JPS5912634B2 - Crystal diameter measurement method - Google Patents

Crystal diameter measurement method

Info

Publication number
JPS5912634B2
JPS5912634B2 JP50117194A JP11719475A JPS5912634B2 JP S5912634 B2 JPS5912634 B2 JP S5912634B2 JP 50117194 A JP50117194 A JP 50117194A JP 11719475 A JP11719475 A JP 11719475A JP S5912634 B2 JPS5912634 B2 JP S5912634B2
Authority
JP
Japan
Prior art keywords
crystal
diameter
weight
melt
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50117194A
Other languages
Japanese (ja)
Other versions
JPS5242137A (en
Inventor
順治 乾
透 佐藤
久夫 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP50117194A priority Critical patent/JPS5912634B2/en
Publication of JPS5242137A publication Critical patent/JPS5242137A/en
Publication of JPS5912634B2 publication Critical patent/JPS5912634B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】 本発明は結晶直径測定法さらに詳しくはチョクラルスキ
ー(C2ochralski)法による単結晶育成時に
おいて育成される結晶融液直上の結晶の直径を測定する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a crystal diameter measurement method, and more particularly to a method for measuring the diameter of a crystal directly above a crystal melt during single crystal growth using the Cochralski method.

単結晶を育成する代表的な方法としてチョクラルスキー
法がある。
The Czochralski method is a typical method for growing single crystals.

これは第1図に示すように多結晶原料1をるつぼ2のキ
にて融液状にしておいてそこへ単結晶の種3をひたし、
よくなじませて5 から回転しつゝ引上げるとその種結
晶3と同じ結晶方位を有する円柱状の単結晶4をうるこ
とができる。尚この方法においては加熱方式は高周波誘
導コイルまたは抵抗加熱体5を用いまた雰囲気はアルゴ
ンなどの不活性ガスもしくは真空中にて引10上げる。
以上のごときチョクラルスキー法において単結晶を育成
する場合結晶融液1の直上における結晶直径を育成中に
知ることは育成結晶の形状を制御する上で極めて必要で
ある。従来結晶融液直上の育成結晶の直径を知るには1
5イ)目視による方法、 (ロ)テレビカメラによる方法、 ←→ るつぼ内の結晶融液の5分ないし15分間の時間
変化を測定して半径を算出する方法、の3つが行なわれ
てきたが次のような欠点を有し20ていた。
As shown in Fig. 1, polycrystalline raw material 1 is made into a melt in a crucible 2, and a single crystal seed 3 is immersed therein.
By blending them well and pulling them up while rotating from 5, a cylindrical single crystal 4 having the same crystal orientation as the seed crystal 3 can be obtained. In this method, a high frequency induction coil or a resistance heating element 5 is used as the heating method, and the atmosphere is an inert gas such as argon or a vacuum.
When growing a single crystal using the Czochralski method as described above, it is extremely necessary to know the diameter of the crystal immediately above the crystal melt 1 during growth in order to control the shape of the grown crystal. To know the diameter of the crystal grown directly above the conventional crystal melt 1
5) Three methods have been used: (b) A method using a television camera, and a method in which the radius is calculated by measuring the time change of the crystal melt in the crucible over a period of 5 to 15 minutes. It had the following drawbacks:

すなわち(イ)の方法は人間のガンに頼るものであつて
測定値の個人差が大きく信頼性が低い(口)の方法は外
部から結晶融液直上の結晶全体が見えるような炉の構造
の場合のみ可能であつて石英窓の雲りなどによるボケ、
乱反射等光学的雑音に25よる読取り誤差が大きく、ま
た(ノうの方法は最も確実に直径を測定する方法である
が測定には5分〜15分間のるつぼ内の結晶融液の変化
に応じて変化する電圧を読みとり結晶直径を算出する必
要があるため結晶直径の迅速な制御が不可能である。3
0本発明の目的は結晶融液の重量の時間変化を短時間(
0.5〜1分間)で測定し結晶直径に換算する結晶直径
測定方法を提供することにある。
In other words, method (a) relies on human cancer, and the reliability is low due to large individual differences in measurement values.Method (b) is based on a furnace structure that allows the entire crystal directly above the crystal melt to be seen from the outside. Blur caused by clouds on the quartz window, etc.
There is a large reading error due to optical noise such as diffused reflection (25), and (the method described above is the most reliable method for measuring the diameter, but the measurement depends on changes in the crystal melt in the crucible over a period of 5 to 15 minutes). Since it is necessary to calculate the crystal diameter by reading the changing voltage at the same time, it is impossible to quickly control the crystal diameter.3
0 The purpose of the present invention is to suppress the time change in the weight of the crystal melt in a short period of time (
It is an object of the present invention to provide a crystal diameter measuring method that measures the crystal diameter within 0.5 to 1 minute) and converts the measurement to the crystal diameter.

本発明によれば結晶融液中に単結晶の種結晶をひたし、
該種結晶を回転しつゝ引上げることによ35り単結晶を
育成する方式において結晶融液の重量変化に応じて変化
する電圧とパルスの繰返し周波数に比例して変化する基
準電圧源とを比較し、該電圧と該基準電圧の差が零とな
つた時のパルスの繰返し周波数を測定することにより前
記結晶融液直上に育成される単結晶の直径を測定するこ
とを特徴とする結晶直径測定方法が提案される。以下本
発明にか\る結晶測定方法について詳細に説明する。本
発明において結晶重量の変化により結晶直径を測定する
のはつぎの原理による。
According to the present invention, a single crystal seed crystal is immersed in a crystal melt,
In the method of growing a single crystal by rotating and pulling the seed crystal, a voltage that changes according to changes in the weight of the crystal melt and a reference voltage source that changes in proportion to the pulse repetition frequency are used. The crystal diameter is characterized in that the diameter of the single crystal grown directly above the crystal melt is measured by comparing and measuring the pulse repetition frequency when the difference between the voltage and the reference voltage becomes zero. A measurement method is proposed. The crystal measuring method according to the present invention will be explained in detail below. In the present invention, the crystal diameter is measured based on the change in crystal weight based on the following principle.

結晶重量Wと結晶直径D(t)との間には結晶の長さを
11結晶密度をρsとすれば次の関係がある。
The following relationship exists between the crystal weight W and the crystal diameter D(t), assuming that the crystal length is 11 and the crystal density is ρs.

″(1)式をlについて微分すると 結晶引き上げ設定速度Dll/Dtl結晶引き上げの実
効速度をDl2/DtとするとD2:ルツボ直径 (2Yに(3)を代入すると − 〜
,U2(4)より結晶直径D,はと表わせる。
``When formula (1) is differentiated with respect to l, the set speed of crystal pulling is Dll/Dtl, and the effective speed of crystal pulling is Dl2/Dt, then D2: crucible diameter (substituting (3) into 2Y) - ~
, U2(4), the crystal diameter D can be expressed as.

結晶重量Wを重量センサーからの電圧Vに変換すると結
晶直径を重量センサーの電圧変化d/Dtによつて知る
ことができる。従来DVdtの値は5分〜15分間の電
圧変化より計算してきたが本発明では基準重量信号発生
器によつてDVdtの値を直読出来るようにしたもので
ある。基準重量信号発生器は第2図Aに示すようにパル
ス発振器11、パルスカウンタ12、及びD−A変換器
13よりなる。
When the crystal weight W is converted into a voltage V from the weight sensor, the crystal diameter can be determined from the voltage change d/Dt of the weight sensor. Conventionally, the value of DVdt has been calculated from voltage changes over 5 to 15 minutes, but in the present invention, the value of DVdt can be directly read using a reference weight signal generator. The reference weight signal generator includes a pulse oscillator 11, a pulse counter 12, and a DA converter 13, as shown in FIG. 2A.

パルス発振器11の発振周波数は自由に変化させること
ができるようになつており、その出力がカウンタ12に
印加されその出力はBCDコード出力としてDA変換器
13に印加される。DA変換器13はパルス発振器11
の単位時間あたりのパルス数に比例した傾斜を有するア
ナログ出力を得る。第2図Bはパルス発振器11の発振
周波数A,a′と発振周波数による階段波出力B,b′
と、これを整流したアナログ出力C,c′との関係を示
すものであつて、パルス発振器11の発振周波数が大で
あるほど出力電圧の変化が急峻であることを示している
。すなわち時間t1から時間T2の△t時間の間にパル
ス数がn1からN2増加するとD−A変換器13の出力
電圧の増加分△vはとなる。
The oscillation frequency of the pulse oscillator 11 can be changed freely, and its output is applied to the counter 12, and the output is applied to the DA converter 13 as a BCD code output. DA converter 13 is pulse oscillator 11
Obtain an analog output with a slope proportional to the number of pulses per unit time. Figure 2B shows the oscillation frequencies A, a' of the pulse oscillator 11 and the staircase wave outputs B, b' due to the oscillation frequencies.
, and the rectified analog outputs C and c', showing that the higher the oscillation frequency of the pulse oscillator 11, the steeper the change in the output voltage. That is, when the number of pulses increases from n1 to N2 during time Δt from time t1 to time T2, the increase Δv in the output voltage of the DA converter 13 becomes.

ここでT,−T2=l秒とするとN,−N2はパルス発
振器の発振周波数fであるから式(6)はとなつてΔv
/人tはパルス発振器の発振周波数に比例する。(3)
より重量センサーの出力電圧変化と結晶直径の関係は−
一 \ νZllであるからk
=1VとなるようにD−A変換器を設定し、D−A変換
器の出力電圧と結晶重量センサー出力電圧を差動増幅器
で突き合せ、両者の出力変化を等しくなるようにすなわ
ち重量センサーの出力電圧とD−A変換器からの出力電
圧の差を零にする様にパルス数を変えると結晶直径D(
t)とパルス発振周波数fの間にはの関係が成立する。
Here, if T, -T2 = l seconds, then N, -N2 are the oscillation frequency f of the pulse oscillator, so equation (6) becomes Δv
/person t is proportional to the oscillation frequency of the pulse oscillator. (3)
The relationship between the output voltage change of the weight sensor and the crystal diameter is −
Since one \ νZll, k
= 1V, and match the output voltage of the D-A converter and the output voltage of the crystal weight sensor using a differential amplifier, so that the output changes of both are equal, that is, the output voltage of the weight sensor. By changing the number of pulses so as to make the difference between the output voltage and the output voltage from the D-A converter zero, the crystal diameter D (
The following relationship holds true between t) and the pulse oscillation frequency f.

このように基準重量信号発生器の出力電圧と結晶重量セ
ンサーの出力電圧差を零にするようにパルス発振周波数
を調節すると、発振周波数と結晶直径の自乗にほぼ比例
するため、簡単に育成中の結晶の直径を知ることができ
る。
In this way, by adjusting the pulse oscillation frequency so that the difference between the output voltage of the reference weight signal generator and the output voltage of the crystal weight sensor becomes zero, it is almost proportional to the oscillation frequency and the square of the crystal diameter, so it is easy to adjust the pulse oscillation frequency during growth. You can find out the diameter of the crystal.

実施例 直径が80φのルツボを用いて直径50φのLiNbO
,を育成しつつ結晶直径の測定を行つた。
Example: Using a crucible with a diameter of 80φ, LiNbO with a diameter of 50φ
, and measured the crystal diameter while growing them.

育成結晶重量の時間変化と結晶直径の関係は第3図のよ
うな関係にあり、またパルス周波数と重量変化は第4図
のように比例していることが判つた。
It was found that the relationship between the time change in the weight of the grown crystal and the crystal diameter is as shown in FIG. 3, and that the pulse frequency and the weight change are proportional as shown in FIG. 4.

結晶育成中にパルス周波数によつて結晶直径を測定した
ものが第5図で実際の値との誤差は±3(f)以内であ
つた。第3図において横軸は1時間当りの重量変化9/
Hrを、縦軸は結晶直径龍をそれぞれ示す。
The crystal diameter measured by the pulse frequency during crystal growth is shown in FIG. 5, and the error from the actual value was within ±3 (f). In Figure 3, the horizontal axis is the weight change per hour 9/
The vertical axis shows the crystal diameter, and the vertical axis shows the crystal diameter.

第4図において、横軸は1時間当りの重量変化9/Nr
を縦軸は周波数KHzを示す。第5図において、横軸は
育成時間Hrを縦軸は直径能を示す。ここでパルスの繰
り返し周波数から直径を知るためには第3図、第4図を
用いる。すなわち、第4図を用いてまずパルスの繰返り
周波数から重量変化を読み取り、次に第3図を用いて、
重量変化から結晶直径を読み取る。以上詳細に説明した
ように、要するに本発明はチョクラルスキー法による単
結晶育成時に育成単結晶の結晶融液直上の育成結晶の直
径を測定するにあたり、育成単結晶重量の変化に応じて
変化する電圧を基準信号源からの電圧と比較し、単位時
間あたりのパルスの繰り返り周波数を計数することによ
つて直径を測定するものであつて、本発明τにおいては
基準信号源として第2図に示すごとき基準信号発生器を
用いたが、この信号発生器はこの他にも種々の変形が存
在することは明らかである。
In Figure 4, the horizontal axis is the weight change per hour 9/Nr
The vertical axis indicates the frequency in KHz. In FIG. 5, the horizontal axis shows growth time Hr, and the vertical axis shows diameter capacity. Here, FIGS. 3 and 4 are used to determine the diameter from the pulse repetition frequency. That is, first read the weight change from the pulse repetition frequency using Fig. 4, then use Fig. 3,
Read the crystal diameter from the weight change. As explained in detail above, in short, the present invention measures the diameter of the grown single crystal directly above the crystal melt during single crystal growth using the Czochralski method, which changes in accordance with the change in the weight of the grown single crystal. The diameter is measured by comparing the voltage with the voltage from a reference signal source and counting the repetition frequency of pulses per unit time. Although the reference signal generator shown is used, it is clear that there are various other variations of this signal generator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はチョクラルスキー法による単結晶育成法の略図
、第2図Aは本発明にか\る結晶直径測定方法のプロツ
クダイアグラム、第2図Bはパルス発振器からの出力波
形とD−A変換器からの波形の関係を示す図、第3図は
1時間当りの重量変化と直径の変化の関係を示す図、第
4図は1時間当りの重量変化と周波数の関係を示す図、
第5図は育成時間に対する直径の変化を示す図である。
Fig. 1 is a schematic diagram of the single crystal growth method using the Czochralski method, Fig. 2A is a process diagram of the crystal diameter measurement method according to the present invention, and Fig. 2B is the output waveform from the pulse oscillator and D- A diagram showing the relationship between the waveforms from the A converter, Figure 3 is a diagram showing the relationship between weight change per hour and diameter change, Figure 4 is a diagram showing the relationship between weight change per hour and frequency,
FIG. 5 is a diagram showing changes in diameter with respect to growth time.

Claims (1)

【特許請求の範囲】[Claims] 1 多結晶原料融液中に単結晶の種結晶をひたし、該種
結晶を回転しつゝ引上げることにより単結晶を育成する
方式において結晶融液の重量変化に応じて変化する電圧
とパルスの繰返し周波数に比例して変化する基準電圧と
を比較し、該電圧と該基準電圧の差が零となつた時のパ
ルスの繰返し周波数を測定することにより前記結晶融液
直上に育成される単結晶の直径を測定することを特徴と
する結晶直径測定方法。
1. In the method of growing a single crystal by dipping a single crystal seed crystal into a polycrystalline raw material melt and pulling the seed crystal while rotating, the voltage and pulses are changed according to the change in the weight of the crystal melt. A single crystal grown directly above the crystal melt by comparing the pulse repetition frequency with a reference voltage that changes in proportion to the repetition frequency and measuring the pulse repetition frequency when the difference between the voltage and the reference voltage becomes zero. A crystal diameter measuring method characterized by measuring the diameter of a crystal.
JP50117194A 1975-09-30 1975-09-30 Crystal diameter measurement method Expired JPS5912634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50117194A JPS5912634B2 (en) 1975-09-30 1975-09-30 Crystal diameter measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50117194A JPS5912634B2 (en) 1975-09-30 1975-09-30 Crystal diameter measurement method

Publications (2)

Publication Number Publication Date
JPS5242137A JPS5242137A (en) 1977-04-01
JPS5912634B2 true JPS5912634B2 (en) 1984-03-24

Family

ID=14705718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50117194A Expired JPS5912634B2 (en) 1975-09-30 1975-09-30 Crystal diameter measurement method

Country Status (1)

Country Link
JP (1) JPS5912634B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US298004A (en) * 1884-05-06 lothrop
JPS4838301A (en) * 1971-09-15 1973-06-06

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US298004A (en) * 1884-05-06 lothrop
JPS4838301A (en) * 1971-09-15 1973-06-06

Also Published As

Publication number Publication date
JPS5242137A (en) 1977-04-01

Similar Documents

Publication Publication Date Title
US4350557A (en) Method for circumferential dimension measuring and control in crystal rod pulling
US3621213A (en) Programmed digital-computer-controlled system for automatic growth of semiconductor crystals
US4926357A (en) Apparatus for measuring diameter of crystal
US4207293A (en) Circumferential error signal apparatus for crystal rod pulling
JPS6424089A (en) Device for adjusting initial position of melt surface
CA1318224C (en) System for controlling apparatus for growing tubular crystalline bodies
JPS5912634B2 (en) Crystal diameter measurement method
AU6323990A (en) Measurement of cardiac performance
CN1056165A (en) Diameter of silicon single crystal determination method and equipment thereof
US4936947A (en) System for controlling apparatus for growing tubular crystalline bodies
RU2184803C2 (en) Technique controlling process of growth of monocrystals from melt and device for its realization
SU935856A1 (en) Device for measuring pendulum oscillation parameters
JP4138970B2 (en) Crystal manufacturing apparatus and method
James et al. Precision digital heart rate meter.
JP2975948B2 (en) Crystal growth method
JP3473313B2 (en) Crystal diameter measurement method
JPH01116595U (en)
SU591774A1 (en) Fluid flow velocity meter
JPS5659692A (en) Diameter controlling method for single crystal
JPS5935876B2 (en) Single crystal automatic diameter control method
Cowley Remarks on the Solar Abundance of Iron.
SU620839A1 (en) Method of determining high temperatures
JPH087837Y2 (en) Motor control device
JPS628567Y2 (en)
SU552750A1 (en) The method of controlling the process of growing single crystals from the melt