JPS59124552A - Copying control device - Google Patents

Copying control device

Info

Publication number
JPS59124552A
JPS59124552A JP22922582A JP22922582A JPS59124552A JP S59124552 A JPS59124552 A JP S59124552A JP 22922582 A JP22922582 A JP 22922582A JP 22922582 A JP22922582 A JP 22922582A JP S59124552 A JPS59124552 A JP S59124552A
Authority
JP
Japan
Prior art keywords
amount
reference value
change
displacement signal
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22922582A
Other languages
Japanese (ja)
Other versions
JPH0151306B2 (en
Inventor
Hitoshi Matsuura
仁 松浦
Etsuo Yamazaki
悦雄 山崎
Hiroshi Sakurai
寛 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP22922582A priority Critical patent/JPS59124552A/en
Publication of JPS59124552A publication Critical patent/JPS59124552A/en
Publication of JPH0151306B2 publication Critical patent/JPH0151306B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q35/00Control systems or devices for copying directly from a pattern or a master model; Devices for use in copying manually
    • B23Q35/04Control systems or devices for copying directly from a pattern or a master model; Devices for use in copying manually using a feeler or the like travelling along the outline of the pattern, model or drawing; Feelers, patterns, or models therefor
    • B23Q35/08Means for transforming movement of the feeler or the like into feed movement of tool or work
    • B23Q35/12Means for transforming movement of the feeler or the like into feed movement of tool or work involving electrical means
    • B23Q35/121Means for transforming movement of the feeler or the like into feed movement of tool or work involving electrical means using mechanical sensing
    • B23Q35/123Means for transforming movement of the feeler or the like into feed movement of tool or work involving electrical means using mechanical sensing the feeler varying the impedance in a circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Copy Controls (AREA)

Abstract

PURPOSE:To reduce cutter bite at a rapidly changing point of a model shape while enabling said point to be detected in an early stage by changing a reference value based on the amount of changes per unit time of a displacement signal from a tracer head for tracing a model surface. CONSTITUTION:Displacement signals epsilonx-epsilonz from a tracer head 1 is sampled in a sampling circuit 2 at every prescribed time, and a copying operation is performed in a copying arithmetic circuit 3 on the basis of said sampled vaues. And, a motor 5 is driven and controlled by an output from said circuit 3, and the tracer head 1 and a model 4 are relatively moved, allowing copying control to be performed. Here, the amount of changes per unit time of a displacement signal is estimated by a change amount detecting means 6 based on the above described sampled values, and a reference value is set by a reference value setting means 7 based on said amount of changes. And, when the difference, evaluated in a control means 8, between the above described amount of change and its reference value is more than prescribed value, the relative speed between both 1, 4 is controlled to be reduced.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、トレーサヘッドから出力されるモデル形状に
対応した変位信号をサンプリングし、サンプル値に基づ
いて倣い制御を行なう倣い制御装置の改良に関し、更に
詳細にはモデル形状の急変点J二於けるカッタの喰込み
を減少させることができる倣い制御装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an improvement in a tracing control device that samples displacement signals corresponding to a model shape output from a tracer head and performs tracing control based on the sampled values. The present invention relates to a tracing control device capable of reducing the biting of a cutter at a sudden change point J2 of a model shape.

従来技術と問題点 マイクロプロセッサの高速化に伴い、高速追従性が要求
される倣い制御装置を、従来のアナログ回路に代え、マ
イクロプロセッサを用いて構成すると言うことが提案さ
れている。
Prior Art and Problems As the speed of microprocessors increases, it has been proposed to construct a tracing control device that requires high-speed followability using a microprocessor instead of a conventional analog circuit.

ところで、第1図に示すような形状のモデルMを倣う場
合、コーナ部P等のモデル形状の急変点に於いて、カッ
タがワークに喰込む現象が生じる。
By the way, when copying a model M having a shape as shown in FIG. 1, a phenomenon occurs in which the cutter bites into the workpiece at a sudden change point in the model shape, such as a corner P.

このようなモデル形状の急変点に於けるカッタの喰込み
を減少させる為に、アナログ方式の倣い制御装置に於い
ては、例えば次のようにしている。
In order to reduce the biting of the cutter at such sudden points of change in the model shape, an analog type copying control device takes the following steps, for example.

即ち、トレーサヘッドから出力されるX、Y、Z軸の変
位信号εX、εr、ε2 を合成した合成変位信モデル
形状の急変点に於いて、急激に変化するものであり、合
成変位信号の単位時間当りの変化量dε τもコーナ部P等のモデル形状の急変点に於いて第3図
に示すように急激に増加するものであるから、変化量計
と閾値りとを比較し、変化置方が閾値り以上となった場
合、送り速度を減速させ、カッタの喰込みを減少させる
ようにしている。また、この他にも、合成変位信号ε、
各軸の変位信号εX、εY、ε2の単位時間当りの変化
量を求め、各変化量と各変化量対応の閾値とを比較し、
前記各変化量のうちの少なくとも1つの変化量が閾値を
越えた時、減速制御を行なわせるようにしたものもある
In other words, it changes suddenly at the sudden change point of the composite displacement signal model shape which is a composite of the X, Y, and Z axis displacement signals εX, εr, and ε2 output from the tracer head, and the unit of the composite displacement signal is The amount of change dε τ per time also increases rapidly at sudden points of change in the model shape, such as the corner P, as shown in Figure 3. Therefore, by comparing the change meter and the threshold value, When the amount exceeds a threshold value, the feed speed is decelerated to reduce the biting of the cutter. In addition to this, the composite displacement signal ε,
Find the amount of change per unit time in the displacement signals εX, εY, and ε2 of each axis, compare each amount of change with the threshold corresponding to each amount of change,
There is also a device in which deceleration control is performed when at least one of the amounts of change exceeds a threshold value.

しかし、マイクロプロセッサを用いたディジタル方式の
倣い制御装置に於いて、カッタの喰込みを減少させる為
に、前述したアナログ方式の倣い制御装置に用いられて
いる方法をそのまま適用したのでは次のような欠点があ
る。即ち、ディジタル方式の倣い制御装置はトレーサヘ
ッドからの変位信号εX、εY、εZを一定時間毎にサ
ンプリングしているものであるから、合成変位信号εの
単位時間当りの変化量πが第3図に示すように、閾値り
以上となってもナンブリング時刻tル+1 になdε るまで、変化量mが閾値りを越えたことを検出できず、
カッタの喰込みが大となる欠点があった。
However, in order to reduce cutter biting in a digital scanning control device using a microprocessor, the method used in the analog scanning control device described above could be applied as is. There are some drawbacks. That is, since the digital scanning control device samples the displacement signals εX, εY, and εZ from the tracer head at regular intervals, the amount of change π of the composite displacement signal ε per unit time is as shown in FIG. As shown in , even if it exceeds the threshold value, it cannot be detected that the amount of change m exceeds the threshold value until the numbering time t+1 dε is reached.
There was a drawback that the cutter had a large amount of biting.

このよう゛な欠点を改善する為に閾値りのレベルを低く
することも考えられるが、閾値りのレベルを低くすると
、モデル表面が荒く、合成変位信号εdε の変化量■が大きい場合、モデル形状の急変点以外の点
をモデル形状の急変点と検出してしまう惧れがある。逆
に言えば、モダ/1フ表面が荒い場合に於いても、モデ
ル形状の急変点以外の点をモデル形状の急変点と検出し
ないようにする為に、閾値りを高いレベルに設定してお
くことが必要であった。
In order to improve this kind of defect, it is possible to lower the threshold level, but if the threshold level is lowered, the model shape may be affected if the model surface is rough and the amount of change in the composite displacement signal εdε is large. There is a risk that points other than the sudden change point of the model shape may be detected as the sudden change point of the model shape. Conversely, even if the Moda/1 surface is rough, the threshold value should be set to a high level in order to prevent points other than the sudden change point of the model shape from being detected as the sudden change point of the model shape. It was necessary to leave it there.

発明の目的 本発明は前述の如き欠点を改善したものであり、その目
的は変位信号のサンプリング値に基づいて倣い制御を行
なウデイジタル方式の倣い制御装置に於いて、モデル形
状の急変点に於けるカッタの喰込みを減少させることに
ある。
Purpose of the Invention The present invention has been made to improve the above-mentioned drawbacks.The purpose of the present invention is to perform scanning control based on sampling values of displacement signals, and to use a digital scanning control device to detect sudden changes in the model shape. The objective is to reduce the biting of the cutter.

発明の構成 本発明は第千図に示すように、トレーサへラド1からの
変位信号εX、εrtgz を一定時間毎にサンプリン
グ回路2でサンプリングし、倣い演算回路3でサンプリ
ング回路2のサンプル値に基づいて倣い演算を行ない、
倣い演算回路乙の出力により、トレーサヘッド1とモデ
ル4とを相対的に移動させるモータ5を駆動し、合成変
位信号εと基準変位信号ε。との差が零となるようにト
レーナヘッド1とモデル4とを相対的に移動させる倣い
制御装置に於いて、サンプリング回路2のサンプル値に
基づいて、変化量検出手段6で変位信号の単位時間当り
の変化量を求め、基準値設定手段7で変化量検出手段6
の検出結果に基づいて基準値を設定し、制御手段8で基
準値と変化量検出手段6の検出結果とを比較し、両者の
差が一定値以上の場合、トレーサヘッド1とモデル4と
の相対的な送り速度を減速させるものである。
Structure of the Invention As shown in FIG. Perform copy calculation using
The output of the tracing calculation circuit B drives the motor 5 that moves the tracer head 1 and the model 4 relatively, and generates a composite displacement signal ε and a reference displacement signal ε. In a tracing control device that relatively moves a trainer head 1 and a model 4 so that the difference between The amount of change in the hit is determined, and the amount of change detection means 6 is determined by the reference value setting means 7.
A reference value is set based on the detection result of the tracer head 1 and the model 4, and the control means 8 compares the reference value with the detection result of the change amount detection means 6. If the difference between the two is more than a certain value, This is to reduce the relative feed speed.

発明の実施例 第5図は本発明の実施例のブロック線図であり、10は
マイクロプロセッサ等から成る処理装置、11はメモリ
、12はトレーサヘッド、13はAD変換器、14はデ
ータ入力装置、15はデータ出力装置。
Embodiment of the Invention FIG. 5 is a block diagram of an embodiment of the present invention, in which 10 is a processing device including a microprocessor, 11 is a memory, 12 is a tracer head, 13 is an AD converter, and 14 is a data input device. , 15 is a data output device.

16はDA変換器、17は駆動回路、18はトレーサへ
ラド1とモデル(図示せず)とを相対的に移動させるモ
ータである。尚、モータは、実際には6偏設けられ、各
モータにより、スタイラス12とモデルとをX、Y、X
軸方向に相対的に移動させるものであるが、ここではX
軸方向のモーター8のみを示した。
16 is a DA converter, 17 is a drive circuit, and 18 is a motor for relatively moving the tracer rad 1 and a model (not shown). Incidentally, there are actually six motors, and each motor moves the stylus 12 and the model in X, Y,
This is a relative movement in the axial direction, but here X
Only the axial motor 8 is shown.

トレーサヘッド12からのX、Y、Zの変位信号gz。X, Y, and Z displacement signals gz from the tracer head 12.

εY、ε2は届変換器13、データ入力装置14を介し
て処理装置10に加えられる。処理装置10はデータ入
力装置14を介して加えられる変位信号εX、εY。
εY and ε2 are applied to the processing device 10 via the report converter 13 and the data input device 14. The processing device 10 receives displacement signals εX, εY applied via a data input device 14.

εZを一定時間毎ζニサンプリングし、サンプル値に基
づいて倣い演算を行ない、演算結果をデータ出力装置1
5を介してDA変換器16に加える。DA変換器16は
データ出力装置15からのディジタル信号をアナログ信
号に変換して駆動回路17に加え、駆動回路( とモデルとの相対的な送りが行われる。
εZ is sampled at regular intervals of ζ, a tracing calculation is performed based on the sample value, and the calculation result is sent to the data output device 1.
5 to the DA converter 16. The DA converter 16 converts the digital signal from the data output device 15 into an analog signal and applies it to the drive circuit 17, and relative transmission between the drive circuit and the model is performed.

処理装置10は上述した倣い制御以外にも、モデル形状
の急変点に於けるカッタの喰込みを減少させる為に以下
に述べる処理を行なっている。
In addition to the above-described tracing control, the processing device 10 also performs the following processing in order to reduce the biting of the cutter at sudden points of change in the model shape.

今、例えば第1図に示したモデルMをX軸を送り軸とし
て倣ったとすると、X軸方向の変位信号εX及び変位信
号εXの単位時間当りの変化量りはそれぞれ第6図(A
) l CB>に示すものとなる。処理装置10は倣い
加工が開始されると、変位信号εXの今回のチンブリン
グ値S3と前回のサンプリング値5n−1とに基づいて
、サンプリング値の変化量、即ち変位信号εXの単位時
間当りの変化量DrLを求め、その絶対値I Dn l
を基準値としてメモリ11に記憶させる。次に処理装置
10は新たなサンプリング値SrL+1を検出すると、
このサンプリング値5n4−1と前回のサンプリング値
Sルとに基づいて変化量DrL+1を求める。次に処理
装置1oはこの変化量DTL+1の絶対値IDrL+1
1とメモリ11に基準値として記憶させである変化量D
rLの絶対値IDtL+とを比較し、比較結果に基づい
て以下に述べる処理を行なう。
For example, if we follow the model M shown in Figure 1 with the X-axis as the feed axis, the displacement signal εX in the X-axis direction and the amount of change per unit time of the displacement signal εX are shown in Figure 6 (A
) l CB>. When copying processing is started, the processing device 10 calculates the amount of change in the sampling value, that is, the change per unit time in the displacement signal εX, based on the current chimbling value S3 of the displacement signal εX and the previous sampling value 5n-1. Find the quantity DrL and find its absolute value I Dn l
is stored in the memory 11 as a reference value. Next, when the processing device 10 detects a new sampling value SrL+1,
Based on this sampling value 5n4-1 and the previous sampling value S, the amount of change DrL+1 is determined. Next, the processing device 1o outputs the absolute value IDrL+1 of this amount of change DTL+1.
1 and the amount of change D stored in the memory 11 as a reference value.
The absolute value IDtL+ of rL is compared, and the following processing is performed based on the comparison result.

比較結果が1DrLl < lDn+11 <N ” 
1Dtbl (A’は正数)である場合は、今回の変化
量の絶対値ID?L++Iを前回の変化量の絶対値I 
Dn Iに代えてメモリ11に記憶させ、新たな基準値
とする。
The comparison result is 1DrLl < IDn+11 <N”
If 1Dtbl (A' is a positive number), is it the absolute value ID of the current amount of change? L++I is the absolute value of the previous change amount I
It is stored in the memory 11 in place of Dn I and is used as a new reference value.

また、比較結果がID1L+11≧#−IDrLlの場
合は、処理装置10はカッタの喰込みが発生したと判断
し、送り速度を減速させる。また、この時、処理装置1
0は基準値の書換処理は行なわない。
Further, if the comparison result is ID1L+11≧#-IDrLl, the processing device 10 determines that cutter biting has occurred, and reduces the feed speed. Also, at this time, the processing device 1
If it is 0, the reference value is not rewritten.

また、比較結果がIDユ+11≦1DtLlの場合は、
処理装置10は基準値の書換処理は行なわない。
Also, if the comparison result is IDyu+11≦1DtLl,
The processing device 10 does not perform the process of rewriting the reference value.

以下、処理装置10は新たな変化量を算出する毎に、新
たな変化量の絶対値とメモリ11に基準値として記憶さ
れている変化量の絶対値とを比較し、比較結果に基づい
て前述したと同様の処理を行なう。
Thereafter, each time the processing device 10 calculates a new amount of change, it compares the absolute value of the new amount of change with the absolute value of the amount of change stored as a reference value in the memory 11, and based on the comparison result, Perform the same processing as above.

このように、本実施例は基準値をサンプル値の変化量の
絶対値、即ち変位信号の単位時間当りの変化量の絶対値
に基づいて変更するようにしているものであるから、従
来例)二比較して次のような利点がある。即ち、基準値
を一定レベルとしていた従来例に於いては、前述したよ
うに、モデル表面が荒く、変位信号の単位時間当りの変
化量が大きい場合(二於いても、モデル形状の急変点以
外の点を誤ってモデル形状の急変点と検出しないように
する為に、基準値のレベルを高く設定しておくことが必
要であり、この為、モデル形状の急変点の検出が遅れ、
喰込みが大となる欠点があった。
In this way, in this embodiment, the reference value is changed based on the absolute value of the amount of change in the sample value, that is, the absolute value of the amount of change in the displacement signal per unit time. Compared to the two, there are the following advantages: In other words, in the conventional example in which the reference value is set at a constant level, as mentioned above, when the model surface is rough and the amount of change in the displacement signal per unit time is large (also in cases other than sudden changes in the model shape) In order to avoid erroneously detecting the point as a sudden change point in the model shape, it is necessary to set the reference value level high, and for this reason, the detection of the sudden change point in the model shape is delayed.
There was a drawback that the bite was large.

これに対して、本実施例は基準値を変位信号の単位時間
当りの変化量に基づいて変更するものであり、例えば、
モデル表面が滑らかな場合は、基準値が小となるもので
あるから、基準値を一定としていた従来例に比べてモデ
ル形状の急変点を早い時期に検出することができ、従っ
て、モデル形状の急変点に於けるカッタの喰込みを少な
いものとすることができる。
In contrast, in this embodiment, the reference value is changed based on the amount of change in the displacement signal per unit time.
When the model surface is smooth, the reference value is small, so sudden changes in the model shape can be detected earlier than in the conventional case where the reference value was kept constant. The biting of the cutter at the sudden change point can be reduced.

尚、実施例に於いては、X軸の変位信号εXの単位時間
当りの変化量に基づいて喰込みを検出するようにしたが
、合成変位信号εの変化量に基づいて喰込みを検出する
ようにしても良いことは勿論である。また、更に、各軸
の変位信号εX、εr。
Incidentally, in the embodiment, gouge is detected based on the amount of change per unit time in the X-axis displacement signal εX, but gouge is detected based on the amount of change in the composite displacement signal ε. Of course, it is also possible to do so. Furthermore, displacement signals εX, εr of each axis.

ε2合成変位信号εの変化量それぞれに基づいて喰込み
を検出するようにし、前記各変化量の少なくとも何れか
1つに基づいて喰込みを検出した時、減速制御を行なう
ようにしても良いことは勿論である。
Biting may be detected based on each amount of change in the ε2 composite displacement signal ε, and deceleration control may be performed when biting is detected based on at least one of the amounts of change. Of course.

発明の詳細 な説明したように、本発明は変位信号の単位時間当りの
変化量に基づいて、基準値を変更するようにしたもので
あるから、基準値を一定レベルにしていた従来例に比較
してモデル形状の急変点を早い時期に検出することがで
き、従ってモデル形状の急変点に於けるカッタの喰込み
を減少させることができる利点がある。
As described in detail, the present invention changes the reference value based on the amount of change per unit time of the displacement signal, so compared to the conventional example in which the reference value is kept at a constant level. This has the advantage of being able to detect sudden points of change in the model shape at an early stage, thereby reducing the biting of the cutter at the point of sudden change in the model shape.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はモデル形状を示す図、第2図は合成変位信号ε
の波形図、@6図は合成変位信号εの変化量を示す図、
第4図は本発明の構成を示すブロック線図、第5図は本
発明の実施例のブロック線図、第6図(A) 、 CE
)はそれぞれ変位信号εXの波形図及び変位信号gzの
変化量を示す図である。 1.12はトレーサヘッド、2はサンプリング回路、3
は倣い演算回路、4.Mはモデル、5゜18はモータ、
6は変化量検出手段、7は基準値設定手段、8は制御手
段、10は処理装置、11はメモリ、13はAD変換器
、14はデータ入力装置、15はデータ出力装置、16
はDA変換器、17は駆動回路である。 特許出願人  ファナック株式会社 代理人 弁理士 玉蟲久五部(外3名)第3図 第4図 第5図 第6図
Figure 1 shows the model shape, Figure 2 shows the composite displacement signal ε
The waveform diagram of @6 is a diagram showing the amount of change in the composite displacement signal ε,
FIG. 4 is a block diagram showing the configuration of the present invention, FIG. 5 is a block diagram of an embodiment of the present invention, and FIG. 6 (A), CE
) are diagrams showing the waveform diagram of the displacement signal εX and the amount of change in the displacement signal gz, respectively. 1.12 is the tracer head, 2 is the sampling circuit, 3
is a copy calculation circuit, 4. M is the model, 5゜18 is the motor,
6 is a change detection means, 7 is a reference value setting means, 8 is a control means, 10 is a processing device, 11 is a memory, 13 is an AD converter, 14 is a data input device, 15 is a data output device, 16
is a DA converter, and 17 is a drive circuit. Patent applicant Fanuc Co., Ltd. Agent Patent attorney Gobe Tamamushi (3 others) Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] モデル表面を追跡するトレーサヘッドからの変位信号を
一定時間毎にサンプリングし、サンプリング値に基づい
て倣い制御を行なう倣い制御装置に於いて、前記サンプ
リング値に基づいて、前記変位信号の単位時間当りの変
化量を検出する変化量検出手段と、該変化量検出手段の
検出結果に基づいて基準値を設定する基準値設定手段、
該基準値設定手段で設定した基準値と前記変化量検出手
段の検出結果との差が一定値以上となった時、送り速度
を減速させる制御手段とを備えたことを特徴とする倣い
制御装置。
In a tracing control device that samples a displacement signal from a tracer head that tracks a model surface at regular intervals and performs tracing control based on the sampling value, the displacement signal per unit time is calculated based on the sampling value. a change amount detection means for detecting a change amount; a reference value setting means for setting a reference value based on a detection result of the change amount detection means;
A copying control device comprising: a control means for decelerating the feed speed when the difference between the reference value set by the reference value setting means and the detection result of the change amount detection means exceeds a certain value. .
JP22922582A 1982-12-29 1982-12-29 Copying control device Granted JPS59124552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22922582A JPS59124552A (en) 1982-12-29 1982-12-29 Copying control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22922582A JPS59124552A (en) 1982-12-29 1982-12-29 Copying control device

Publications (2)

Publication Number Publication Date
JPS59124552A true JPS59124552A (en) 1984-07-18
JPH0151306B2 JPH0151306B2 (en) 1989-11-02

Family

ID=16888788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22922582A Granted JPS59124552A (en) 1982-12-29 1982-12-29 Copying control device

Country Status (1)

Country Link
JP (1) JPS59124552A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60263653A (en) * 1984-06-11 1985-12-27 Sanesu Shoko:Kk Control method of copy machining
JPS6224947A (en) * 1985-07-22 1987-02-02 Fanuc Ltd Tracing control device
JPS62181864A (en) * 1986-02-06 1987-08-10 Tokyo Optical Co Ltd Lens polishing machine
JPH01271152A (en) * 1988-04-22 1989-10-30 Fanuc Ltd Copy control system
EP0523254A1 (en) * 1991-02-05 1993-01-20 Fanuc Ltd. Copying control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137783A (en) * 1978-04-18 1979-10-25 Fanuc Ltd Profiling control system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137783A (en) * 1978-04-18 1979-10-25 Fanuc Ltd Profiling control system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60263653A (en) * 1984-06-11 1985-12-27 Sanesu Shoko:Kk Control method of copy machining
JPS6224947A (en) * 1985-07-22 1987-02-02 Fanuc Ltd Tracing control device
JPS62181864A (en) * 1986-02-06 1987-08-10 Tokyo Optical Co Ltd Lens polishing machine
JPH0632891B2 (en) * 1986-02-06 1994-05-02 株式会社トプコン Jade machine
JPH01271152A (en) * 1988-04-22 1989-10-30 Fanuc Ltd Copy control system
EP0523254A1 (en) * 1991-02-05 1993-01-20 Fanuc Ltd. Copying control device
US5333974A (en) * 1991-02-05 1994-08-02 Fanuc Ltd. Tracer control unit

Also Published As

Publication number Publication date
JPH0151306B2 (en) 1989-11-02

Similar Documents

Publication Publication Date Title
JP3389417B2 (en) How to compensate for lost motion
US3731176A (en) Deceleration and stop-lock motor control apparatus
EP0303300A3 (en) Machine tool control
KR890701290A (en) Motor driving method in industrial robot
JPS59124552A (en) Copying control device
JPS6023939B2 (en) Tracing control method
US4578574A (en) Pattern tracer with variable effective forward offset and method
EP0087480B1 (en) Clamp copy controlling method
KR890013536A (en) Methods and systems for controlling machine tools such as rotary machines
US3671839A (en) Method and apparatus for automatic programmed control of a machine tool
US4851750A (en) Deceleration control for tracer control equipment
KR910700489A (en) Sliding Mode Control Method
EP0081589A1 (en) Numerical control device
JPS59192446A (en) Tracing control device
JPH0355263B2 (en)
GB1407163A (en) Method and apparatus for coding and decoding digital information
JP2515526B2 (en) Output method of digitized data in NC data creation device
KR840001091B1 (en) Tracer control system
KR840003366A (en) Numerical Control Processing Method
JP2964742B2 (en) Drive speed control device
JPS5830107B2 (en) Abnormality detection device for turning tools
JPH0554287B2 (en)
JPS6289116A (en) Numerical control device
JPS6426909A (en) Detecting system for working abnormality of robot
EP0146629A1 (en) Apparatus for controlling profiling