JPS59126096A - Rotary scroll member driving mechanism in scroll type compressor - Google Patents

Rotary scroll member driving mechanism in scroll type compressor

Info

Publication number
JPS59126096A
JPS59126096A JP23438782A JP23438782A JPS59126096A JP S59126096 A JPS59126096 A JP S59126096A JP 23438782 A JP23438782 A JP 23438782A JP 23438782 A JP23438782 A JP 23438782A JP S59126096 A JPS59126096 A JP S59126096A
Authority
JP
Japan
Prior art keywords
scroll member
rotating
center
scroll
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23438782A
Other languages
Japanese (ja)
Other versions
JPH0373759B2 (en
Inventor
Shigeru Suzuki
茂 鈴木
Katsuhiko Oshiro
大城 勝彦
Mitsukane Inagaki
稲垣 光金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Jidoshokki Seisakusho KK
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Jidoshokki Seisakusho KK, Toyoda Automatic Loom Works Ltd filed Critical Toyoda Jidoshokki Seisakusho KK
Priority to JP23438782A priority Critical patent/JPS59126096A/en
Publication of JPS59126096A publication Critical patent/JPS59126096A/en
Publication of JPH0373759B2 publication Critical patent/JPH0373759B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • F04C29/0057Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/02Rotary-piston machines or pumps of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C2/025Rotary-piston machines or pumps of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents the moving and the stationary member having co-operating elements in spiral form

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

PURPOSE:To prevent the generation of an abnormal high pressure and the damage of a scroll body due to the generation of the same by a method wherein an eccentricity of a rotary scroll member is decreased when the rotary scroll member is in a condition contacting with a fixed scroll member. CONSTITUTION:The resultant force of the Fg2 of gas in a compression chamber C, which is pushing a rotary scroll member 12, and the force Fg2 of an eccentric shaft 8, which is pushing the rotary scroll member 12, is the force Fo2. The resultant force Fo2 effects into the direction of decreasing the eccentricity (e) of the rotary scroll member 12. Accordingly, the rotary scroll member 12 is separated from a fixed scroll member 17 and liquid, enclosed in the compression chamber C, may escape to the sides of suction and delivery and prevents the generation of the abnormal high pressure, therefore, the damage of the scroll body may be prevented.

Description

【発明の詳細な説明】 本発明は固定スクロール部材のうす巻体と可動スクロー
ル部材のうず巻体とを偏心してかみ合わせ、可動スクロ
ール部材のうず巻体を公転させて両うず巻体間に形成さ
れる密閉状の圧縮室を中心方向へ移動させながら容積を
減縮して中心部から圧縮流体を吐出させるようにしたス
クロール型圧縮機におけろ可動スクロール部材の駆動機
構※こ関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is characterized in that the thin winding body of the fixed scroll member and the spiral winding body of the movable scroll member are eccentrically engaged, and the spiral winding body of the movable scroll member is caused to revolve so that a thin winding body of the movable scroll member is formed between the two spiral winding bodies. This relates to a drive mechanism* for a movable scroll member in a scroll compressor that moves a closed compression chamber toward the center while reducing its volume and discharges compressed fluid from the center.

スクロール型圧縮機においては、互Gこ噛合った二つの
うす巻体の線接触部間に密閉状の圧縮室が形成されてお
り、スクロール部材の相対的な円軌道運動(・こよって
線接触部が、うず巻体表面(こ沿って中心方向へ移動さ
れろこと(こより、圧縮室が容積を減少しながら中心方
向へ移動して流体の圧縮が行なわれるので、線接触部の
シール力が充分に確保される必要があるがしかし、この
シールシカを確保するため、接触力を大きくするとうす
巻体に摩耗が発生するので、適当なシール力を与えろよ
うを3両うず巻体の、接触力を選ぶ必要がある。ところ
が、この接触力はうず巻体の製造上の寸法誤差(こよっ
て常に一定(こ保たれるわけではないし、寸法誤差を小
さくすると、製造が困難となる。
In a scroll compressor, a sealed compression chamber is formed between the line contact portions of two mutually meshed thin windings, and the relative circular orbital movement (and thus the line contact) of the scroll members is As the compression chamber moves toward the center along the spiral surface (this causes the compression chamber to move toward the center while decreasing its volume and compress the fluid, the sealing force at the line contact area increases. However, if the contact force is increased to ensure this seal, wear will occur on the thin coil, so in order to provide an appropriate sealing force, the contact force of the three spiral coils should be increased. However, this contact force cannot always be kept constant due to dimensional errors in manufacturing the spiral wound body, and reducing the dimensional error makes manufacturing difficult.

」−記欠陥を解消するため、従来特開昭56−1297
91号公報に示されるスクロール型圧縮機が提案された
。この圧縮機は各部品の寸法公差を吸収するため、回転
軸と該回転軸に偏心して装着された可動スクロール部材
との間Qこ前記偏心量を一定の範囲内で変化させるよう
になっており、圧縮動作中は圧縮ガス圧の反力をこより
回転スクロール部月か偏心量を増大する方向Gこ移動さ
れ、うず巻体の線接触部のシールを保つよう(こなって
いた。
” - In order to eliminate the defect mentioned above,
A scroll type compressor shown in Japanese Patent No. 91 was proposed. In order to absorb the dimensional tolerances of each component, this compressor is designed to vary the amount of eccentricity between the rotating shaft and the movable scroll member eccentrically attached to the rotating shaft within a certain range. During the compression operation, due to the reaction force of the compressed gas pressure, the rotating scroll part was moved in a direction G to increase the amount of eccentricity, so as to maintain a seal at the line contact part of the spiral wound body.

ところが、」1記従来のスクロール型圧縮機は、液圧縮
を起こした場合可動及び固定のうす巻体が離れることか
できす、吸入室及び吐出室(こ連通されていない圧縮室
内では異常高圧を発生し、うず巻体等が破壊されろおそ
れがあった。
However, in the conventional scroll type compressor described in item 1, when liquid compression occurs, the movable and fixed thin windings can separate, and the suction chamber and discharge chamber (the compression chambers that are not communicated with each other can generate abnormally high pressure). There was a risk that the spiral body etc. would be destroyed.

本発明は上記従来の欠陥を解消するため(こ成されたも
のであって、その目的ば正常の圧縮動作中においては可
動及び固定のうず巻体どうしのシール性を適正(こ保持
し、液圧縮や異物の噛み込み時(こおいては可動スクロ
ール部材の偏心量を減少させて異常高圧の発生やうず巻
体の傷損を防ぐことができ、さらに各部品の寸法公差を
緩和することができるスクロール型圧縮機(こおける可
動スクロール部材の駆動機構を提供すること※こある。
The present invention has been achieved in order to eliminate the above-mentioned conventional deficiencies, and its purpose is to maintain proper sealing between the movable and fixed spiral bodies during normal compression operation, and to When compressed or foreign matter gets caught (in this case, the amount of eccentricity of the movable scroll member can be reduced to prevent abnormally high pressure from occurring and damage to the spiral body, and the dimensional tolerances of each part can be relaxed. To provide a drive mechanism for the movable scroll member in a scroll type compressor.

以下、本発明を具体化した一実施例を第1図〜第9図(
こついて説明すると、センタハウシング1の左端部Qこ
はフロントハウジング2が図示しない複数本のボルト(
こより固定され、センタハウシング1の右端部Qこはリ
ヤハウジング3が一体的に設けられている。
An embodiment embodying the present invention is shown in FIGS. 1 to 9 (
To explain further, the left end Q of the center housing 1 is connected to the front housing 2 by a plurality of bolts (not shown).
A rear housing 3 is integrally provided at the right end Q of the center housing 1.

フロントハウジング2の中央部には円筒状のボス部4が
一体(こ形成され、その中心孔4aには左右一対のラジ
アルボールベアリング5(こより回転軸6か支承され、
外端部において駆動源に接続される。又、回転軸6とボ
ス部4の間にはシャフトシール機構7が介装されており
、このシール機構7を収納するシール室Sの上部と連通
ずるよう(こ前記ボス部4の基端上部には冷媒ガスの導
入孔4bが設けられている。
A cylindrical boss portion 4 is integrally formed in the center of the front housing 2, and a pair of left and right radial ball bearings 5 (a rotating shaft 6 is supported by the central hole 4a).
Connected to a drive source at the outer end. Further, a shaft seal mechanism 7 is interposed between the rotating shaft 6 and the boss part 4, and communicates with the upper part of the seal chamber S that houses this seal mechanism 7 (this is the upper part of the proximal end of the boss part 4). is provided with a refrigerant gas introduction hole 4b.

前記回転軸6の内端部(こは偏心軸8が連結されており
、この偏心軸8上には第4図※こ示すバランサー9及び
本発明における連結部利としてのブツシュ10が相対回
転可能(こ支承されている。該バランサー9及びブツシ
ュ1oは前記偏心軸8を中心に一体的に相対回動するよ
うQこ連結ビン11により結合され、該連結ピン11の
回転軸6・側突山部を本発明仝こおける停止手段として
、該回転軸6の内端面中心部に凹設した本発明における
停止手段としての係合凹部6a+こ緩く係合して、ブツ
シュ10が偏心軸8を中心(こ微小幅(例えは1騎)内
で回動し得るようになっている。
An eccentric shaft 8 is connected to the inner end of the rotating shaft 6, and on this eccentric shaft 8, a balancer 9 shown in FIG. (This is supported. The balancer 9 and the bush 1o are connected by a Q-coupling pin 11 so as to integrally rotate relative to each other around the eccentric shaft 8. The engagement recess 6a, which serves as a stopping means in the present invention, is recessed in the center of the inner end surface of the rotating shaft 6, and the bushing 10 is loosely engaged with the engaging recess 6a, which serves as a stopping means in the present invention. (It is designed to be able to rotate within a very small width (for example, one horse).

前記ブツシュ10上には回転スクロール部材12を構成
する円形状をなす基板12aの背面中心部に一体形成し
たボス部12bがラジアルニードルベアリング13又は
プレーンベアリングを介して回転可能Gこ支承されてい
る。前記回転スクロール部拐12の基板12a前面には
、第3図(こ示すようにうず巻体12cが一体的に形成
されている。
A boss portion 12b integrally formed at the center of the back surface of a circular base plate 12a constituting the rotating scroll member 12 is rotatably supported on the bush 10 via a radial needle bearing 13 or a plain bearing. A spiral body 12c is integrally formed on the front surface of the substrate 12a of the rotating scroll part 12, as shown in FIG.

一方、センタハウジング1とフロントハウシング2の接
合部に形成された環状の係止段部(こは、回転スクロー
ル部材12の自転防止を行なう固定リング14の外周縁
がキー15により回動不能(3係合されている。この固
定リング14を境としてフロントハウシング2側には吸
入室Aが形成され、センタハウシング1側をこは作動室
Bが形成されており、吸入室Alこはフロントハウシン
グ2の外周上部(こ貫設した吸入口2a?こより外部回
路から冷媒ガスが導入される。さら(こ、固定リング1
4の外側部Qこは第2図(こ示すようQこ吸入通路14
aが複数(本実施例では4つあるが小孔を多数設けても
良い)箇所に設けられ、吸入室Aから作動室Bへ冷媒ガ
スが導入される。
On the other hand, an annular locking step formed at the joint between the center housing 1 and the front housing 2 (this means that the outer periphery of the fixing ring 14 that prevents the rotation of the rotating scroll member 12 cannot be rotated by the key 15 (3). A suction chamber A is formed on the front housing 2 side with this fixing ring 14 as a boundary, an operating chamber B is formed on the center housing 1 side, and a suction chamber Al is formed on the front housing 2 side. Refrigerant gas is introduced from the external circuit through the suction port 2a, which is provided through the upper part of the outer periphery of the fixing ring 1.
The outer part Q of 4 is shown in Figure 2 (as shown here, the suction passage 14
The refrigerant gas is introduced from the suction chamber A to the working chamber B by providing a plurality of holes (in this embodiment, there are four small holes, but many small holes may be provided).

前記回転スクロール部材12の基板12a背面には、第
1.2.5図(こ示すように中心を通る上下方向Oこ自
転防止用のガイド溝12dが刻設され、前記固定リング
14の前面Qこは、第1.2.5図に示すように左右方
向に自転防止用のガイド溝14bが刻設されている。そ
して、ガイド溝12dには第5図Qこ示すように四角環
状をなす自転防止リング16が相対的に上下方向の摺動
可能に保合されていて、ガイド溝14bにも自転防止リ
ング16が第2図Qこ示すように左右方向のスライド可
能※こ保合されて(・ろ。
On the back surface of the substrate 12a of the rotating scroll member 12, a guide groove 12d for preventing rotation in the vertical direction O passing through the center is carved, as shown in FIG. As shown in Fig. 1.2.5, a guide groove 14b for preventing rotation is carved in the left-right direction.The guide groove 12d has a square annular shape as shown in Fig. 5Q. The anti-rotation ring 16 is fitted so as to be relatively slidable in the vertical direction, and the anti-rotation ring 16 is also fitted in the guide groove 14b so as to be slidable in the left-right direction as shown in Fig. 2Q. (·reactor.

従って、前記回転軸6により偏心軸8及びブツシュ10
が一定の円軌跡を描きながら第2図において反時計回り
方向へ例えば90度回転されると、一体面に形成さ第1
た自転防止リング16が固定リング14のガイド溝14
b(こ規制されているので、自転防止リング16はガイ
ド溝14bに沿って左方へ真直ぐ(こ平行移動され、こ
のため基板12aのガイド溝12dも上下同じ方向くこ
保持され、回転スクロール部材12の自転が防止される
Therefore, the rotation shaft 6 causes the eccentric shaft 8 and the bush 10 to
is rotated, for example, 90 degrees counterclockwise in FIG. 2 while drawing a constant circular locus, the first
The anti-rotation ring 16 is connected to the guide groove 14 of the fixed ring 14.
b (Since this is restricted, the rotation prevention ring 16 is moved straight (parallel) to the left along the guide groove 14b, so that the guide groove 12d of the substrate 12a is also held in the same direction upward and downward, and the rotating scroll member 12 is prevented from rotating.

前記センタハウンング1とリヤハウシング3により形成
された係止段部(こは、固定スクロール部利17を構成
する円形状をなす厚肉の基板17aの外周縁が回動不能
Oこかつ半径方向へ移動不能(こ嵌着されている。この
基板17aの前面番こは第3図くこ示すようくこうず巻
体17bが前記回転スクロール部材のうず巻体12cと
常時2箇所以上で局部的に接触するようをニ一体的に固
着されている。
A locking step formed by the center housing 1 and the rear housing 3 (this is a locking stepped portion in which the outer peripheral edge of the thick circular base plate 17a constituting the fixed scroll portion 17 is not rotatable and in the radial direction The front surface of the board 17a is shown in FIG. The two are integrally fixed so that they are in contact with each other.

又、前記基板17aのほぼ中心部※こは該基板17aと
リヤハウジング3とQこより形成された吐出室りへ圧縮
された冷媒ガスを吐出し得る吐出通路17cが透設され
ている。この吐出通路17cは吐出室り内においてリテ
ーナ18によって位置規制される吐出弁19により閉鎖
される。前記吐出室りの底部(こは吐出口3aか透設さ
れている。
Also, a discharge passage 17c is provided through substantially the center of the substrate 17a, through which compressed refrigerant gas can be discharged into a discharge chamber formed by the substrate 17a, the rear housing 3, and the Q. This discharge passage 17c is closed by a discharge valve 19 whose position is regulated by a retainer 18 within the discharge chamber. The bottom of the discharge chamber (this is where the discharge port 3a is transparent).

従って、前記偏心軸8により回転スクロール部材12の
うす巻体12cが固定スクロール部材17のうず巻体1
7bに局部的に接f独しながら第3図時計方向へ公転(
回転スクロール部材12と固定スクロール部材17の間
の相対的角運動を阻止された状態での旋回)されると、
両うず巻体12c、17bの線接触部がうす巻体17b
の内周面上を中心へ向って移動し、このため2つの接触
部によって形成されろ密閉状の圧縮室Cが徐々に取り込
んだ冷媒ガスを圧縮しながら中心部へ移動され、吐出通
路17cから吐出室りへ吐出されて吐出口3aから外部
回路へ圧送される。
Therefore, due to the eccentric shaft 8, the thin wound body 12c of the rotating scroll member 12 is rotated by the spiral wound body 1 of the fixed scroll member 17.
It revolves clockwise in Figure 3 while locally contacting 7b (
When the rotating scroll member 12 and the fixed scroll member 17 are rotated with relative angular movement prevented,
The wire contact portion of both spiral winding bodies 12c and 17b is thin winding body 17b.
As a result, the airtight compression chamber C formed by the two contact parts gradually compresses the taken-in refrigerant gas and moves toward the center, and from the discharge passage 17c. It is discharged into the discharge chamber and is forced into the external circuit through the discharge port 3a.

次Oこ、本発明の可動スクロール部材12の駆動機構を
二ついて詳述する。
Next, two drive mechanisms for the movable scroll member 12 of the present invention will be described in detail.

前述したよう(こ、連結ビン11のフロント側端部は回
転軸6の保合四部6aに緩く係合されていて、ブツシュ
10が偏心ピン8を中心(こ微小距離振れることができ
、これにより固定スクロール部材17のうす巻体17b
に対し回転スクロール部材12のうず巻体12cが微小
幅内で接触・離間を行なうようになっている。そして、
各部材の寸法公差の吸収あるいは異物噛み込み時の逃げ
、さらに液圧縮時の異常高圧を防止し得るようをこして
いる。
As mentioned above, the front end of the connecting pin 11 is loosely engaged with the retaining portion 6a of the rotating shaft 6, and the bushing 10 can swing a small distance around the eccentric pin 8. Thin winding body 17b of fixed scroll member 17
On the other hand, the spiral body 12c of the rotating scroll member 12 makes contact and separation within a very small width. and,
This is done to absorb dimensional tolerances of each member, to prevent foreign matter from escaping when trapped, and to prevent abnormally high pressure when compressing liquid.

又、この実施例では第6図(こ示すよう(こ回転軸6の
中心Os  (係合凹部6aの中心もO8である)と、
連結ビン11の中心とをほぼ一致させており、ブツシュ
10の中心と該ブツシュ104こ装着された回転スクロ
ール部材12の中心Oc  とを一致させている。そし
て、前記中心Os と偏心軸8の中心Op との距離0
sOI)は、中心OsとOcとの距離Os Oc  よ
りも大きく設定され、前記距離dsopは中心Ocと中
心opの距離Oc Opよりも太き(設定されている。
In addition, in this embodiment, as shown in FIG.
The center of the connecting bin 11 is made substantially coincident with the center of the bushing 10 and the center Oc of the rotating scroll member 12 attached to the bushing 104 is made coincident with each other. The distance between the center Os and the center Op of the eccentric shaft 8 is 0.
sOI) is set larger than the distance OsOc between the centers Os and Oc, and the distance dsop is set thicker than the distance OcOp between the centers Oc and the center Op.

ところで、本発明は回転スクロール部利12の偏心量を
微小幅変更し得るよう(こ該ヌクロール部材12の駆動
機(1け構成し、回転スクロール部材12か固定スクロ
ール部利17(こ接触した状態で、直線0sOcと直線
ocopとにより形成される鋭角側の角度θ0を、圧縮
比εが8≦ε≦17の条件のもとて後に詳述する次の式 により設定することを要旨とするものである。
By the way, the present invention is designed so that the amount of eccentricity of the rotary scroll member 12 can be changed by a minute width (the drive unit for the scroll member 12 is composed of one piece, and either the rotary scroll member 12 or the fixed scroll member 17 (in a state in which they are in contact with each other) The gist is to set the angle θ0 on the acute side formed by the straight line 0sOc and the straight line ocop using the following formula, which will be detailed later, under the condition that the compression ratio ε is 8≦ε≦17. It is.

そこで、上記式を解析する(こ至った経過を説明する。Therefore, the above equation will be analyzed (the process that led to this will be explained).

まず、回転ヌクロール部利12(二作用する力を二つい
て考えろと、圧縮動作が行なわれてし・ろとき、回転ヌ
クロール部材12が受けるガス圧縮反力Fは第6図(こ
示すよう※こ、次の2つ(こ分けられる。
First, considering the two forces that act on the rotating nuclear member 12, when a compression operation is performed, the gas compression reaction force F that the rotating nuclear member 12 receives is as shown in Figure 6. , the following two (divided into:

Ft;接線方向の力 Fr ;半径方向の力 前記接線方向の力Ftは理論ガス圧縮動力N(kq・C
m/5ec)に使われる力になり、ここで、V ;吸入
量(cnr” / rev )n ;回転数(r−p−
m) Ps;吸入圧力(kg / oR) (絶対圧)Pd;
吐出圧力(kg / oft ) (絶対圧)K ;断
熱指数 とすると、前記圧縮動力Nは次式で表わされる。
Ft; tangential force Fr; radial force The tangential force Ft is the theoretical gas compression power N (kq・C
m/5ec), where: V ; Suction volume (cnr"/rev) n ; Rotational speed (r-p-
m) Ps; suction pressure (kg/oR) (absolute pressure) Pd;
Discharge pressure (kg/oft) (absolute pressure) K: When K is an adiabatic index, the compression power N is expressed by the following equation.

又、回転軸6の中心Osから回転スクロール部材12の
中心OCまでの距離を偏心量e (cyn )とすると
、 であり、前記(t) 、 (2)式より接線方向の力F
tはとなる。
Further, if the distance from the center Os of the rotating shaft 6 to the center OC of the rotating scroll member 12 is the eccentricity e (cyn), then from the above equations (t) and (2), the tangential force F is
t becomes.

一方、スクロール型圧縮機の場合 A;うず巻体の基礎円半径 β;うず巻体の内壁線遅れ角 α;うず巻体の巻角 H;うず巻体の高さ とすると、最初に二つのうず巻体12c、17bによっ
て形成される二つの圧縮室Cを合わせた最大容積V及び
偏心量eはそれぞれ一般に次のように表わされる。
On the other hand, in the case of a scroll compressor, A; base circle radius β of the spiral; inner wall line delay angle α of the spiral; winding angle H of the spiral; height of the spiral. The maximum volume V and eccentricity e of the two compression chambers C formed by the windings 12c and 17b are generally expressed as follows.

V = 2 rr A  (yr−β)(2α−3yr
−β)H−−−(4)e=A(π−β)       
     ・・・(5)前記(3)〜(5)式からFt
は次のようになる。
V = 2 rr A (yr-β) (2α-3yr
-β)H---(4)e=A(π-β)
...(5) From the above formulas (3) to (5), Ft
becomes as follows.

・・・・(6) 一方、前述した半径方向の力Frは、二つの圧縮室Cの
線接触部のずれの分に外、内の圧力差が加わったもので
あるから次式で表わされる。
...(6) On the other hand, the above-mentioned radial force Fr is expressed by the following equation since it is the difference between the pressure difference between the outside and inside of the two compression chambers C and the deviation of the line contact portion of the two compression chambers C. .

Fr−2AH(Pd−Ps)      ・・・・(7
)これをこより、直線0sOcに対するガス圧縮反力F
の鋭角側の角度θは、次のようをこして求められる。
Fr-2AH(Pd-Ps)...(7
) From this, the gas compression reaction force F against the straight line 0sOc
The angle θ on the acute side of is calculated as follows.

] ・・・  (8) ここで、Pd/Psを圧縮比ε、 と置換すると、角度θは次式のようになる。] ... (8) Here, Pd/Ps is the compression ratio ε, When replaced with , the angle θ becomes as shown in the following equation.

上記(9)式から明がなようにε〉1、c′〈1におい
て、εが増加するとθは減少する。つまり、圧縮比εが
大きくなると、回転スクロール部材12に作用する力F
が下向きになってくる。−例を挙げろと、下表のようを
こなる。
As is clear from the above equation (9), when ε>1 and c'<1, as ε increases, θ decreases. In other words, when the compression ratio ε increases, the force F acting on the rotating scroll member 12
becomes downward. -If I were to give an example, I would do something like the table below.

表 このようQこして回転スクロール部材12に作用する力
Fの方向は、圧縮比εに左右されることが解明されたが
、本発明はこの理論をたくみ(こ応用したものである。
It has been clarified that the direction of the force F acting on the rotating scroll member 12 through the above Q is influenced by the compression ratio ε, and the present invention is an application of this theory.

つまり、回転スクロール部材12Gこ作用する力Fの方
向は圧縮比εが大きくなると角度θの減少をこともなっ
て第6図の下方(こ変向するので、直線0sOcと0c
Opの角度θ0よりも角度θが小さくなり、この結果前
記力Fと偏心軸8が回転スクロール部材12を押す力F
′との合成力が下向き(こ作用してブツシュ10が偏心
軸8を中心に第6図反時計回り方向すなわち偏心量eが
減る方向に回動され、固定スクロール部材17から回転
スクロール部材12が半径方向へ難曲される。本発明は
この点をこ着目し圧縮比εを8≦ε≦17の範囲内で選
定し、このときの(9)式から計算された角度θを前記
角度θ0(こ設定したことを要旨とするものである。
In other words, as the compression ratio ε increases, the direction of the force F acting on the rotating scroll member 12G decreases in angle θ, and the direction changes downward in FIG.
The angle θ becomes smaller than the angle θ0 of Op, and as a result, the force F and the force F that causes the eccentric shaft 8 to push the rotating scroll member 12
'The combined force is directed downward (as a result of this action, the bush 10 is rotated counterclockwise in FIG. The present invention focuses on this point and selects the compression ratio ε within the range of 8≦ε≦17, and the angle θ calculated from equation (9) at this time is the angle θ0 ( The gist of this is that these settings have been made.

そこで、前記のように構成した回転スクロール部材12
の駆動機構の作用(こついて第7図〜第9図を中心に説
明する。
Therefore, the rotating scroll member 12 configured as described above is
The operation of the drive mechanism will be explained with reference to FIGS. 7 to 9.

通常の運転時Qこおいては、第7図※こ示すよう(・二
圧縮室C内のガスが回転スクロール部材12を押す力F
glと、偏心軸8が回転スクロール部材12を押す力F
p1との合成力はFolであり、又角度θ0と直線0s
Ocと力pglの角度θ1とがθ1〉00 の関係(こ
あろから、前記合成力Folは回転スクロール熱料12
の偏心量eを増す方向(こ作用する。従って、回転スク
ロール部材12は固定ヌクロール部)l:A’ 174
こ対し半径方向に押しつけられた状態で公転し圧縮作用
を行なう。
During normal operation Q, the force F of the gas in the second compression chamber C pushing the rotating scroll member 12 is as shown in Figure 7*.
gl and the force F by which the eccentric shaft 8 pushes the rotating scroll member 12
The resultant force with p1 is Fol, and the angle θ0 and straight line 0s
The relationship between Oc and the angle θ1 of the force pgl is θ1>00 (from the core, the resultant force Fol is the rotational scroll heating material 12
(Accordingly, the rotating scroll member 12 is a fixed scroll portion) l:A' 174
It revolves while being pressed in the radial direction and exerts a compressive action.

液圧縮が生じた場合には、圧縮比εは非常(こ高くなり
、第8図(こ示すように圧縮室C内のガスが回転スクロ
ール部材12を押す力Fg2  と偏心軸8が回転スク
ロール部材12を押す力Fp2  との合成力はFo2
であり、又前記角度θ0とθSOCと力Fg2の角度θ
2とがθ2〈θOの関係(こあるから、前記合成力Fo
2は回転スクロール部拐12の偏心量eを減らす方向(
こ作用する。従って、回転スクロール部材12は固定ス
クロール部材17から割れ、圧縮室C内に閉じ込められ
た液が吸入側、吐出側へ逃げることができ異常高圧の発
生を防ぐことができる。
When liquid compression occurs, the compression ratio ε becomes extremely high, and as shown in FIG. The combined force with the force Fp2 pushing 12 is Fo2
, and the angle θ between the angles θ0 and θSOC and the force Fg2 is
2 is the relationship θ2<θO (because of this, the resultant force Fo
2 is a direction (
This works. Therefore, the rotating scroll member 12 is broken from the fixed scroll member 17, and the liquid trapped in the compression chamber C can escape to the suction side and the discharge side, thereby preventing the occurrence of abnormally high pressure.

ところで、前述した角度θOが大き過ぎろと、通常運転
時(圧縮比εが3〜8)(こおいて、jEFglの角度
θ1が角度θ0よりも小さくなって回転スクロール部材
12が固定スクロール部材177!J)ら離れてしまう
おそれかある。反対Qこ角度θ0力・小さ過ぎると、圧
縮室C内の圧力かかなり高くならないと力Fg2の角度
θ21か角度θ0よりも小さくならないので、回転スク
ロール部材12が固定スクロール部拐17から離れず、
各部に過大な応力か働くことになろ。このことを考慮し
て本実施例ては角度θ0 を第9図の斜線を施しjこ範
囲【こ設定しており、このときの圧縮比εは 10≦ε≦15 の関係にあるが、8≦ε≦17の条件で角度θOの範囲
を設定してもよい。回転スクロール(こ働く摩擦力は接
線方向の力Ftを大きくする方向に作用する(同じεで
もθは大きめ(こなる)ため、摩擦係数の大きな材料を
使う場合はεを若干小さめ(こずらせる必要があるが、
多くの場合+W擦力は接線方向の力Ft+こ比較して非
常に小さいため無視してもよい。
By the way, if the above-mentioned angle θO is too large, during normal operation (compression ratio ε is 3 to 8), the angle θ1 of jEFgl becomes smaller than the angle θ0, and the rotating scroll member 12 becomes fixed scroll member 177. !J) There is a risk that they will become separated from each other. If the opposite Q angle θ0 force is too small, the angle θ21 of the force Fg2 will not become smaller than the angle θ0 unless the pressure in the compression chamber C becomes considerably high, so the rotating scroll member 12 will not separate from the fixed scroll member 17.
Excessive stress will be exerted on each part. Taking this into consideration, in this embodiment, the angle θ0 is set within the range indicated by diagonal lines in FIG. The range of the angle θO may be set under the condition of ≦ε≦17. Rotating scroll (The frictional force that acts on this acts in the direction of increasing the tangential force Ft. Even with the same ε, θ is larger, so when using a material with a large friction coefficient, ε should be slightly smaller (difficult). Although it is necessary,
In many cases, the +W frictional force is very small compared to the tangential force Ft+, so it can be ignored.

なお、本発面ば前記実施例に限定されるものではなく、
次のように具体化することもできる。
Note that the present invention is not limited to the above embodiments,
It can also be specified as follows.

(1)第10図及び第11図に示すようをこ回転スクロ
ール部材12のj駆動機構をリンク機構をこしてもよい
。すなわち、回転軸6(こレバー20を一体的に固着し
、該レバー20の先端には偏心軸21を一体面ζこ固着
し、該偏心軸21には連結リンク22を相対回転可能O
こ連結し、該連結リンク22の先端には回転スクロール
部1’12の基板12a中心部に突設したボス部(図示
略)を411対回転iiJ能に装着している。又、回転
スクロール熱料12の振れ幅は、レバー2旧こ止着した
ヌトツバ23とうず巻体12c、17bの接触と(こよ
って規制されろよう(二している。この別例の作用及び
効果は前述した実施例と同様である。
(1) As shown in FIGS. 10 and 11, the drive mechanism of the rotating scroll member 12 may be replaced by a link mechanism. That is, the rotating shaft 6 (this lever 20 is fixed integrally), the eccentric shaft 21 is fixed to the tip of the lever 20 as an integral surface, and the connecting link 22 is relatively rotatable to the eccentric shaft 21.
A boss portion (not shown) protruding from the center of the substrate 12a of the rotating scroll portion 1'12 is attached to the tip of the connecting link 22 so as to rotate 411 times. Also, the swing width of the rotating scroll heating material 12 is regulated by the contact between the collar 23 fixed to the lever 2 and the spiral bodies 12c and 17b. The effect is similar to that of the embodiment described above.

(2)第12図及び第13図Gこ示すよう(こ、偏心軸
8がブツシュ10を押していくように偏心軸8、ブツシ
ュ10及び連結ピン11を配置すること。
(2) Arrange the eccentric shaft 8, the bushing 10, and the connecting pin 11 so that the eccentric shaft 8 pushes the bushing 10 as shown in FIGS. 12 and 13G.

この別例の作用及び効果も前述した実施例と同様である
。この場合は、直線0sOT)が直線OsO,c、直線
0cOpより長いとは限らない。
The operation and effect of this other example are also similar to those of the above-mentioned embodiment. In this case, the straight line 0sOT) is not necessarily longer than the straight line OsO,c and the straight line 0cOp.

(3)  前記バランサー9、ブツシュ10及び連結ビ
ン11を一体Q二形成すること。
(3) The balancer 9, the bush 10 and the connecting bottle 11 are integrally formed.

以上詳述したよう(こ、本発明は回転スクロール熱料を
固定スクロール顔料に対し微動可能Gこ装着し、回転ス
クロール部材が固定スクロール顔料(こ接触した状態ζ
:あるとき、直線0sOcと直線0cOpと(こより形
成されろ鋭角側の角度θOをε0′−1 θ〇二!an(C・□) ε −1 8≦ε≦17 上記1式Gこより設定するよう(こしたので、液圧縮時
あるいは異物の噛み込み時Qこおいて回転スクロール部
材の偏心量が減り、異常高圧の発生やそれによるうず巻
体の破損を防止することができるとともに、各部品の寸
法公差を緩くすることができる効果がある。
As described in detail above, the present invention is characterized in that the rotating scroll heating material is attached to the fixed scroll pigment so that it can move slightly, and the rotating scroll member is in contact with the fixed scroll pigment (ζ
: At some point, the angle θO on the acute side formed by the straight line 0sOc and the straight line 0cOp is set from ε0'-1 θ〇2!an(C・□) ε-1 8≦ε≦17 from the above equation 1 G As a result, the amount of eccentricity of the rotating scroll member is reduced when liquid is compressed or foreign matter gets caught, and it is possible to prevent the generation of abnormally high pressure and damage to the spiral wound body due to it, and also to prevent each part from being damaged. This has the effect of loosening the dimensional tolerances.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を具体化した一実施例を示す中央部縦断
面図、第2図は第1図のX−X線断面図、第3図は第1
図のY−X線断面図、第4図は本発明の要部である回転
スクロール部41の駆動機構を示す拡大分j眸斜視図、
第5図は回転スクロール部材の自転防止機構を示す分解
斜視図、第6図は回転スクロール部材の1駆動機構をリ
ヤ側から見た正面図、第7図は通常運転時(こおける駆
動機t1なの力の作用関係を示す正面図、第8図は液圧
縮時Qこおける駆動機[1なの力の作用関係を示″4〜
正面図、第9図は回転スクロール部材(こ作用する力の
方向を示すグラフ、第10図は本発明の、駆動機構の別
個を示す分解斜視図、第11図は同しく該別個の組伺状
態の正面図、第12図は本発明の11児動機構の別個を
示す通常運転時の正面図、第13図は同じく液圧縮時の
正面図である。 ハウシング1〜3、回転軸6、偏心軸8,21、ブツシ
ュ10、連結ビン11、回転スクロール部材12、固定
リンダ14、自転防止リング16、固定スクロール部材
17、レバー20、連結リンク22、ストッパ23゜ 特許出願人   株式会社吸田自動織機製作所代 理 
人  弁理士 恩 1)博 宣第3じI
FIG. 1 is a longitudinal cross-sectional view of the central part showing an embodiment embodying the present invention, FIG. 2 is a cross-sectional view taken along the line X--X of FIG. 1, and FIG.
4 is an enlarged perspective view showing the drive mechanism of the rotating scroll section 41, which is the main part of the present invention,
Fig. 5 is an exploded perspective view showing the rotation prevention mechanism of the rotating scroll member, Fig. 6 is a front view of one drive mechanism of the rotating scroll member seen from the rear side, and Fig. 7 is a diagram showing the drive mechanism t1 during normal operation. Figure 8 is a front view showing the working relationship of the forces in the drive machine [1] during liquid compression.
9 is a graph showing the direction of the force acting on the rotating scroll member, FIG. 10 is an exploded perspective view showing the drive mechanism of the present invention separately, and FIG. 11 is a diagram showing the separate assembly. Fig. 12 is a front view of the 11 baby movement mechanisms of the present invention during normal operation, and Fig. 13 is a front view of the same during liquid compression.Housings 1 to 3, rotating shaft 6, Eccentric shafts 8, 21, bushing 10, connecting bin 11, rotating scroll member 12, fixed cylinder 14, anti-rotation ring 16, fixed scroll member 17, lever 20, connecting link 22, stopper 23゜Patent applicant: Sutta Jido Co., Ltd. Loom factory representative
Person Patent Attorney On 1) Hiroshi Hiroshi 3rd I

Claims (1)

【特許請求の範囲】 1 ハウジングのフロント側端面はぼ中心部※こ回転軸
を積極回転可能に貫通支承し、この回転軸の内端番こ固
着された偏心軸をこ対し回転スクロール部材を相対回転
可能に装着し、前記ハウジングの内側面には前記可動ス
クロール部材の自転防止機構を設け、さらQこハウジン
グのリヤ側には固定スクロール部材を配設してそのうす
巻体と回転スクロール部材のうず巻体を少な(とも21
1111所以上で部分接触した状態で重ね合せ、前記回
転スクロール部材を一定の円軌跡上を公転させて両うず
巻体間(こ形成された密閉状の圧縮室を中心Oこ向って
移動させながら容積の減縮を生じさせて一方向性連続圧
縮作用を行なわせ、固定スクロール部材の基板(こ貫設
した吐V」通路から外部へ吐出するようにし1こスクロ
ール型圧縮機において、前記偏心軸※こ対し連結部材を
相対回転可能(こ支承し、該連8iIi iηl! A
sには回転スクロール部材を前記偏・1・刺1カ・ら偏
・し・した位置で相対回転可能に支承するとともGこ、
回1伝スクロール部材が固定スクロール部材(こ接Mし
tこ状態(こあるとき、回転軸の中心をOs、偏・L−
1i+l+の中心をOp1回転ヌクロール部材の中ノ0
をOCとしたとき、直線Os Oc  と直線0cOp
と(こより形成される鋭角側の角度θ0を、 8≦ε≦17   ・・・・(1) −1 C′− に ε;圧縮比、 α;うず巻体の巻角、 β;うず巻体の内壁線遅れ角、 K;断熱指数上記(1
) 、 (It)式※こより設定したことを特徴とする
ヌクロール型圧縮機Oこおける回転ヌクロール部材のj
l(動機構。 2 ハウジングのフロント側端面ばil中)し・部番こ
回転軸を積極回転可能をこ貫通支承し、この回転軸の内
端に固着された偏心、軸(こ対し回転スクロール部材を
相対回転可能※こ装着し、前記ハウジングの内側面(こ
は前記可動スクロール部材の自転防IL機構を設け、さ
ら(こハウジングのリヤ側(こは固定ヌクロール部材を
配設してそのうず巻体と回転スクロール部材のうず巻体
を少な(とも2個所以上で部分接触した状態で重ね合せ
、前記回転ヌクロール部利を一定の円軌跡上を公転させ
て両うす巻体間(こ形成された密閉状の圧縮室を中心を
こ向って移動させながら容積の減縮を生じさせて一方向
性連続圧縮作用を行なわせ、固定スクロール部材の基板
(こ貫設した吐出通路から外部へ吐出するようGこした
スクロール型圧縮機(こお(・て、前記偏心軸に対し連
結部拐を相対回転可能に支承し、該連結部材には回転ス
クロール部材を前記偏心軸から偏心した位置で相対回転
可能Qこ支承するととも(こ、前記回転軸側と連結部材
とをニ対し固定スクロール部利から回転スクロール部材
を半径方向に若干離間した位置で保持するための停止手
段を設け、さら(こ、回転スクロール部材が固定スクロ
ール部材(こ接触した状態裔こあるとき、回転軸の中心
をOs、偏心軸の中心をop、回転ヌクロール部材の中
心をOCとしたとき、直線0sOcと直線0cOI)と
ζこより形成される鋭角側の角度θOを、 8≦ε≦17   ・・・・(11) ε;圧縮比、 α;うず巻体の巻角、 β;うず巻体の内壁線遅れ角、 K;断熱指数上記(1
) 、 (1)弐〇こより設定したことを特徴とするス
クロール型圧縮機における回転スクロール部材の駆動機
構。 3 前記偏心軸には連結部材としてのブツシュが相対回
転可能Gこかつ該偏心軸から偏心した位置に支承され、
該ブツシュ(こは回転スクロール部材のボス部が相対回
転可能に支承され、さら昏こ前記回転軸の内端面をこは
前記停止手段を構成する係合凹部が形成され、前記ブツ
シュには同じく前記係合四部に緩く挿入されかつ前記停
止手段を構成する連結ビンが貫挿されている特許請求の
範囲第2項記載のヌクロール型圧縮機(こおけろ回転ス
クロール部材の1駆動機構。 4 前記偏心軸(こは連結部材としての連結リンクの一
端が相対回転可能(・こ支承され、該連結リンクの他端
には回転スクロール部材のボス部が相対回転可能(こ支
承され、さらをこ前記回転軸側※こは前記連結リンクの
回動を規制する前記停止手段としてのヌトソパが止着さ
れている特許請求の範囲第2項記載のスクロール型圧縮
l&(こおける回転スクロール部材の駆動機構。 5 前記(It)式は10≦ε≦15てあって、これ(
こより(1)式の角度θ0が設定されろ特許請求の範囲
第2項記載のスクロール型圧縮機番こおける回転ヌクロ
ール部材の、駆動機構。
[Scope of Claims] 1. The front end surface of the housing passes through and supports a rotating shaft in a positive rotatable manner at the center of the housing. A mechanism for preventing rotation of the movable scroll member is provided on the inner surface of the housing, and a fixed scroll member is provided on the rear side of the housing to prevent the rotation of the movable scroll member. The spiral body is small (Tomo 21
The rotary scroll member is overlapped in a state of partial contact at 1111 points or more, and the rotating scroll member is revolved on a constant circular trajectory between both spiral bodies (while moving the airtight compression chamber formed by this toward the center O). In a scroll type compressor, the eccentric shaft* The connecting member can be rotated relative to the other.
s supports a rotating scroll member so as to be relatively rotatable at the offset position;
When the rotating scroll member is in contact with the fixed scroll member (in this state, the center of the rotating shaft is Os, offset/L-
Rotate the center of 1i+l+ by Op1
When is OC, the straight line Os Oc and the straight line 0cOp
(The angle θ0 on the acute side formed by this is 8≦ε≦17...(1) -1 C'- where ε is the compression ratio, α is the winding angle of the spiral body, and β is the spiral wound body. inner wall line delay angle, K; insulation index above (1
), (It) formula *J of the rotating Nuclor member in the Nuclor type compressor O
l (Moving mechanism. 2) While the front end surface of the housing is closed, the rotary shaft is positively rotatably supported through the rotary shaft, and an eccentric shaft fixed to the inner end of the rotary shaft (opposed to the rotary scroll) The members are mounted so that they can be rotated relative to each other, and the inside surface of the housing (this is where an anti-rotation IL mechanism is provided for the movable scroll member), and the rear side of the housing (this is where a fixed scroll member is installed and the rotation prevention IL mechanism is installed). The winding body and the spiral winding body of the rotating scroll member are overlapped with each other in a state where they are in partial contact at two or more places, and the rotating spiral part is made to revolve on a constant circular locus to form a space between the two spiral winding bodies. The airtight compression chamber is moved around its center to cause a volume reduction and contraction to perform a unidirectional continuous compression action, and the base plate of the fixed scroll member is discharged to the outside from the discharge passage provided through it. A scroll-type compressor (a rotary scroll compressor) in which a connecting member is rotatably supported relative to the eccentric shaft; In addition to supporting the rotating scroll member, a stopping means is provided to hold the rotating scroll member at a position slightly spaced apart from the fixed scroll member in the radial direction between the rotating shaft side and the connecting member. The scroll member is connected to the fixed scroll member (when the scroll member is in contact with the fixed scroll member, the center of the rotating shaft is Os, the center of the eccentric shaft is OP, and the center of the rotating nuclear member is OC, the straight line 0sOc and the straight line 0cOI) and ζ. The formed acute angle θO is 8≦ε≦17 (11) ε: Compression ratio, α: Winding angle of the spiral body, β: Inner wall line delay angle of the spiral body, K: Heat insulation Index above (1
), (1) A drive mechanism for a rotating scroll member in a scroll compressor, characterized in that it is set as follows. 3. A bushing as a connecting member is supported on the eccentric shaft so as to be relatively rotatable and at a position eccentric from the eccentric shaft,
The bush (herein, the boss portion of the rotating scroll member is supported so as to be relatively rotatable, and the inner end surface of the rotary shaft is further formed with an engaging recessed portion constituting the above-mentioned stopping means, and the above-mentioned bush also has the above-mentioned 4. A nuclear compressor according to claim 2, wherein the connecting bin constituting the stopping means is loosely inserted into the four engaging parts and penetrated therethrough. One end of the connecting link as a connecting member is supported for relative rotation, and the boss portion of the rotating scroll member is supported for relative rotation at the other end of the connecting link. 5. A drive mechanism for a rotating scroll member according to claim 2, in which a shaft side* is fixedly attached with a locking pad as the stopping means for regulating the rotation of the connecting link. The above formula (It) has 10≦ε≦15, and this (
A drive mechanism for a rotating scroll member in a scroll type compressor according to claim 2, wherein the angle θ0 of equation (1) is set from this.
JP23438782A 1982-12-29 1982-12-29 Rotary scroll member driving mechanism in scroll type compressor Granted JPS59126096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23438782A JPS59126096A (en) 1982-12-29 1982-12-29 Rotary scroll member driving mechanism in scroll type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23438782A JPS59126096A (en) 1982-12-29 1982-12-29 Rotary scroll member driving mechanism in scroll type compressor

Publications (2)

Publication Number Publication Date
JPS59126096A true JPS59126096A (en) 1984-07-20
JPH0373759B2 JPH0373759B2 (en) 1991-11-22

Family

ID=16970197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23438782A Granted JPS59126096A (en) 1982-12-29 1982-12-29 Rotary scroll member driving mechanism in scroll type compressor

Country Status (1)

Country Link
JP (1) JPS59126096A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175794A (en) * 1984-02-21 1985-09-09 Mitsubishi Heavy Ind Ltd Scroll type fluid machine
JPH05209534A (en) * 1991-07-29 1993-08-20 Mitsubishi Electric Corp Internal combustion engine
US5366360A (en) * 1993-11-12 1994-11-22 General Motors Corporation Axial positioning limit pin for scroll compressor
KR100379055B1 (en) * 1999-06-29 2003-04-08 산덴 가부시키가이샤 Scroll-type compressor
WO2018019372A1 (en) * 2016-07-27 2018-02-01 Bitzer Kühlmaschinenbau Gmbh Compressor
JP2020165394A (en) * 2019-03-29 2020-10-08 株式会社豊田自動織機 Scroll type electric compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129791A (en) * 1980-03-18 1981-10-12 Sanden Corp Scroll-type compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129791A (en) * 1980-03-18 1981-10-12 Sanden Corp Scroll-type compressor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175794A (en) * 1984-02-21 1985-09-09 Mitsubishi Heavy Ind Ltd Scroll type fluid machine
JPH0419394B2 (en) * 1984-02-21 1992-03-30 Mitsubishi Heavy Ind Ltd
JPH05209534A (en) * 1991-07-29 1993-08-20 Mitsubishi Electric Corp Internal combustion engine
US5366360A (en) * 1993-11-12 1994-11-22 General Motors Corporation Axial positioning limit pin for scroll compressor
KR100379055B1 (en) * 1999-06-29 2003-04-08 산덴 가부시키가이샤 Scroll-type compressor
WO2018019372A1 (en) * 2016-07-27 2018-02-01 Bitzer Kühlmaschinenbau Gmbh Compressor
CN109312745A (en) * 2016-07-27 2019-02-05 比泽尔制冷设备有限公司 Compressor
US11326593B2 (en) 2016-07-27 2022-05-10 Bitzer Kuehlmaschinenbau Gmbh Scroll compressor orbital path balancing mass
JP2020165394A (en) * 2019-03-29 2020-10-08 株式会社豊田自動織機 Scroll type electric compressor

Also Published As

Publication number Publication date
JPH0373759B2 (en) 1991-11-22

Similar Documents

Publication Publication Date Title
US5108274A (en) Scroll-type fluid machine with counter-weight
CA1321569C (en) Scroll compressor with spring biassed counterweight
EP0489479B1 (en) Scroll type fluid machinery
US4824346A (en) Scroll type fluid displacement apparatus with balanced drive means
US6030192A (en) Scroll compressor having bearing structure in the orbiting scroll to eliminate tipping forces
US5582513A (en) Scroll type fluid machine having a biased drive bush
JP2001509229A (en) Scroll fluid displacement device with improved sealing means
KR0142507B1 (en) Scroll type fluid machine
US4808094A (en) Drive system for the orbiting scroll of a scroll type fluid compressor
US20230323880A1 (en) Balancing mechanism for scroll compressors
US4585402A (en) Scroll-type fluid machine with eccentric ring drive mechanism
KR0153006B1 (en) Scroll type fluid displacement apparatus
EP0012614A1 (en) Improvements in scroll type fluid compressor units
JPH0135196B2 (en)
JPS59126096A (en) Rotary scroll member driving mechanism in scroll type compressor
EP0510782B1 (en) Scroll type compressor
JPH02168016A (en) Bearing device and scroll compressor
JP2599327B2 (en) Eccentric bush structure of scroll compressor
US4413959A (en) Scroll machine with flex member pivoted swing link
JPS60166781A (en) Scroll type compressor
JP2865376B2 (en) Scroll compressor
JPH022477B2 (en)
JPH04101001A (en) Scroll type fluid machine
JPS6014917B2 (en) positive displacement fluid compression device
JPS59110885A (en) Scroll compressor