JPS5912640Y2 - Rotating plug seal mechanism - Google Patents

Rotating plug seal mechanism

Info

Publication number
JPS5912640Y2
JPS5912640Y2 JP1979084770U JP8477079U JPS5912640Y2 JP S5912640 Y2 JPS5912640 Y2 JP S5912640Y2 JP 1979084770 U JP1979084770 U JP 1979084770U JP 8477079 U JP8477079 U JP 8477079U JP S5912640 Y2 JPS5912640 Y2 JP S5912640Y2
Authority
JP
Japan
Prior art keywords
melting point
low melting
point alloy
seal mechanism
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1979084770U
Other languages
Japanese (ja)
Other versions
JPS563495U (en
Inventor
正 桑原
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to JP1979084770U priority Critical patent/JPS5912640Y2/en
Publication of JPS563495U publication Critical patent/JPS563495U/ja
Application granted granted Critical
Publication of JPS5912640Y2 publication Critical patent/JPS5912640Y2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【考案の詳細な説明】 本考案は、例えば液体金属を冷却材とする高速増殖炉の
固定プラグと回転プラグとの隙間の炉内汚染ガス密封装
置として用いる回転プラグシール機構の改良に関するも
のである。
[Detailed description of the invention] The present invention relates to an improvement of a rotating plug sealing mechanism used as a device for sealing contaminated gas in the gap between a fixed plug and a rotating plug in a fast breeder reactor that uses liquid metal as a coolant, for example. .

高速増殖炉に使用されている従来の回転プラグシール機
構は、仕切板と桶及び低融点合金より構或されている。
A conventional rotary plug seal mechanism used in a fast breeder reactor is composed of a partition plate, a tub, and a low melting point alloy.

ところで、低融点合金を貯蔵する桶は低融点合金を凝固
させるため、冷却流路をもつ二重構造になっている。
Incidentally, the tub for storing the low melting point alloy has a double structure with cooling channels in order to solidify the low melting point alloy.

ところで、低融点合金の融点設定は、低融点合金を溶融
する際に付近の構造物に過大な熱応力が作用しないよう
に、又、0リング等に悪影響を与えないようになるべく
低くとる必要がある。
By the way, it is necessary to set the melting point of the low melting point alloy as low as possible so that excessive thermal stress does not act on nearby structures when melting the low melting point alloy, and so as not to adversely affect the O-ring etc. be.

しかし、原子炉の通常運転中は炉内温度は500℃前後
であり回転プラグシール機構付近を加熱する。
However, during normal operation of a nuclear reactor, the temperature inside the reactor is around 500° C., which heats the vicinity of the rotating plug seal mechanism.

このため、低融点合金は、その溶融点を回転プラグシー
ル機構付近温度よりも高くとる。
Therefore, the melting point of the low melting point alloy is higher than the temperature near the rotating plug seal mechanism.

又、万が一の事故に合っても低融点合金が溶融しないよ
う低融点合金は、他の冷却手段によって常に強制冷却凝
固されている。
Further, in order to prevent the low melting point alloy from melting even in the unlikely event of an accident, the low melting point alloy is always forcedly cooled and solidified by other cooling means.

又、回転プラグシール機構は、炉内の放射化ガス漏洩に
よる大気汚染防止のため、高信頼性容器としての良好な
シール機能を要求されていた。
In addition, the rotary plug seal mechanism was required to have a good sealing function as a highly reliable container in order to prevent air pollution due to leakage of activated gas inside the reactor.

しかるに、従来の桶のみでの冷却では仕切板壁面と桶壁
面部分で温度差が生じ、低融点合金の凝固時凝固むらが
生じ、シール性能が著しく低下する。
However, in conventional cooling using only a tub, a temperature difference occurs between the wall surface of the partition plate and the wall surface of the tub, causing uneven solidification of the low melting point alloy during solidification, resulting in a significant reduction in sealing performance.

また低融点合金は冷却速度を早めることによりシール性
能が向上することと、低融点合金の冷却作業時間の短縮
化が必要とされていた。
Furthermore, there is a need to improve the sealing performance of low melting point alloys by increasing the cooling rate, and to shorten the cooling operation time for low melting point alloys.

本発明の目的は上記問題点に対してなされたもので、回
転プラグシール機構の低融点合金の均一温度分布凝固に
よるシール性能の向上と、凝固所要時間を短縮し、原子
炉カバーガス1次バウンダリを形或するに十分な機能を
有する回転プラグシール機構を有するじゃへいプラグを
得ることにある。
The purpose of the present invention was to solve the above-mentioned problems, and to improve the sealing performance by uniform temperature distribution solidification of the low melting point alloy of the rotary plug seal mechanism, shorten the solidification time, and reduce the primary boundary of the reactor cover gas. The object of the present invention is to obtain a plug having a rotary plug sealing mechanism that has sufficient functions to form a shape.

以下一実施例の図面を参照して本考案を説明する。The present invention will be described below with reference to the drawings of an embodiment.

第1図において、固定プラグ1は炉容器2の上方開口部
に搭載される。
In FIG. 1, a fixed plug 1 is mounted in the upper opening of a furnace vessel 2. In FIG.

この固定プラグ1には偏心して回転プラグ3が設けられ
ている。
A rotary plug 3 is eccentrically provided on the fixed plug 1.

しやへいプラグ燃料交換方式には、一重または二重回転
プラグ方式があるが、ここでは一重回転プラグ方式につ
いて説明する。
There are two types of plug fuel exchange methods: single-rotation plug and double-rotation plug methods, but the single-rotation plug method will be explained here.

この回転プラグ3の外周近傍には円筒状の仕切板4が下
方に突出する状態で気密接合されている。
A cylindrical partition plate 4 is hermetically sealed near the outer periphery of the rotary plug 3 so as to protrude downward.

又、前記固定プラグ1の開口縁の下面には前記仕切板4
と同心円板の桶5が気密接合されている。
Further, the partition plate 4 is provided on the lower surface of the opening edge of the fixed plug 1.
and a concentric disk tub 5 are hermetically connected.

この桶5には低融点合金6が貯蔵され、この低融点合金
6内に前記仕切板4の下部が適度に浸漬する。
A low melting point alloy 6 is stored in this tub 5, and the lower part of the partition plate 4 is appropriately immersed in this low melting point alloy 6.

仕切板4の内部には、第2図に示す如く冷却通路7を屈
曲させて仕切板周上に設置されている。
Inside the partition plate 4, as shown in FIG. 2, a cooling passage 7 is bent and installed around the circumference of the partition plate.

この冷却通路7内には桶の冷却通路内8と同時に冷媒を
流し、低融点合金を均一温度分布で凝固させる。
A refrigerant is flowed into the cooling passage 7 at the same time as the cooling passage 8 of the tub, and the low melting point alloy is solidified with uniform temperature distribution.

又、第3図に示すように、仕切板4内には、前記低融点
合金6を溶融するヒータ9が埋設される。
Further, as shown in FIG. 3, a heater 9 for melting the low melting point alloy 6 is embedded within the partition plate 4.

この低融点合金6の溶融は、回転プラグ3を回転すると
き、この操作に先よって行なう。
The low melting point alloy 6 is melted prior to rotating the rotary plug 3.

尚、図中10はメカニカルシールであり、回転フ゜ラグ
シール機構が万がーにもそのシール機能を失った時のバ
ックアップシール機能をもっている。
In addition, numeral 10 in the figure is a mechanical seal, which has a backup sealing function in case the rotary flag seal mechanism loses its sealing function by any chance.

12は原子炉燃料集合体、13は液体金属である。12 is a reactor fuel assembly, and 13 is a liquid metal.

次に作用を説明する。Next, the effect will be explained.

原子炉燃料交換作業等により、回転プラグ3回転作動中
は回転プラグシール機構は、ヒータ9により溶融した状
態にあり、仕切板4と溶融した低融点合金6と桶5とに
より気密が保たれている。
During reactor fuel replacement work, etc., the rotary plug seal mechanism is in a melted state by the heater 9 while the rotary plug rotates three times, and airtightness is maintained by the partition plate 4, the molten low melting point alloy 6, and the tub 5. There is.

このとき、仕切板4、桶5内部に設けられた冷却通路7
,8にはN2ガス等の冷却媒体は流れていない。
At this time, the cooling passage 7 provided inside the partition plate 4 and the tub 5
, 8, no cooling medium such as N2 gas flows therein.

作業終了後、原子炉が通常運転となり、回転プラグ3の
回転作動の必要がなくなったとき、低融点合金6を溶融
するヒータ9の熱源は切られ、それに伴なって仕切板4
、桶5内部に設けられた冷却通路7,8に冷却媒体が流
される。
After the work is completed, when the reactor returns to normal operation and there is no need to rotate the rotary plug 3, the heat source of the heater 9 that melts the low melting point alloy 6 is turned off, and the partition plate 4 is turned off.
, a cooling medium is flowed into cooling passages 7 and 8 provided inside the tub 5.

これにより、低融点合金6の温度は徐々に全体的に均一
に下がり、ついには凝固する。
As a result, the temperature of the low melting point alloy 6 gradually lowers uniformly throughout, and finally solidifies.

このことにより炉内の急激な圧力が変化に対してもシー
ル機能を損なうことはない。
As a result, the sealing function will not be impaired even if the pressure inside the furnace suddenly changes.

また、冷却媒体を流し続けることにより炉内の温度変化
に対してもシール機能を損なうことはない。
Furthermore, by continuing to flow the cooling medium, the sealing function will not be impaired even when the temperature inside the furnace changes.

そして、ふたたび回転プラグ3の回転作動を行なう場合
は、冷却媒体を流すのをやめ、ヒータ9に熱源を入れる
ことによりすばやく回転可能な状態にすることができる
When the rotary plug 3 is to be rotated again, the flow of the cooling medium is stopped and a heat source is turned on to the heater 9, so that the rotary plug 3 can be quickly turned into a rotatable state.

以上の説明のように、本考案の回転プラグシール機構は
構威されているため、低融点合金冷却時、仕切板壁面、
桶壁面部において、不均一温度分布が生ずることがなく
なり良好なシール性能を得られる。
As explained above, the rotary plug seal mechanism of the present invention is structured so that when cooling the low melting point alloy, the wall surface of the partition plate,
Non-uniform temperature distribution does not occur on the wall surface of the tub, and good sealing performance can be obtained.

しかも仕切板、桶両面から冷却するため、低融点合金の
冷却速度が早くでき、原子炉運転の無駄な時間を著しく
削減できる。
Moreover, since cooling is performed from both sides of the partition plate and the tub, the cooling rate of the low-melting point alloy can be increased, and wasted time during reactor operation can be significantly reduced.

これにより原子炉力バーガス1次バウンダリーとしての
機能上の信頼性が向上される。
This improves the functional reliability of the reactor power source as a primary boundary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原子炉の概略縦断面図、第2図は本考案の回転
プラグシール機構の一実施例を示す縦断面図、第3図は
第2図の回転プラグシール機構のヒータ設置状態を示す
縦断面図である。 4・・・・・・仕切板、5・・・・・・桶、6・・・・
・・低融点合金、7,8・・・・・・冷却通路、9・・
・・・・ヒータ。
Fig. 1 is a schematic vertical sectional view of a nuclear reactor, Fig. 2 is a longitudinal sectional view showing an embodiment of the rotating plug seal mechanism of the present invention, and Fig. 3 shows the heater installation state of the rotating plug seal mechanism of Fig. 2. FIG. 4...Partition plate, 5...Pail, 6...
...Low melting point alloy, 7,8...Cooling passage, 9...
····heater.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] (1)溶融凝固可能な低融点合金を収納する環状の桶と
、前記低融点合金内に下方を浸漬する環状の仕切板と、
この仕切板内に設置される低融点合金の凝固用冷却系統
とからなる回転プラグシール機構。
(1) an annular tub that stores a low melting point alloy that can be melted and solidified; an annular partition plate that is immersed downward into the low melting point alloy;
A rotating plug seal mechanism consisting of a cooling system for solidifying a low melting point alloy installed inside this partition plate.
(2)前記冷却系統内には前記低融点合金を溶融するた
めのヒータが設置されていることを特徴とする実用新案
登録請求の範囲第1項記載の回転プラグシール機構。
(2) The rotating plug seal mechanism according to claim 1, wherein a heater for melting the low melting point alloy is installed in the cooling system.
JP1979084770U 1979-06-22 1979-06-22 Rotating plug seal mechanism Expired JPS5912640Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1979084770U JPS5912640Y2 (en) 1979-06-22 1979-06-22 Rotating plug seal mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1979084770U JPS5912640Y2 (en) 1979-06-22 1979-06-22 Rotating plug seal mechanism

Publications (2)

Publication Number Publication Date
JPS563495U JPS563495U (en) 1981-01-13
JPS5912640Y2 true JPS5912640Y2 (en) 1984-04-16

Family

ID=29317957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1979084770U Expired JPS5912640Y2 (en) 1979-06-22 1979-06-22 Rotating plug seal mechanism

Country Status (1)

Country Link
JP (1) JPS5912640Y2 (en)

Also Published As

Publication number Publication date
JPS563495U (en) 1981-01-13

Similar Documents

Publication Publication Date Title
FR2529804A1 (en) DEVICE FOR THE SEPARATION OF GASEOUS ISOTOPES FROM HYDROGEN
US2991905A (en) Gas seal
JPS5912640Y2 (en) Rotating plug seal mechanism
US3522144A (en) Nuclear reactor with means for sealing reactor vessel closure plug
US3995918A (en) System for bearing a nuclear reactor vessel cooled by liquid metal
JP2004271119A (en) Heat accumulator
CN106531239A (en) Dynamic sealing device of reactor top cover of heavy metal cooling reactor and sealing method thereof
JPH0714959Y2 (en) Melting furnace in nuclear fuel waste treatment equipment
CN206024391U (en) The integrated box body of water cooled machine controller
JPS5860292A (en) Rotary shielding plug of reactor
JP2804984B2 (en) Centrifugal casting mold
JPS62269089A (en) Sealing structure of rotating plug
JPH0778551B2 (en) Liquid metal cooling reactor
CN116727602B (en) Basin-shaped shell casting process structure and casting process method
CN218192523U (en) Ladle with slag blocking device
CN210239830U (en) Thermostat assembly, engine cooling system and engine
CN209977063U (en) Internal sealing driving roller for heating furnace
JPS61289951A (en) Continuous casting device for thin sheet
CN106623824B (en) A kind of Novel ingot mold
JPS5926240Y2 (en) Cooling device for high temperature container outer shell
JPS61235054A (en) Method for sealing thermocouple for measuring temperature of casting mold copper plate
JPS59210394A (en) Roof slab for fast breeder
JPS6318957Y2 (en)
JPS6134308Y2 (en)
JPS6348499A (en) Shielding plug for fast breeder reactor