(例
えばZrCr2やz 1 x p e 5 Cr 2な
ど)はそのまま残存する。さらに内部の析出物はβ焼入
時に高温度に再加熱されることから、粗大化が促進され
る。このような金属間化合物の析出および粗大化はノジ
ュラ腐食を起こしやすくシ、不安定な酸化膜となるため
耐食性を著しく低下させる。
Therefore, the intermetallic compounds (for example, ZrCr2, z 1 x p e 5 Cr 2, etc.) precipitated during hot plastic working or normalizing in the step before β-quenching remain in the interior. Furthermore, since the internal precipitates are reheated to a high temperature during β-quenching, coarsening is promoted. Such precipitation and coarsening of intermetallic compounds tends to cause nodular corrosion, resulting in an unstable oxide film, which significantly reduces corrosion resistance.

したがって表層部のみのβ焼入法ではβ焼入後の酸化膜
除去あるいは精整加工において耐食性に有効な表層部が
削シ取られ、内部の耐食性の低い部分が露出する欠点が
生じる。
Therefore, in the β-quenching method of only the surface layer, the surface layer, which is effective for corrosion resistance, is scraped away during the removal of the oxide film after β-quenching or during refining, and the internal parts with low corrosion resistance are exposed.

本発明では被処理材に直接通電して全体を急速加熱した
後急冷して、β焼入処理を施すことを提供するものでお
る。ここで直接通電加熱は中間の冷間塑性加工後に実施
する方法と、最終の冷間塑性加工後に実施する方法とが
あり、いずれによっても良い。
The present invention provides that the material to be treated is directly energized to rapidly heat the entire material and then rapidly cooled to perform β-quenching treatment. Here, the direct current heating may be performed either after intermediate cold plastic working or after final cold plastic working, and either method may be used.

直接通電加熱処理は被処理材をジルコニウム合金のβ相
およびα+β相の温度領域に到達するまで均一に急速加
熱されるが、20c/臓以上の加熱速度が望ましい。一
方、急冷操作は被処理材が管または棒のような長尺物の
場合、通電加熱後、直ちに均一に冷却するために水ある
いは不活性ガスの噴射によって行うのが望ましい。また
伶却時には被処理材が管まだは棒の長尺物の場合の両端
を拘束し、加熱冷却による曲がυを防止するのがよい。
In the direct current heat treatment, the material to be treated is uniformly and rapidly heated until it reaches the temperature range of the β phase and α+β phase of the zirconium alloy, but a heating rate of 20 c/in or higher is desirable. On the other hand, when the material to be treated is a long object such as a pipe or a rod, the rapid cooling operation is preferably carried out by spraying water or inert gas to uniformly cool the material immediately after heating with electricity. Furthermore, when the material is being disposed of, it is preferable to restrain both ends of the material, such as a pipe or a long rod, to prevent bending due to heating and cooling.

なお直接通電加熱処理後の焼なまし処理は耐食(+)溶
%:原料のスポンジジルコニウムと添加元素(Sn、p
e、Cr、Ni)を配合して、プレスにより圧縮成形し
て円柱状ブリケットを作る。
In addition, the annealing treatment after direct current heating treatment is corrosion resistant (+) %: raw material sponge zirconium and additive elements (Sn, p
e, Cr, Ni) and compression molded using a press to make a cylindrical briquette.

これを不活性雰囲気下で溶接し電極に仕上げ、これを真
空消耗電極式アーク溶解炉で2回くシ返し溶解してイン
ゴットとした。
This was welded under an inert atmosphere to form an electrode, which was melted twice in a vacuum consumable electrode arc melting furnace to form an ingot.

(11)β鍛造:インゴットをジルコニウム合金のβ相
温度゛領域(約1oooC)で成形のために鍛造を行っ
た。
(11) β-forging: The ingot was forged in the β-phase temperature range (approximately 1 ooo C) of a zirconium alloy for forming.

(ill)溶体化処理:β鍛造材をジルコニウム合金の
β相温度領域で約3時間保持し、その後急冷(水冷)す
る溶体化処理を施した。この処理により合金元素を均一
化し、組織を改善する。
(ill) Solution treatment: The β-forged material was held in the β-phase temperature region of the zirconium alloy for about 3 hours, and then subjected to solution treatment in which it was rapidly cooled (water-cooled). This treatment homogenizes the alloying elements and improves the structure.

(1v)α鍛造:溶体化処理によって生じた表面酸化膜
を除去した後寸法合わせのために、700t:’前後の
α相領域の温度範囲内で鍛造を行う。
(1v) α forging: After removing the surface oxide film produced by solution treatment, forging is performed within the temperature range of the α phase region around 700 t:' for dimension adjustment.

(V)機械加工、銅被覆:溶体化処理材を機械加工によ
って中空ビレットにし、これに酸化防止。
(V) Machining, copper coating: The solution-treated material is machined into a hollow billet, which is then protected against oxidation.

ガス吸収防止を図シ、かつ熱間押出における潤滑性を改
善するため銅被覆を施した。
Copper coating was applied to prevent gas absorption and improve lubricity during hot extrusion.

(vl)熱間塑性加工(熱間押出し)ニア00t?近く
の温度で銅被覆ビレットをプレスによシダイスを通して
押出し、押出し素管を作った。
(vl) Hot plastic working (hot extrusion) near 00t? The copper-coated billet was extruded through a die with a press at a similar temperature to produce an extruded blank tube.

(Vii)焼なまし:焼力ましは加工による歪を除去す
るために高真空下6500前後の温度で約3時間保持し
た。なお導接通電加熱後の焼ならしくVii)’の温度
は400〜550Cの範囲に抑えた。これは耐食性を低
めない観点からである。
(Vii) Annealing: The annealing was maintained at a temperature of about 6,500 ℃ for about 3 hours under high vacuum to remove distortion due to processing. Note that the temperature of annealing Vii)' after conductive electrical heating was suppressed to a range of 400 to 550C. This is from the viewpoint of not reducing corrosion resistance.

(ViiD冷間塑性加工:室温における圧延加工により
外径を絞シ肉厚を薄くし、所定の寸法に達するまで焼な
ましをはさみ3回圧延を繰り返した。各圧延における加
工度は約70%前後である。
(ViiD cold plastic working: The outer diameter was reduced and the wall thickness was reduced by rolling at room temperature, and rolling was repeated three times with annealing until the specified dimensions were reached. The degree of working in each rolling was approximately 70%. Before and after.

(1×)直接通電加熱によるβ焼入処理二この処理は第
1図〜第4図に示した装置を用いて実施した。
(1x) β-quenching treatment by direct current heating 2 This treatment was carried out using the apparatus shown in FIGS. 1 to 4.

第1図において、加熱炉1内の被処理材(ジルコニウム
合金の管)2の上端は拘束部7によって固定され、上端
側の拘束部7は通電端子として使用するようになってお
り、被処理劇の下方側に通電円 端子11が固定されている。加熱炉外筒12の野周面に
は多数の冷却ノズル13が設けられ、これらの冷却ノズ
ル13は冷却配管9に接続され、また加熱炉外筒12の
上端面側および下端面側にはそれぞれベロー14が取シ
付けられ、これらのベロー14内に拘束部7が収納され
るようになっている。拘束部7には第2図および第3図
に示すように多数本の固定治具15を備え、被処理材2
の下部側には中子16が嵌着され、この中子16内の中
空部を通してガス導入管17から被処理材2の中空部に
ガスが導入されるようになっている。
In FIG. 1, the upper end of the material to be treated (zirconium alloy tube) 2 in the heating furnace 1 is fixed by a restraint part 7, and the restraint part 7 on the upper end side is used as a current-carrying terminal. An energizing circular terminal 11 is fixed on the lower side of the screen. A large number of cooling nozzles 13 are provided on the circumferential surface of the heating furnace outer cylinder 12, and these cooling nozzles 13 are connected to the cooling pipe 9, and on the upper end surface side and the lower end surface side of the heating furnace outer cylinder 12, respectively. Bellows 14 are attached, and the restraining portion 7 is housed within these bellows 14. As shown in FIGS. 2 and 3, the restraint section 7 is equipped with a large number of fixing jigs 15, and the workpiece 2 is
A core 16 is fitted into the lower part of the core 16, and gas is introduced into the hollow part of the material to be treated 2 from the gas introduction pipe 17 through the hollow part inside the core 16.

図中18は油圧2リンダ−ケースである。In the figure, 18 is a hydraulic two-cylinder case.

第4図は第1図に示す加熱炉の制御システムを示してい
る。第4図において、加熱炉1内に被処理材2がセット
(下端部の通電端子11を固定し、下部は拘束しない状
態)され、制御機3から通電加熱電源5に対し通電指令
が入り、被処理材2に通電され加熱される。被処理材2
の加熱状態は温度センサ4によって検出され、被処理材
2の温度が所定温度に到達した後、拘束制御機6に基づ
いて直ちに下端側や拘束部7が作動し、同時に冷却制御
機8からの指令に基づいて冷却ノズル13から水が噴出
するようになっている。冷却水の代わシに不活性ガスを
用いる場合、雰囲気調整装置10からの指令に基づき加
熱炉内に不活性ガスが導入されるようになっている。な
お、制御機3からの指令に基づき、加熱炉駆動装置19
によって冷却ノズルから冷却水まだは不活性ガスを噴出
すると同時に加熱炉1が回動し、これによって均一な冷
却効果が得られ焼入効果も均一なものとなる。
FIG. 4 shows a control system for the heating furnace shown in FIG. In FIG. 4, the material to be treated 2 is set in the heating furnace 1 (the current-carrying terminal 11 at the lower end is fixed and the lower part is not restrained), and the controller 3 issues an energization command to the energizing heating power source 5. The material 2 to be treated is energized and heated. Material to be treated 2
The heating state of the material to be processed 2 is detected by the temperature sensor 4, and after the temperature of the material to be processed 2 reaches a predetermined temperature, the lower end side and the restraint part 7 are activated immediately based on the restraint controller 6, and at the same time, the lower end side and the restraint part 7 are activated. Water is spouted from the cooling nozzle 13 based on the command. When an inert gas is used instead of cooling water, the inert gas is introduced into the heating furnace based on a command from the atmosphere adjustment device 10. In addition, based on the command from the controller 3, the heating furnace drive device 19
The heating furnace 1 rotates at the same time as the cooling water and inert gas are spouted from the cooling nozzle, thereby achieving a uniform cooling effect and a uniform hardening effect.

本実施例において、被処理材2を通電加熱によってジル
コニウム合金のβ相およびα+β相温度領域(本実施例
ではxoooc)に到達させた後、被処理材2の下端部
を拘束し、同時に冷却ノズル13から水を噴出させて急
冷した。また急冷時、ガス導入管7からアルゴンを送り
込んだ。本実施例では被処理材2が薄肉管であるので中
子16によって拘束時の圧縮に耐えることができ、また
アルゴンガスの導入によって管内面の酸化を防止できる
In this example, after the material to be treated 2 is brought to the temperature range of β phase and α+β phase of the zirconium alloy (xoooc in this example) by heating with electricity, the lower end of the material to be treated 2 is restrained, and at the same time, the cooling nozzle is Water was spouted from No. 13 to rapidly cool the container. Further, during rapid cooling, argon was fed through the gas introduction pipe 7. In this embodiment, since the material to be treated 2 is a thin-walled tube, it can withstand compression during restraint by the core 16, and oxidation of the inner surface of the tube can be prevented by introducing argon gas.

被処理材の拘束冷却による効果は温度低下に伴う縦方向
の収縮を拘束するため、曲がシが起こらないこと並びに
内面の酸化を著しく改善し、精整加工の工数を大幅に低
減した。通電加熱条件は第5図に示す加熱時間と負荷の
電流および電圧の関係から決定したもので、当実施例は
加熱温度1000t:’としたマスターカーブである。
The effect of restraint cooling on the material to be processed is to restrain the shrinkage in the longitudinal direction due to temperature drop, which prevents bending and significantly improves oxidation on the inner surface, significantly reducing the number of steps required for finishing. The energization heating conditions were determined from the relationship between the heating time and the load current and voltage shown in FIG. 5, and this example is a master curve with a heating temperature of 1000 t:'.

(×)精整加工:最終の焼ならし後、被覆管の曲が9取
シ、酸化膜の除去寸法合わせなどの目的で精密機械加工
を実施した。
(x) Precision machining: After the final normalization, precision machining was performed for the purpose of removing 9 curves of the cladding tube, removing the oxide film, and adjusting the dimensions.

以上の方法で製造したジルカロイ被覆管を用い管断面の
組織観察を行った。比較の被覆管は上記(1×)の工程
を省略した試料(現在多用されている製造法)及び上記
(IX)の工程において、レーザービームによってβ焼
入した試料(特開昭55−100947.55−100
967)である。組織観察の結果は第6図で模式化して
示した。従来法(a)の断面組織は第6図(a)に示す
ように比較的粗いα相の単一組織を呈し、また金属間化
合物はかなり多く、かつ粗大化している。従来法(b)
の断面組織は第6図(b)に示すように表層部のみが極
めて微細な結晶粒のα相を呈し、また、金属間化合物も
微細に析出する(この組織は耐食性に効果的)。一方、
内部は従来法(a)の組織を呈す複合組織を示す。しか
し、この複合組織は管断面を通し均一に存在せず、部分
的には表層部に形成せしめた効果的な微細組織が失なわ
れ内部の単一組織を呈するケースがある。この理由は上
記工程(×)の、tiv製加工において表層部が切削さ
れたこと並びにβ焼入むらに起因すると考えられる。本
発明法による(C)の断面組織は第6図(C)に示すよ
うに極めて微細な結晶粒のα相の単一組織を呈す。また
金属間化合物はより微細で均一に分布し、かつその析出
量が従来材に比べ少ない。このように本発明法による被
覆管の組織は耐食性に好適な微細なα相を呈し、しかも
管断面を通して均一な単一組織を示すことが判明した。
The structure of the cross section of the Zircaloy coated tube manufactured by the above method was observed. Comparative cladding tubes were a sample in which the above step (1x) was omitted (a manufacturing method that is currently widely used), and a sample in which the above step (IX) was β-quenched with a laser beam (Japanese Patent Application Laid-Open No. 55-100947. 55-100
967). The results of tissue observation are schematically shown in FIG. As shown in FIG. 6(a), the cross-sectional structure of the conventional method (a) exhibits a relatively coarse α-phase single structure, and intermetallic compounds are considerably large and coarse. Conventional method (b)
As shown in FIG. 6(b), only the surface layer of the cross-sectional structure exhibits an α phase with extremely fine crystal grains, and intermetallic compounds are also finely precipitated (this structure is effective for corrosion resistance). on the other hand,
The inside shows a composite structure exhibiting the structure of conventional method (a). However, this composite structure does not exist uniformly throughout the cross section of the tube, and in some cases, the effective fine structure formed on the surface layer is lost, leaving a single structure inside. The reason for this is thought to be that the surface layer portion was cut during the tiv manufacturing process in the above step (x) and the β quenching unevenness. The cross-sectional structure of (C) obtained by the method of the present invention exhibits a single structure of α phase with extremely fine crystal grains, as shown in FIG. 6(C). In addition, the intermetallic compounds are finer and more uniformly distributed, and the amount of precipitation is smaller than in conventional materials. As described above, it has been found that the structure of the cladding tube produced by the method of the present invention exhibits a fine α phase suitable for corrosion resistance, and also exhibits a uniform single structure throughout the tube cross section.

次に本発明の直接通電加熱法によって製造した被覆管の
腐食試験を行った。比較の被覆管は前述の組織観察に用
いた試料と同一材である。腐食試験条件は520 C,
105kg/cm2高温高圧水蒸気中、50時間保持し
た。その結果を第7図に示す。
Next, a corrosion test was conducted on the cladding tube manufactured by the direct current heating method of the present invention. The cladding tube for comparison was made of the same material as the sample used for the above-mentioned tissue observation. Corrosion test conditions are 520C,
It was held in high temperature, high pressure steam at 105 kg/cm2 for 50 hours. The results are shown in FIG.

本発明処理材の腐食状態をみると、腐食増量は約100
 mg / d rllを弱であシ、またその表面は黒
色の光沢のある様相を示し、耐食性にすぐれていること
がわかった。一方、従来処理材(b)の腐食増量は60
〜800 mg /d mzでばらつきが著しい。
Looking at the corrosion state of the material treated according to the present invention, the corrosion weight increase is about 100
mg/d rll, and its surface exhibited a black, glossy appearance, indicating that it had excellent corrosion resistance. On the other hand, the corrosion weight increase of conventionally treated material (b) was 60
The variation is significant at ~800 mg/d mz.

その表面状態は局部的にジルカロイ合金特有なノジュラ
腐食(不安定な酸化被膜)がみられる。従来処理材(a
)の腐食増量は著しく高い値を示す。またその表面はノ
ジュラ腐食が全面に分布し、かつ粗大化しているなど腐
食が著しく進んでいる様相を示す。
Its surface shows localized nodular corrosion (unstable oxide film) characteristic of Zircaloy alloys. Conventionally treated material (a
) shows a significantly high value. In addition, the surface shows signs of markedly advanced corrosion, with nodular corrosion distributed over the entire surface and becoming coarser.

このように本発明法は耐食性のすぐれた製品を製造する
に好適な方法であることがわかった。
Thus, the method of the present invention was found to be suitable for producing products with excellent corrosion resistance.

実施例2 使用したジルコニウム合金は実施例1と同じ化学組成で
ある。製造工程は実施例1において熱間塑性加工までは
同じであり、その後の冷間塑性加工を2回繰返した後に
本発明の直接通電加熱処理を行った。直接通電加熱後の
焼ならし温度は500 cで実施した(第1表の方法(
d))。
Example 2 The zirconium alloy used has the same chemical composition as in Example 1. The manufacturing process was the same as in Example 1 up to hot plastic working, and after repeating the subsequent cold plastic working twice, the direct current heating treatment of the present invention was performed. The normalizing temperature after direct current heating was 500 C (method in Table 1).
d)).

これによる腐食試験の結果、実施例1の特性と全く同じ
であシ、耐食性にすぐれていた。
As a result of the corrosion test, the properties were exactly the same as those of Example 1, and the corrosion resistance was excellent.

実施例3 使用したジルコニウム合金は1.4wt%Sn。Example 3 The zirconium alloy used was 1.4 wt% Sn.

0.25wt%Fe、o、tzwt%Cr及び残部Zr
でるる。この合金は実施例1と同様に溶解。
0.25wt%Fe, o, tzwt%Cr and balance Zr
Out. This alloy was melted in the same manner as in Example 1.

β鍛造、熱間塑性加工を行い、さらに製品に近い形状に
冷間塑性加工を加えた後に本発明の直接通電加熱処理を
実施しだ。次いで画処理材の腐食に験を高温高圧水蒸気
中で行った。その結果、耐食性は前述の実施例と同程度
にすぐれていた。
After β forging and hot plastic working, cold plastic working was applied to a shape close to that of the product, and then the direct current heat treatment of the present invention was performed. Next, the corrosion of the image processing material was tested in high-temperature, high-pressure steam. As a result, the corrosion resistance was as good as that of the previous example.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ジルコニウム合金、特にジルカロイ合
金を微細な結晶粒とし、金属間化合物の析出量が少なく
かつ微細で均一に分布した組織とすることができるので
耐食性が向上する。このため、ジルカロイ合金製の機器
の性能が向上し、使用期間を延ばすことができる。
According to the present invention, a zirconium alloy, particularly a zircaloy alloy, can be made into fine crystal grains and have a fine and uniformly distributed structure with a small amount of precipitated intermetallic compounds, thereby improving corrosion resistance. Therefore, the performance of equipment made of Zircaloy alloy can be improved and the service life can be extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するための通電加熱装置における
加熱炉の構成図、第2図は第7図の加熱炉における被処
理材の拘束方法を示す説明図、第3図は冷却時の被処理
材下部の構造を示す断面図、第4図は通電加熱装置のブ
ロック図、第5図は直接通電加熱条件の加熱時間と負荷
電流および電圧との関係図、第6図(a)および(b)
は従来法によって製造した管の断面組織の模式図、第6
図(C)は本発明法によって製造した管の断面組織の模
式−ス第7図は腐食試験結果の棒グラフを示す。 1・・・加熱炉、2・・・被処理材、3・・・制御機、
4・・・温度センサ、5・・・通電加熱電源、6・・・
拘束制御機、7・・・拘束部、8・・・冷却制御機、9
・・・冷却配管、10・・・雰囲気調整装置、11・・
・通電端子、12・・・加熱炉外筒、13・・・冷却ノ
ズル、14・・・ベロー、15・・・固定治具、16・
・・中子、17・・・ガス導入管、茅 l 目 第4 目 茅S 目 負荷−イ直  (電5気X電反) 第7目 $Z口 (徒)
Fig. 1 is a configuration diagram of a heating furnace in an electrical heating apparatus for carrying out the present invention, Fig. 2 is an explanatory diagram showing a method of restraining the material to be treated in the heating furnace of Fig. 7, and Fig. 3 is a diagram during cooling. A cross-sectional view showing the structure of the lower part of the material to be treated, FIG. 4 is a block diagram of the current heating device, FIG. 5 is a relationship between heating time, load current and voltage under direct current heating conditions, and FIGS. 6(a) and (b)
6 is a schematic diagram of the cross-sectional structure of a tube manufactured by the conventional method.
Figure (C) is a schematic diagram of the cross-sectional structure of a pipe manufactured by the method of the present invention. Figure 7 shows a bar graph of the results of a corrosion test. 1... Heating furnace, 2... Processed material, 3... Control machine,
4... Temperature sensor, 5... Current heating power supply, 6...
Restraint control machine, 7... Restraint part, 8... Cooling control machine, 9
...Cooling piping, 10...Atmosphere adjustment device, 11...
・Electricity terminal, 12... Heating furnace outer cylinder, 13... Cooling nozzle, 14... Bellows, 15... Fixing jig, 16.
... Core, 17... Gas inlet pipe, 1st eye 4th eye Kaya S eye load - I straight (Electrical 5K

Claims (1)

【特許請求の範囲】 1、少なくとも2工程以上の冷間塑性加工工程を有する
ジルコニウム合金部材の製造法において、上記冷間塑性
加工の中間の工程またはその後の最終冷間塑性加工工程
の終了後に、ジルコニウム合金に対し、その合金のβ相
およびα+β相温度領域に到達するまで通電加熱した後
、急冷することを特徴とするジルコニウム合金部材の製
造法。 2、特許請求の範囲第1項において、上記ジルコニウム
合金部材が管または棒であることを特徴とするジルコニ
ウム合金部材の製造法。 3、特許請求の範囲第2項において、前記急冷は管また
は棒に水または不活性ガスを噴射することによって行う
ことを特徴とするジルコニウム合金部材の製造法。 4、特許請求の範囲第3項において、前記水または不活
性ガスの噴射時に管または棒の両端部を固定することを
特徴とするジルコニウム合金部材の製造法。
[Claims] 1. In a method for manufacturing a zirconium alloy member having at least two or more cold plastic working steps, after the intermediate step of the cold plastic working or the subsequent final cold plastic working step, A method for manufacturing a zirconium alloy member, which comprises heating a zirconium alloy with electricity until it reaches the temperature range of the β phase and α+β phase of the alloy, and then rapidly cooling the alloy. 2. The method of manufacturing a zirconium alloy member according to claim 1, wherein the zirconium alloy member is a tube or a rod. 3. A method for producing a zirconium alloy member according to claim 2, wherein the quenching is performed by injecting water or inert gas into the tube or rod. 4. The method of manufacturing a zirconium alloy member according to claim 3, characterized in that both ends of the tube or rod are fixed when the water or inert gas is injected.
JP218583A 1983-01-12 1983-01-12 Production of zirconium alloy member Pending JPS59126763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP218583A JPS59126763A (en) 1983-01-12 1983-01-12 Production of zirconium alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP218583A JPS59126763A (en) 1983-01-12 1983-01-12 Production of zirconium alloy member

Publications (1)

Publication Number Publication Date
JPS59126763A true JPS59126763A (en) 1984-07-21

Family

ID=11522299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP218583A Pending JPS59126763A (en) 1983-01-12 1983-01-12 Production of zirconium alloy member

Country Status (1)

Country Link
JP (1) JPS59126763A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299432A (en) * 1985-10-22 1987-05-08 ウエスチングハウス エレクトリック コ−ポレ−ション Fuel coated pipe comprising single zirconium base alloy
CN103498072A (en) * 2013-09-03 2014-01-08 中国船舶重工集团公司第七二五研究所 High-strength high-impact-toughness titanium alloy used for oil well and gas well, and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299432A (en) * 1985-10-22 1987-05-08 ウエスチングハウス エレクトリック コ−ポレ−ション Fuel coated pipe comprising single zirconium base alloy
CN103498072A (en) * 2013-09-03 2014-01-08 中国船舶重工集团公司第七二五研究所 High-strength high-impact-toughness titanium alloy used for oil well and gas well, and preparation method thereof

Similar Documents

Publication Publication Date Title
US4678521A (en) Process for producing zirconium-based alloy and the product thereof
US4690716A (en) Process for forming seamless tubing of zirconium or titanium alloys from welded precursors
EP2714953B1 (en) Thermo-mechanical processing of nickel-base alloys
US3865635A (en) Method of making tubes and similar products of a zirconium alloy
KR100364093B1 (en) A method of manufacturing a tube for a nuclear fuel assembly, and tubes obtained thereby
JPS6145699B2 (en)
US3645800A (en) Method for producing wrought zirconium alloys
JP3923557B2 (en) Zirconium-based alloy tube for nuclear fuel assemblies and method for producing the same
US4671826A (en) Method of processing tubing
US5108517A (en) Process for preparing titanium and titanium alloy materials having a fine equiaxed microstructure
JPS61213362A (en) Production of composite coated pipe for nuclear fuel and product
RU2123065C1 (en) Process of manufacture of tubular articles from zirconium alloys ( versions )
CN107282854A (en) A kind of manufacturing process of nuclear power retaining ring
JPS59126763A (en) Production of zirconium alloy member
EP0425465A1 (en) A method of manufacturing cladding tubes for fuel rods for nuclear reactors
JPS6358223B2 (en)
US6149738A (en) Fuel boxes and a method for manufacturing fuel boxes
CN114273574B (en) Forging method for controlling structural uniformity of large-size easy-segregation austenitic stainless steel bar
JPS6331543B2 (en)
JP3400815B2 (en) Method for producing Zircaloy-2 fuel material for BWR reactor
JPS6331544B2 (en)
RU2032760C1 (en) Method of producing products from the zirconium alloys
JPH02270948A (en) Production of zirconium alloy tube
CN116765678A (en) Short-process processing method of high-performance titanium alloy welding wire
CN113316490A (en) Method for manufacturing zirconium-based alloy pipe