JPS59125057A - Quadruple pole type mass spectrographic device - Google Patents

Quadruple pole type mass spectrographic device

Info

Publication number
JPS59125057A
JPS59125057A JP57230806A JP23080682A JPS59125057A JP S59125057 A JPS59125057 A JP S59125057A JP 57230806 A JP57230806 A JP 57230806A JP 23080682 A JP23080682 A JP 23080682A JP S59125057 A JPS59125057 A JP S59125057A
Authority
JP
Japan
Prior art keywords
sample
voltage
ion
voltages
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57230806A
Other languages
Japanese (ja)
Inventor
Atsushi Hosoi
淳 細井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP57230806A priority Critical patent/JPS59125057A/en
Publication of JPS59125057A publication Critical patent/JPS59125057A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/022Circuit arrangements, e.g. for generating deviation currents or voltages ; Components associated with high voltage supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/421Mass filters, i.e. deviating unwanted ions without trapping
    • H01J49/4215Quadrupole mass filters

Abstract

PURPOSE:To enable precision determination of the mass number of a sample to be measured by providing means for setting two kinds of DC voltages to be impressed on a quadruple pole voltage part and means for measuring the value of the ratio between two kinds of said DC voltages. CONSTITUTION:The output voltages from the 1st and 2nd potentiometers 24a, 24b are respectively preliminarily set at approximately the voltage values corresponding to the ion peak positions of both samples Mu and Mr. The sample Mu is introduced from a gas chromatograph 1 through a molecule separator 2 into an ionizing chamber 5 and the standard sample Mr is introduced from a standard sample introducing part 4 into the chamber 5, respectively, by which the samples are ionized. The two ionized samples Mr, Mu are introduced into a quadruple pole electrode part 6. The output voltages set substantially with the 1st and 2nd potentiometers are superposed thereon with the sweep voltage and are impressed on the part 6. The ion of the sample Mr and the sample Mu past the part 6 are detected with a detector 7 and are converted to ion signals which are amplified with an amplifier 8. The ratio of the output voltages of the potentiometers 24a, 24b is measured in an arithmetic part 15 for the voltage ratio.

Description

【発明の詳細な説明】 本発明は四重極形の質量分析装置に関する。[Detailed description of the invention] The present invention relates to a quadrupole mass spectrometer.

一般に、ガスクロマトグラフGCと質量分析装置MSと
を組合せたガスクロマトグラフ、質量分析装N、  /
MSは多成分混合物を成分ごとに分離して、各成分ごと
に同定することができるために広く採用されている。
In general, a gas chromatograph, a mass spectrometer N, which combines a gas chromatograph GC and a mass spectrometer MS, /
MS is widely employed because it can separate a multicomponent mixture into components and identify each component.

ところで、この様な  /M Sに適用される質量分析
装置としては、磁場形のものと四重極形のものとがある
が、特に四重極形のものは、重いマグネットを使用せず
構造簡単で小型軽量であること、高速走査性に優れてい
ることなどの点が磁場形のものと異なる利点を有する。
By the way, there are two types of mass spectrometers that can be applied to such /MS, one is a magnetic field type and the other is a quadrupole type.In particular, the quadrupole type does not use a heavy magnet and has a simple structure. It has advantages over the magnetic field type in that it is simple, small and lightweight, and has excellent high-speed scanning properties.

しかしながら、従来の四重離形質量分析装置においては
、四重極電極の加工と組立の精度が分解能に対する制限
因子となっている。すなわち、四重極電極の構造面がち
高分解能・高感度を実現するには、四重極電極の形状を
双曲線断面に一形成するほか、各電極の真直性や、配置
位置の関係を高精度に保つ必要がある。
However, in conventional quadrupole mass spectrometers, the precision of machining and assembly of the quadrupole electrodes is a limiting factor for resolution. In other words, in order to achieve high resolution and high sensitivity, the shape of the quadrupole electrode must be formed into a hyperbolic cross section, and the straightness of each electrode and the relationship between the placement positions must be adjusted with high precision. need to be kept.

これは現在の技術段階では非常にむづかしく、父、加工
も煩雑となるという問題がある。従って、今のところ磁
場形のものが質量分解能が数万程度が得られるのに対し
て四重極形のものでは数千程度となっている。このため
、四重離形質量分析装置はもっばら整数質量数の分離測
定を対象として用いられている。
This is extremely difficult at the current state of technology, and the processing is also complicated. Therefore, at present, the mass resolution of the magnetic field type is on the order of tens of thousands, while the mass resolution of the quadrupole type is on the order of several thousand. For this reason, quadruple separation mass spectrometers are mainly used for separation measurements of integer mass numbers.

本発明は上記の問題点に鑑みてなされたものであって、
四重極電極に印加する2種の直流電圧を設定する手段と
、この印加される2種の直流電圧の比を測定する手段と
を設け、これによって、梢密質量数の測定が可能な四重
離形質量分析装置を提供することを目的とする。
The present invention has been made in view of the above problems, and includes:
A quadrupole system is provided with means for setting two types of DC voltages to be applied to the quadrupole electrodes and a means for measuring the ratio of the two types of DC voltages applied, thereby making it possible to measure the treetop density mass number. The purpose of the present invention is to provide a heavy separation mass spectrometer.

本発明の基本的々考えは次の原理に基づくもので、1う
る。すなわち、四1を離形質量分析装置による質+14
分離の関係式は次式で与えられる。
The basic idea of the present invention is based on the following principles. In other words, the quality of 41 by the exfoliating mass spectrometer +14
The relational expression for separation is given by the following equation.

lvl := K、 ・Vrf / f2− ri  
     il)ここで M:1価のイオンの質量数、  Vrf :高周波電圧
1ro°四重極電極により形成される電場の半径。
lvl:=K, ・Vrf/f2−ri
il) Here, M: mass number of a singly charged ion, Vrf: radio frequency voltage 1ro° radius of the electric field formed by the quadrupole electrode.

f:高周波周波数、に、:比例定数 四重極電極には直流電圧Udc 9高周波電圧VrfO
比を一定にした重畳電圧が印力lされるので上記(1)
式に次のように書ける。
f: High frequency frequency, ni: Proportionality constant DC voltage Udc for the quadrupole electrode 9 High frequency voltage VrfO
Since a superimposed voltage with a constant ratio is applied, the above (1)
The formula can be written as follows.

M : K2・Udc / f2− r:      
 +21’+1. +2i式で高周波周波数fと電場の
半径r。とは装置により決まる定数なので、fll、 
+21式はさらに次のように表わすことができる。
M: K2・Udc/f2-r:
+21'+1. In the +2i formula, the high frequency frequency f and the radius r of the electric field. is a constant determined by the device, so fll,
The +21 formula can be further expressed as follows.

M = K7 ・Vrf = K; −Udc    
  i3)ここで、Kγ、努:tヒ例定数 すなわち、四重横形質量分析装置において、選択検出さ
れるイオン質量数Mは四重極電極へ印加される電圧(V
rf又はUd、c )と比例関係にあるので、これによ
って質量走査が行々われる。
M = K7 ・Vrf = K; -Udc
i3) Here, Kγ is an example constant. That is, in a quadruple horizontal mass spectrometer, the number of selectively detected ion masses M is determined by the voltage applied to the quadrupole electrodes (V
rf or Ud,c), which results in mass scanning.

今、精密質量数Mrが既知の標準試料を用いて、そのイ
オンを選択検出したとすると、(3)式からMr= K
’、・Udc (r)’          f4)質
量数Muが未知の試料イオンが選択検出されたとすると Mu = K4 ・Udc (D)         
 (5)+41. +51式から 従って、 Mu−三」鴻1Mr          [6)Udc
 (r) すなわち、(6)式から質量数未知のイオンの検出時の
電−圧Uac (TJ)と質量数既知のイオンの検出時
の電圧Udc (r)との比を正確に測定すれば、これ
を既知の精密質量数Mrに乗じることにより必要な測定
試料の精密質量数が測定できる。
Now, if we use a standard sample with a known accurate mass number Mr and selectively detect the ion, then from equation (3), Mr = K
', ・Udc (r)' f4) If a sample ion with unknown mass number Mu is selectively detected, then Mu = K4 ・Udc (D)
(5)+41. Accordingly, from the +51 formula, Mu-san”Ko 1Mr [6) Udc
(r) In other words, if we accurately measure the ratio between the voltage Uac (TJ) when detecting an ion with an unknown mass number and the voltage Udc (r) when detecting an ion with a known mass number from equation (6), By multiplying this by the known accurate mass number Mr, the required accurate mass number of the measurement sample can be determined.

この測定に必要な質量分解能R&lI1、Mu R−−〉     又は(M;j石 ΔM    IMu−Mrl であればよい。従って、適宜標準試料を選択することに
より、装置の質量分解能Rは精密質量数を4り定する際
の制限要因とはならず、所要の質量数が高精度に求゛f
ることとなる。
The mass resolution required for this measurement may be R&lI1, Mu R--> or (M; 4.It is not a limiting factor when determining the required mass number, and the required mass number can be determined with high accuracy.
The Rukoto.

次に、本発明の具体的な構成を実施例について、第1図
および第2図に基づいて説明する。
Next, a specific configuration of the present invention will be described with reference to FIGS. 1 and 2 in terms of embodiments.

第1図は本発明の四重横形質量分析装置を備えたガスク
ロマトグラフ・質量分析装置の構成図である。同図にお
いて1はガスクロマトグラフ、2は分子セパレータ、3
け本発明の四重横形質量分析装置である。4社質量数が
既知の標準試料を導入する標準試料導入部、5はイオン
化室、6は四重極電極を有する四重極電極部、7はイオ
ンの検−吊器、8は検出器7の信号を増幅する増幅器で
ある。9a、9bは第1および第2の信号測定部で、第
]、信号測定部9aが検出器7からのイオン信号のうち
質量数が未知のものについての信号を測定する。斗た、
第2信号測定部9bが質量数が既知の標準試料からのイ
オン信号を測定する。10は上記第1および第2の信号
測定部9a、9bで測定された信号を表示するオノンロ
スコープなどの表示部でちる。12は、四重極電極部6
に直流/高周波電圧を印加する電源部であり、この電源
部12の四重電極部6への出力は走置制御部14によっ
て制御される。そして、通常はこの走査制御部14の走
査信号に、より、電源部12は直流電圧と高周波電圧と
の比を一定に保ちながら高周波電圧が変化されて質量走
査が行なわれ、マススペクトルの測定が行なわれる。1
6はスイッチ制御部であり、第1および第2のスイッチ
Sl +  S、とを同期して高速度で切換える。18
はスイープ信号発生器で、スイッチ制御部16から出力
されるスイッチ切換信号に同期してオンンロスコープ1
0ならびに電源部12ヘスイープ電圧を供給する。22
は安定化された基準電圧電源、24a、24bは四重極
電極部6に2種の直流電圧を設定する手段である高精度
の第1および第2のポテンシオメータである。また26
はこのポテンシオメータ24a・ 241)から出力さ
れる2種の直流電圧のIヒの値を測定する手段である電
圧比演算部である。
FIG. 1 is a block diagram of a gas chromatograph/mass spectrometer equipped with a quadruple horizontal mass spectrometer according to the present invention. In the figure, 1 is a gas chromatograph, 2 is a molecular separator, and 3 is a gas chromatograph.
This is a quadruple horizontal mass spectrometer of the present invention. 4 A standard sample introduction section into which a standard sample with a known mass number is introduced, 5 an ionization chamber, 6 a quadrupole electrode section having a quadrupole electrode, 7 an ion detector, and 8 a detector 7. This is an amplifier that amplifies the signal. Reference numerals 9a and 9b denote first and second signal measurement units, and the signal measurement unit 9a measures signals of unknown mass numbers among the ion signals from the detector 7. Dota,
The second signal measuring section 9b measures ion signals from a standard sample with a known mass number. Reference numeral 10 denotes a display section such as an ononroscope for displaying the signals measured by the first and second signal measuring sections 9a and 9b. 12 is a quadrupole electrode section 6
This is a power supply section that applies a DC/high frequency voltage to the quadruple electrode section 6 , and the output of this power supply section 12 to the quadruple electrode section 6 is controlled by the travel control section 14 . Normally, based on the scan signal from the scan control unit 14, the power supply unit 12 changes the high frequency voltage while keeping the ratio between the DC voltage and the high frequency voltage constant, performs mass scanning, and measures the mass spectrum. It is done. 1
Reference numeral 6 denotes a switch control unit, which switches the first and second switches Sl+S at high speed in synchronization. 18
is a sweep signal generator, which operates the on-roscope 1 in synchronization with the switch switching signal output from the switch control section 16.
0 and a sweep voltage to the power supply unit 12. 22
2 is a stabilized reference voltage power source, and 24a and 24b are highly accurate first and second potentiometers that are means for setting two types of DC voltages to the quadrupole electrode section 6. Also 26
2 is a voltage ratio calculating section which is a means for measuring the values of I and H of the two types of DC voltages output from the potentiometers 24a and 241).

次に、上記構成において、未知試料の質量数を精密測定
する手順について説明する。
Next, a procedure for accurately measuring the mass number of an unknown sample in the above configuration will be explained.

このイ6密質l数の測定を開始する前段階においてはす
て(でイ^“密質組数が既知の標準試料MrならびにT
it JN−数か未知の被測定試料Muについて買置走
査か行なわれ、両試料Mr、 Muのイオンピーク位置
は測゛定されている。従って、精密質量数の測定の開始
にあ/ζつては予じめ、第1および第2のポテンシオメ
ータ24a、241)の出力電圧を両試料Mu。
In the step before starting the measurement of the number of dense particles (I6), it is necessary to
A purchase scan has been performed on a sample to be measured Mu whose number is unknown, and the ion peak positions of both samples Mr and Mu have been measured. Therefore, before starting the measurement of the accurate mass number, the output voltages of the first and second potentiometers 24a, 241) are adjusted in advance for both samples Mu.

Mrのイオンピーク位置に対応するおおよその電圧値に
それぞれ設定しておく。次いで、被測定試料Muはガス
クロマトグラフ1から分子セパレータ2を1経てイオン
化室5へ、標準試料Mrは標準試料導入部4からイオン
化室5へそれぞれ導入され、イオン化さり、る。そして
イオン化された両試p、M r 。
Each voltage value is set approximately corresponding to the ion peak position of Mr. Next, the sample to be measured Mu is introduced from the gas chromatograph 1 through the molecular separator 2 to the ionization chamber 5, and the standard sample Mr is introduced from the standard sample introduction section 4 to the ionization chamber 5, where they are ionized. and both ionized samples p, M r .

Mui弓、共(・こ四重極電極部6に尋人される。一方
、これと併行してスイッチ制御部16からはスイノチト
I)換信号が出力され第1および第2のスイッチS、、
S2は高速で切換えられる。この2.2スイツチS2の
切換により、ボテン謔オメータ24a、24bで設定さ
れている2釉の直流電圧は電源部12を介17て四重極
電極部5に交互に出力される。同時にスイープ信号発生
器18はスイッチ制御i!141部16からのスイッチ
切換信号に同期してスイープ電圧j圧を表示部10なら
びに電源部12を介して四重極電極部6に出力する。従
って四重極電極部6には実質第1および第2のポテンシ
オメータで設定された出力電圧にスイープ電圧が重畳さ
れて印加される。四重極電極部6を通過した標準試料M
rと被測定試料Muのイオンは検出器7で検出されイオ
ン信号に変換されて増幅器8で増幅される。第1スイツ
チS1の切換えにより、被測定試料Muのイオン信号は
第1信号測定部9aで、また、標準試料MrKよるイオ
ン信号は第2信号測定部9bでそれぞれ測定され、これ
らは共に表示部1oに出力される。
Mui is connected to the quadrupole electrode section 6.Meanwhile, in parallel with this, the switch control section 16 outputs a switching signal to the first and second switches S,...
S2 is switched at high speed. By switching this 2.2 switch S2, the two glaze DC voltages set by the button meter 24a, 24b are alternately output to the quadrupole electrode section 5 via the power supply section 12 17. At the same time, the sweep signal generator 18 controls the switch control i! The sweep voltage j pressure is outputted to the quadrupole electrode section 6 via the display section 10 and the power supply section 12 in synchronization with the switch switching signal from the 141 section 16. Therefore, the sweep voltage is applied to the quadrupole electrode section 6 in a manner that is substantially superimposed on the output voltage set by the first and second potentiometers. Standard sample M passed through the quadrupole electrode section 6
The ions of r and the sample to be measured Mu are detected by a detector 7, converted into an ion signal, and amplified by an amplifier 8. By switching the first switch S1, the ion signal of the sample to be measured Mu is measured by the first signal measuring section 9a, and the ion signal of the standard sample MrK is measured by the second signal measuring section 9b, both of which are displayed on the display section 1o. is output to.

表示部10にはすでにスイープ信号発生器18がらスィ
ーブ信号が出力されているので、表示部100画面−ヒ
には被測定試料Muのイオンビ〜りと標準試料Mrのイ
オンピークとが共に表示される。そこで表示部10に表
示された被測定試料Muならびに標準試料Mrの各イオ
ンビークを第2図に示−ノーようにピーク位置が一致す
るようにボテン/オメータ24a、24btJA6節す
る。このポテンシオメータ24a、24bの出力電圧の
比が電圧比演算部15で測定される。この電圧の比の値
が、(6)式?口;圧の比を測定した後は、この値に標
準試料Mrの精密質量数を乗することにより被測定試料
Muの質量数が高精度に求まる。
Since the sweep signal from the sweep signal generator 18 has already been output to the display unit 10, the ion peak of the sample to be measured Mu and the ion peak of the standard sample Mr are displayed together on the screen of the display unit 100. . Therefore, the ion beaks of the sample to be measured Mu and the standard sample Mr displayed on the display unit 10 are adjusted using the buttons/ometers 24a and 24btJA6 so that their peak positions coincide as shown in FIG. The ratio of the output voltages of the potentiometers 24a and 24b is measured by the voltage ratio calculating section 15. What is the value of this voltage ratio in equation (6)? After measuring the pressure ratio, the mass number of the sample to be measured Mu can be determined with high precision by multiplying this value by the accurate mass number of the standard sample Mr.

」メ−)二のように本発明によれば、四重極電極部に印
加する2種の直流電圧を設定する手段と、この2種の直
流電圧の比の値を測定する設定とを設けたので、これに
より被測定試料の精密質量数を求めることができるとb
う実用上優れた効果が得られる。
According to the present invention, as in ``Me-2'', means for setting two types of DC voltages to be applied to the quadrupole electrode section, and a setting for measuring the ratio value of these two types of DC voltages are provided. Therefore, b
Excellent practical effects can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図姓S四重極形質量
分析装置を備えたガスクロマトグラフ質量分析装置の構
成図、第2図はイオンビークの説明:ノ1である。 3・・四重離形質量分析装置、6・・四重極電極部、2
4 a、  24 b・・第1および第2ボテン/オメ
ータ、26・・電圧比演算部。 特許出願人  株式会社島津製作所 代  1哩  人  弁理士岡田和秀
The drawings show embodiments of the present invention, and FIG. 1 is a block diagram of a gas chromatograph mass spectrometer equipped with a quadrupole mass spectrometer, and FIG. 2 is an explanation of an ion beak. 3. Quadrupole mass spectrometer, 6. Quadrupole electrode section, 2
4a, 24b...first and second buttons/ohmeters, 26...voltage ratio calculation section. Patent applicant Shimadzu Corporation representative 1 person Patent attorney Kazuhide Okada

Claims (1)

【特許請求の範囲】[Claims] (1)四重極電極部に印加される2種の直流電圧を設定
する手段と、この設定された2種の電圧の比の値を測定
する手段とを備えていることを特徴とする四重離形質量
分析装置。
(1) A quadrupole characterized by comprising means for setting two types of DC voltages applied to the quadrupole electrode section, and means for measuring a value of the ratio of the two types of voltages set. Heavy separation mass spectrometer.
JP57230806A 1982-12-31 1982-12-31 Quadruple pole type mass spectrographic device Pending JPS59125057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57230806A JPS59125057A (en) 1982-12-31 1982-12-31 Quadruple pole type mass spectrographic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57230806A JPS59125057A (en) 1982-12-31 1982-12-31 Quadruple pole type mass spectrographic device

Publications (1)

Publication Number Publication Date
JPS59125057A true JPS59125057A (en) 1984-07-19

Family

ID=16913563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57230806A Pending JPS59125057A (en) 1982-12-31 1982-12-31 Quadruple pole type mass spectrographic device

Country Status (1)

Country Link
JP (1) JPS59125057A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019066338A (en) * 2017-10-02 2019-04-25 日本電子株式会社 Mass analysis data processor and mass analysis data processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019066338A (en) * 2017-10-02 2019-04-25 日本電子株式会社 Mass analysis data processor and mass analysis data processing method

Similar Documents

Publication Publication Date Title
US3885155A (en) Mass spectrometric determination of carbon 14
Stafford Ion trap mass spectrometry: a personal perspective
US3920986A (en) Mass spectrometer system having synchronously programmable sensitivity
US3812355A (en) Apparatus and methods for measuring ion mass as a function of mobility
Siri A mass spectroscope for analysis in the low mass range
JPH02301952A (en) Outside correction method of ion cyclotron resonance mass spectrometer
JPH0237983B2 (en)
JP4256208B2 (en) Isotope ratio analysis using a plasma ion source mass spectrometer
JPS59125057A (en) Quadruple pole type mass spectrographic device
JP2872375B2 (en) Mass spectrometer
Jackson et al. Use of an ion beam chopper for improved precision in spark source mass spectrography
JPS6082956A (en) Ac modulation type quadrupole mass spectrometer
Meredith et al. Precise atomic mass differences using peak-matching by computer
Merritt et al. Fast Scanning of High Resolution Mass Spectra.
Nier et al. A Mass Spectrometer for Isotope Ratio Analyses.
McLafferty et al. Signal enhancement in real-time for high-resolution mass spectra
Freeman et al. Analytical Mass Spectrometry Utillizing Relative Abundance Ratios
JP2799102B2 (en) LC / API mass spectrometer
US3504174A (en) Precision mass spectrometer apparatus
SU785908A1 (en) Magnetron mass-spectrometer
Perschmann et al. Fine-structure and tensor polarizabilities of 1 snd 3 D levels of He I (n= 3 to 7)
SU438431A1 (en) MASS SPECTROMETER
JPS59945B2 (en) Mass spectrometry methods and equipment
Kennedy et al. Photographic method for pulse amplitude analysis
Yinon et al. Ratiometer for the Measurement of Mass Abundance Ratios with a Quadrupole Mass Spectrometer