JPS59123440A - Shaft generator transmitted by differential gear - Google Patents

Shaft generator transmitted by differential gear

Info

Publication number
JPS59123440A
JPS59123440A JP23178382A JP23178382A JPS59123440A JP S59123440 A JPS59123440 A JP S59123440A JP 23178382 A JP23178382 A JP 23178382A JP 23178382 A JP23178382 A JP 23178382A JP S59123440 A JPS59123440 A JP S59123440A
Authority
JP
Japan
Prior art keywords
gear
generator
shaft
differential gear
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23178382A
Other languages
Japanese (ja)
Inventor
Kiichi Taga
田賀 喜一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP23178382A priority Critical patent/JPS59123440A/en
Publication of JPS59123440A publication Critical patent/JPS59123440A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1815Rotary generators structurally associated with reciprocating piston engines

Abstract

PURPOSE:To keep the generated frequency of a generator within a certain range by a method wherein a differential gear is provided to a driving system of a shaft generator driven directly by a main engine and the revolution of the generator is corrected according to the variation of the revolution of the main engine. CONSTITUTION:An acceleration gear 5 is put on a main shaft 2 of a diesel engine 1. The rotation of the gear 5 drives a synchronous generator 13 through a pinion gear 6, a sun gear 7, a plurality (usually three) of planet pinion gears 8, a ring gear 9 and a pinion gear 11. A differential gear is composed of the sun gear 7, the planet pinion gear 8 and the ring gear 9. An output of the synchronous generator 13 is rectified 15 and a DC motor 14 is driven. A pinion gear 12, attached to a shaft of the motor 14, is in gear with a planet pinion carrier 10, which rotates the planet pinion gear 8, and drives the differential gear part and corrects the variation of the frequency of the generator 13 caused by the variation of the revolution of the main shaft 2. With this constitution, the frequency of the generator is kept within a certain range easily.

Description

【発明の詳細な説明】 近年首エネのため船舶でも種々の対策が行なわれている
。このため熱効率の点から、大型船の原動機も現在はす
べてディーゼル機関であり、このディーゼル機関がプロ
ペラ軸を直結駆動している。このプロペラ軸から直接に
発電機を駆動する方式が軸発電装置である。こうするこ
とによって、じうらいは小型の発電専用ディーゼル機関
で駆動していたのに比較して、大型の主機関は熱効率が
大きく優れていて、さらにまた低質のより安価な重油を
使用するため、発電用の燃お[、費が大きく節約される
。この結果この軸発電装置は多くの船に採用される気運
となってきている。
[Detailed Description of the Invention] In recent years, various measures have been taken on ships to reduce neck energy. For this reason, from the point of view of thermal efficiency, the prime movers of large ships are all now diesel engines, and these diesel engines directly drive the propeller shaft. A shaft power generator is a system in which a generator is driven directly from the propeller shaft. By doing this, compared to the Jiurai, which was driven by a small diesel engine dedicated to power generation, the large main engine has much better thermal efficiency, and also because it uses lower quality and cheaper heavy oil. , the cost of combustion for power generation is greatly reduced. As a result, this shaft power generation device is becoming increasingly adopted on many ships.

この場合の問題点は、発Y13.機の回転数がプロペラ
軸の回転数によって左右され、プロペラ軸の回転数が変
動すると、これに応じて発電機の回転数が変化して、発
電した交流のザイクルが変動することである。この欠点
を除くため、プロペラ軸と発電機の間に)!1〔改変i
由機を設けて、プロペラ軸の回転数が変動しても発電機
は一定回転となるよう紺画される。
The problem in this case is issue Y13. The rotational speed of the machine is affected by the rotational speed of the propeller shaft, and when the rotational speed of the propeller shaft changes, the rotational speed of the generator changes accordingly, and the cycle of the generated alternating current changes. To eliminate this drawback, between the propeller shaft and the generator)! 1 [Modification i
The generator is designed to maintain constant rotation even if the rotation speed of the propeller shaft fluctuates.

この無段変速機としては、磁気接手、浦斤多板クラツナ
、油圧変速機などがある。また電気的方式としては、電
動発電源を使用する方式、サイリスタによって発生電力
のザイクルが変化しても一定ザイクルに変換する方式な
どがある。これらの変換の効率は、機械式のものは、ふ
つう70〜75%と称せられ、電気式のものは約に0%
と称せられている。
Examples of the continuously variable transmission include a magnetic coupling, a multi-plate clutch, and a hydraulic transmission. Electrical methods include a method that uses an electric power generation source, and a method that uses a thyristor to convert the cycle of generated power into a constant cycle even if the cycle changes. The efficiency of these conversions is usually said to be 70-75% for mechanical types, and about 0% for electrical types.
It is called.

一方filli格は一般的に電気式は尚価である点が到
点である。この変換の効率は、せっかく省エネのため主
機関駆動としても、この部分の効率が悪ければ、結局の
発電効率が低下して、意味をなさぬことになるのでニス
要な値である。
On the other hand, the point of filli rating is that electric type is generally cheaper. The efficiency of this conversion is an important value because even if the main engine is driven to save energy, if the efficiency of this part is poor, the final power generation efficiency will decrease and it will be meaningless.

本発明は今までの方式に対して、より効糸が高く、シか
も安価なものを得ようとするものである。これは伝達経
路の一部に、スブリッl−型として知られるような、差
動ギヤを利用するものである。このスブリッ1へ型は、
差動ギヤによって動力伝達経路を2系統に分割して、大
部分の動力を高効率のギヤによって伝達し、小部分の動
力のみを可変速機構を通して伝達するものであり、とう
ぜんの結果として伝達効イシが高い。およそf5%の効
率が見込まれ定周波数型では最高の効率が得られる。ま
た価格も動力の大部分が安価なギヤによって伝達される
ため低下する。しかし一方変速機構の影響が少いため、
変速範囲の狭いのが火山である。しかし本発明のように
/−%ていとの変速でよい場合には適当である。
The present invention aims to provide a yarn with higher efficiency and lower cost than conventional methods. This utilizes a differential gear, known as a sub-type, as part of the transmission path. The mold for this Suburi 1 is
The power transmission path is divided into two systems using differential gears, with most of the power being transmitted through the highly efficient gears, and only a small portion of the power being transmitted through the variable speed mechanism, which naturally results in improved transmission efficiency. The price is high. Efficiency of approximately f5% is expected, and the constant frequency type provides the highest efficiency. Prices are also reduced because most of the power is transmitted through inexpensive gears. However, because the influence of the transmission mechanism is small,
Volcano has a narrow shifting range. However, as in the present invention, it is appropriate in a case where a speed change of /-% is sufficient.

この2系統の動力伝達系統の使用方法としては、入力側
の駆mIJKMを2個とする方式と、出力側の被駆動体
を2個とする方j(とがある。
There are two ways to use these two power transmission systems: one in which there are two drives mIJKM on the input side, and the other in which there are two driven bodies on the output side.

前者は2種類の駆動源の回転数の和によって被駆動体を
駆動するものである。この場合、第1の駆動源はプロペ
ラ軸であり、第2の駆HJI源はrα流電動機とする。
The former drives a driven body by the sum of the rotational speeds of two types of drive sources. In this case, the first drive source is a propeller shaft, and the second drive HJI source is an rα flow motor.

プロペラ軸の同転数が低下したとき、その低下したのに
イI)当する回転数増加を直流電!lll1典で加えて
、発?”tLI幾の回転数を一定に保つのである。この
第2の駆動源は必らずしも直流電動機のみならず、可変
油圧モータなども適用される。しかし発生した交流をr
i′(流に整流して、すぐ使用できる直流電動機が、も
つともq効である。
When the rotational speed of the propeller shaft decreases, the corresponding increase in rotational speed due to the decrease is caused by direct current! In addition to the 1st edition, is it from? This second drive source is not necessarily limited to a DC motor, but may also be a variable hydraulic motor or the like.However, if the generated alternating current is
A DC motor that can be used immediately after rectifying the current (i') is q-effect.

また後者はfM駆動源一つとし被駆動体を2つとするも
ので、第1の被駆動体としての同期発電機と第2の被駆
動体としは+rI流発電1ぷ、などとする。いまプロペ
ラ軸の回転数の増加したとき、ハη加したのに相当する
回転数を直流発電l幾に負担せしめて、同期発電機の回
転数を一定に保つのである。この場合は直流の交流えの
コンバータが必要である点は前者より複雑であるが、同
期発電機の容がは小さくなる。本文では主として部用な
前者を使用するものとして説明する。
The latter has one fM drive source and two driven bodies, with a synchronous generator serving as the first driven body and a +rI flow power generation unit 1 as the second driven body. Now, when the number of revolutions of the propeller shaft increases, the number of revolutions corresponding to the addition of η is applied to the DC power generation l to keep the number of revolutions of the synchronous generator constant. This case is more complicated than the former in that it requires a DC to AC converter, but the capacity of the synchronous generator is smaller. In this text, we will mainly explain using the former for departmental purposes.

つぎに図面によって詳細を説明すると、第1図において
、これは本発明の全体系統図であって、lはディーゼル
主義間である。2はプロペラ軸、3はプロペラである。
Next, details will be explained with reference to the drawings. In FIG. 1, this is an overall system diagram of the present invention, and l is between diesel engines. 2 is a propeller shaft, and 3 is a propeller.

4は船体である。5はプロペラ11仙2につく増(出ス
パ〜キャである。6はこれとかみ合うピニオンギヤであ
る。7はピニオンギヤ6て駆動されるサンギヤである。
4 is the hull. Reference numeral 5 is an additional (output spring) attached to the propeller 11 and 2. Reference numeral 6 is a pinion gear that meshes with this. Reference numeral 7 is a sun gear driven by the pinion gear 6.

8はブラネッ1−ピニオンギヤ、これは普通3個ていど
になっている、9はこれとかみ合うリングギヤであって
、サンギヤ7と共に、この3種類のギヤによって差動ギ
ヤを形成している。10はブラネッ1〜ピニオンギヤ8
を取付けて回転するプラネッ1〜ピニオンギヤリヤであ
って、同時にスバーキャとなっている。11はリンクギ
ヤ9の外側に切られた歯に、かみ合うピニオンギヤであ
る。12はプラネットピニオンキャリヤ1゜に、かみ合
うピニオンギヤである。13はピニオンギヤ11によっ
て駆動される同期発電機である。14はピニオンギヤ1
2を駆動するiα流電動機である。15は交流をi1′
−T流に置換する整流器と、直流電動機の変速装置を組
み入れた制御装置である。この説明では直流電動機を使
用しているが、場合によってはり一イリスタ利用の交流
変速電動is、の便用も可rJ日である。16はブレー
キ装置であって、自動q1のディスクブレーキのような
ものであって、直流電動機系統に故障のあったとき、こ
れを作動せしめて直流電動機14を固定し、軸発電装置
を変動周波数型として、応急運11v1てきるようにし
た安全′jA苔である。17はディ41交流配線、18
は■αがb配線である。
Reference numeral 8 denotes a pinion gear, which is usually set in groups of three. Reference numeral 9 denotes a ring gear that meshes with this gear. Together with the sun gear 7, these three types of gears form a differential gear. 10 is the branet 1 to pinion gear 8
It is a planet 1 to pinion gear rear that is attached and rotates, and at the same time serves as a supercarrier. A pinion gear 11 meshes with teeth cut on the outside of the link gear 9. 12 is a pinion gear that meshes with the planet pinion carrier 1°. 13 is a synchronous generator driven by the pinion gear 11. 14 is pinion gear 1
This is an iα flow motor that drives the motor. 15 is AC i1'
- This is a control device that incorporates a rectifier that replaces the T current and a speed change device for a DC motor. Although a DC motor is used in this explanation, it is also possible to use an AC variable speed electric motor using an iristor depending on the case. Reference numeral 16 denotes a brake device, which is similar to the disc brake of automatic Q1. When there is a failure in the DC motor system, this brake device is activated to fix the DC motor 14 and convert the shaft generator into a variable frequency type. As a result, it is a safety 'jA moss that can be used as emergency luck 11v1. 17 is D41 AC wiring, 18
■ α is the b wiring.

ようするに本図のような系統によって、11゛f流′、
n1助纏14がピニオンギヤ12を回し、これがブラネ
ッ1ヘビニオンキャリャ10を回し、ブラネッ1−ピニ
オンキャ8を公転せしめ、リンクキャ9の回転を増加せ
しめる59動ギヤのJりi理によって、プロペラ軸2の
回転数が低下しても、同期発電機13の回転数を一定に
保ち、発生交流電気のサイクルの変化を防ぐのである。
In other words, by the system shown in this figure, the 11゛f flow',
The n1 assistant gear 14 rotates the pinion gear 12, which rotates the propeller 1 snakeion carrier 10, causing the propeller 1-pinion carrier 8 to revolve and increasing the rotation of the link carrier 9. By the principle of the 59 moving gear, the propeller is Even if the rotational speed of the shaft 2 decreases, the rotational speed of the synchronous generator 13 is kept constant, thereby preventing changes in the cycle of the generated alternating current electricity.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】[Claims] 船舶のプロペラ駆動用のディーゼル主機関によって、直
接発電機を駆動する軸発電装置において、駆動系統に差
動ギヤを設けて、主機関の回転数の変動に応じて、補正
用の系統のfli1転数を調整する附加駆動装置を設け
た、差動ギヤによって変速する軸発電装置。
In a shaft power generation system in which a generator is directly driven by a diesel main engine for driving a ship's propeller, a differential gear is provided in the drive system, and the fli1 shift of the correction system is adjusted according to fluctuations in the rotational speed of the main engine. Shaft power generator with variable speed via differential gears, with additional drive for adjusting the number of gears.
JP23178382A 1982-12-28 1982-12-28 Shaft generator transmitted by differential gear Pending JPS59123440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23178382A JPS59123440A (en) 1982-12-28 1982-12-28 Shaft generator transmitted by differential gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23178382A JPS59123440A (en) 1982-12-28 1982-12-28 Shaft generator transmitted by differential gear

Publications (1)

Publication Number Publication Date
JPS59123440A true JPS59123440A (en) 1984-07-17

Family

ID=16928957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23178382A Pending JPS59123440A (en) 1982-12-28 1982-12-28 Shaft generator transmitted by differential gear

Country Status (1)

Country Link
JP (1) JPS59123440A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223216A (en) * 1985-03-28 1986-10-03 Takashi Takahashi Generating unit
JPS6353200A (en) * 1986-08-21 1988-03-07 ゲブリユ−ダ− ズルツア− アクチエンゲゼルシヤフト Marine propulsion plant with generator for supplying inboard power

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223216A (en) * 1985-03-28 1986-10-03 Takashi Takahashi Generating unit
JPS6353200A (en) * 1986-08-21 1988-03-07 ゲブリユ−ダ− ズルツア− アクチエンゲゼルシヤフト Marine propulsion plant with generator for supplying inboard power

Similar Documents

Publication Publication Date Title
US6416437B2 (en) Transmission for hybrid electric vehicle
US8246499B2 (en) Drive apparatus
US20110300983A1 (en) Driving apparatus for hybrid vehicle
US5603671A (en) Three prime mover bus transmission
US9827977B2 (en) Powertrain with compound-split hybrid transmission having a reduced ravigneaux gear set
CN107107733B (en) Automatic transmission of hybrid vehicle and control method of hybrid vehicle
JP5170581B2 (en) Hybrid drive device
FR2800331A1 (en) HYBRID DRIVE GROUP COMPRISING AT LEAST TWO EPICYCLOIDAL TRAINS
KR20100037204A (en) Hybrid power train of vehicle
CN1951741A (en) Engine starting control apparatus of hybrid drive system
CN107298017A (en) A kind of hybrid power assembly of automatic transaxle
US2571284A (en) Power transmission
US9340099B2 (en) Hybrid power integrated transmission system and method thereof
CN107839464A (en) A kind of hybrid power automatic transmission drive system
US20070187159A1 (en) Power transmission apparatus for hybrid vehicle
US2905025A (en) Hydraulic change speed gearings
JPS59123440A (en) Shaft generator transmitted by differential gear
JP2005061498A (en) Drive device for hybrid car
CN110466340A (en) A kind of hybrid vehicle driving transmission system and its working method
CN108016626B (en) Electromechanical compound transmission device for aircraft
CN103072459A (en) Transmission, hybrid power system and hybrid vehicle
CN208698479U (en) A kind of three planet row hybrid drive devices
CN107672441B (en) Hybrid power system
CN113891814A (en) Control method and system of hybrid power system
JP3337026B2 (en) Hybrid vehicle control method