JPS5912321A - Spectrometer - Google Patents

Spectrometer

Info

Publication number
JPS5912321A
JPS5912321A JP12102082A JP12102082A JPS5912321A JP S5912321 A JPS5912321 A JP S5912321A JP 12102082 A JP12102082 A JP 12102082A JP 12102082 A JP12102082 A JP 12102082A JP S5912321 A JPS5912321 A JP S5912321A
Authority
JP
Japan
Prior art keywords
wavelength
light
measured
reflected light
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12102082A
Other languages
Japanese (ja)
Other versions
JPH0571270B2 (en
Inventor
Yoshiro Ooyama
大山 吉郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP12102082A priority Critical patent/JPS5912321A/en
Publication of JPS5912321A publication Critical patent/JPS5912321A/en
Publication of JPH0571270B2 publication Critical patent/JPH0571270B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

PURPOSE:To make it possible to select a laser device which has the most suitable wavelength for the desired treatment, by measuring and displaying the difference in intensity of reflection with regard to many wavelengths from the nornal skin and the diseased skin before the application of the treatment using a nevus treating laser device. CONSTITUTION:In a wavelength measuring device 42, a light beam, which has a wavelength specified by a wavelength selecting device 47, is selected and extracted out of light beams from a light source 41, and guided to a body to be measured A through a light guide 43. The reflected light from the body to be measured A is guided to a reflected light measuring device 44 through the light guide 43, and the intensity of the reflected light is measured. When the instruction for starting measurement is imparted to a controller 46 from a starting button 45, the wavelengths to be selected are sequentially spcified to the wavelength selecting device 47. Each measured value is memorized. When the measurement starting instruction is outputted again, the same procedure as the first time is performed. The difference between the measured value of the first time and that of the second time is computed and displayed on a display part 48.

Description

【発明の詳細な説明】 本発明は母斑治療用レーデ装置による治療の前に、正常
皮膚と異常皮膚の多種の波長に対する反射強度の差分を
測定・表示することによシ治療妊最適な波長のレーデ装
置を知るととができるようにした分光計に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention measures and displays the difference in reflection intensity for various wavelengths of normal skin and abnormal skin before treatment with a radar device for nevus treatment, thereby determining the optimal wavelength for treatment. This article relates to a spectrometer that can be used to learn about the Rade device.

〔発明の技術的背量〕[Technical weight of the invention]

現在、レーザ光を利用した各種装置が提案されており、
例えば形成外科領域で用いられるものとして第1図に示
すよりなアザやシミ、ソバカス等の母斑を除去するレー
ザ治療装置がある。
Currently, various devices using laser light are being proposed.
For example, as shown in FIG. 1, there is a laser treatment device used in the field of plastic surgery for removing birthmarks such as birthmarks, age spots, and freckles.

第1図において1は装置電源であシ、2はこの装置電源
1からケーブル1aを介して電力供給を受け、レーザ光
を発振するレーザ発振源であって、レーザ発振源2のレ
ーザ出力端にはコネクタ3を介して光ファイバを内蔵す
る可撓性の導光体4が接続されている。
In FIG. 1, 1 is a device power supply, and 2 is a laser oscillation source that receives power from the device power supply 1 via a cable 1a and oscillates a laser beam, and is connected to the laser output end of the laser oscillation source 2. A flexible light guide 4 containing an optical fiber is connected via a connector 3.

また、導光体4の出力端にはコネク15を介して光分布
強度均−化用のカライドスコープを備えた手操作用のア
プリケータ6が接続されている。
Further, a manual applicator 6 equipped with a kaleidoscope for equalizing light distribution intensity is connected to the output end of the light guide 4 via a connector 15.

このような装置においてレーザ発振源2の出力するレー
ザ光は導光体4を介してアプリケータ6に導かれ、この
アプリケータ6内のカライドスコープにて光強度分布の
均一化が図られた後、アプリケータ6の先端よシ出射さ
れる。
In such a device, the laser light output from the laser oscillation source 2 is guided to the applicator 6 via the light guide 4, and a kaleidoscope in the applicator 6 attempts to make the light intensity distribution uniform. Afterwards, it is emitted from the tip of the applicator 6.

従って、術者はアプリケータ6を手で握り、照準を患部
に合わせてレーザ光を照射させる。
Therefore, the operator holds the applicator 6 in his hand, aims the target at the affected area, and irradiates the laser beam.

これによシ患部組w!1を瞬間的に焼灼し、治療を行う
This is the affected group lol! Treatment is performed by instantaneously cauterizing 1.

とのよう外従来装置において問題となるのけ患部組織の
分光特性が治療効果に大きな影響を持つことである。
A problem with conventional devices is that the spectral characteristics of the injured tissue have a large effect on the therapeutic effect.

即ち、レーザ治療のうち、患部組繊細胞の光選択特性を
利用して熱破壊を行うものでは正常細胞と異常細胞のレ
ーデ光吸収量の差が問題とカる。
That is, among laser treatments, the difference in the amount of LED light absorbed between normal cells and abnormal cells poses a problem when thermal destruction is performed by utilizing the photoselective characteristics of tissue cells in the affected area.

第2図は色素性母斑の場合について示した患部組織の構
造である0図中21は正常皮膚組織、11217;r患
部旬刊1123は表皮、249−J真皮、22は有色、
1ull胞或いは有色物質であ不。
Figure 2 shows the structure of the affected tissue in the case of a pigmented nevus. In the figure, 21 is normal skin tissue, 11217; r Affected area 1123 is epidermis, 249-J dermis, 22 is colored,
It is not a 1ull cell or a colored substance.

患部母斑が1冗皮膚と色が異なるのFi真皮層内にメラ
ニンに起因する有色細胞を多く含んでいるためであり、
このメラニン果粒を染料に置き換えたのがいわゆる入墨
である。
The color of the affected nevus is different from that of the skin because the dermal layer contains many colored cells caused by melanin.
The so-called tattoo is created by replacing the melanin granules with dye.

従って、母斑治療を対象としたレーザ装置では入M〜を
消すことも可能であシ、作用析序の面では同一である。
Therefore, in a laser device intended for nevus treatment, it is also possible to erase the input M~, and the order of action is the same.

ところで、−L′的には12図の、四部母!lL#j!
のすべてが異常というわけではない。すなわち、母斑と
は、正常組紐の中に有色細胞が混在する状態であル、そ
の混在す石割台によル黒や茶色など、色おいが異なって
くるのである。
By the way, in terms of -L', it is the four-part mother of figure 12! lL#j!
Not all of them are abnormal. In other words, a nevus is a condition in which colored cells are mixed in a normal braid, and the color varies depending on the type of stone in which they are mixed, such as black or brown.

今、第2図の想部母剃22にレーザ光を瞬間に照射した
場合、真皮層24内の正体細胞にはエネルギ吸収kが少
なく、有色細胞j5内のメラニンに対してはエネルギ吸
収岨を多くできるような波長を選択し、エネルギ密度を
適切な値にすることにより、有色細胞を選択的に破壊で
きることにカリ、このような点をうまく利用したのがレ
ーザ治療である。
Now, when the laser beam is instantaneously irradiated to the laser beam 22 in FIG. Laser therapy takes advantage of the fact that it is possible to selectively destroy colored cells by selecting a wavelength that produces a large amount of radiation and setting the energy density to an appropriate value.

ところで、患部母斑22に隣接する正常皮膚組織21は
患部母斑22内の正常細胞とほとんど同じ分光特性を示
すことから、母斑周囲の正常組織の分光特性を測定し、
その測定値をもって、患部母斑内の正常細胞の分光特性
とすることができる。
By the way, since the normal skin tissue 21 adjacent to the affected nevus 22 exhibits almost the same spectral characteristics as the normal cells within the affected nevus 22, the spectral characteristics of the normal tissue around the nevus are measured,
The measured values can be used as the spectral characteristics of normal cells within the affected nevus.

一方、患部母斑22の分光特性は磨部母斑内の正常細胞
と有色細胞の各々の分光特性を合成したものとなるから
、患部母斑22に対する分光特性の差には有色細胞に対
する分光特性を表わす要素が含まれていることになる。
On the other hand, the spectral characteristics of the affected nevus 22 are a combination of the spectral characteristics of normal cells and colored cells within the nevus, so the difference in spectral characteristics for the affected nevus 22 includes the spectral characteristics for colored cells. It contains an element representing.

従って、有色細胞あるいは有色物質の選択的破壊をレー
ザ光で行う場合において、これら分光特性のスイクトル
差が十分大きく々るよう力波長のレーザ光を選択するこ
とができhば破壊対象の細胞または物質にのみレーザ光
のエネルギを集中させることができ、より高い治療効果
が得られることになる。
Therefore, when selectively destroying colored cells or colored substances with laser light, it is possible to select a laser beam with a power wavelength that makes the spectral difference in these spectral characteristics sufficiently large. The energy of the laser beam can be concentrated only on the target area, resulting in a higher therapeutic effect.

第3図(a) (b) (C)は分光計により言1測し
た皮膚の臨床例を示す図であり、横軸は光の波長λ〔μ
m〕縦軸は反射率η1を示している。
Figures 3 (a), (b), and (C) are diagrams showing clinical examples of skin measured using a spectrometer, and the horizontal axis is the wavelength of light λ [μ
m] The vertical axis indicates the reflectance η1.

第3図(a) i、j正常部位の反射率スペクトル特性
であシ、全般的に高い反射率を示していて波長が長く々
るにつれ反射率が高くなp、0.65μmより長い領域
では反射率はほぼ一定の傾向を示している。また、0.
55μm近傍で極小値を持つがこのよう々吸収特性を示
すのは赤朋球内のヘモグロビン吸収によるものでおる。
Figure 3 (a) i, j The reflectance spectrum characteristics of the normal region.The reflectance is generally high, and as the wavelength increases, the reflectance increases, p, in the region longer than 0.65 μm. The reflectance shows a nearly constant tendency. Also, 0.
This absorption characteristic, which has a minimum value near 55 μm, is due to hemoglobin absorption within the red sphere.

このような反射率ス(クトル特性イは視覚上、いわゆる
肌色として認識される。
Such reflectance characteristics are visually recognized as so-called skin color.

第3図(b)は第3図(、)の正常部位に隣接した黒色
母斑の例であり、正常部位に比べて全般的に低い反射率
を示している。波長が長くなるにつれ反射率がゆるやか
に大きくなるが、このような特性はメラニン色素の反射
率特性そのものであり、このような反射率スペクトル特
性口は視覚上茶色或いは黒色として認識される。
FIG. 3(b) is an example of a black nevus adjacent to the normal area in FIG. 3(,), and shows an overall lower reflectance than the normal area. As the wavelength becomes longer, the reflectance gradually increases, but this characteristic is the reflectance characteristic of melanin pigment itself, and such a reflectance spectrum characteristic mouth is visually recognized as brown or black.

第3図(c)は第3図(a) 、 (b)の特性とその
除算値をとった反射率スにクトル差ハを示したものであ
る。
FIG. 3(c) shows the characteristic difference in FIGS. 3(a) and 3(b) and the reflectance (x) obtained by dividing the characteristics.

反射率スRクトル差は0.65〜0.7μm近傍でピー
クを示し、その差はおよそ0.3にも及ぶ。
The reflectance SR difference shows a peak near 0.65 to 0.7 μm, and the difference is as much as about 0.3.

従って、このよう々点から本例の如き場合にはルビーレ
ーザの波長’0.6943μmが最も近い波長であるこ
とがわかるから、使用するレーザ光はルビーレーデが最
適であることがわかる。
Therefore, from these points, it can be seen that in a case like this example, the wavelength of the ruby laser is 0.6943 μm, which is the closest wavelength, so it can be seen that the ruby laser beam is most suitable as the laser beam to be used.

ところで、母斑治療に使用できるレーザ装置は現時点で
は波長が約500μmのアルゴンレーザ、約700 f
imのルビーレーザ、1.06μmのYAGレーザの3
種類であり、正常部と異常部の反射率のスイクトル差の
最も大きな波長に近い波長の光を出力するレーザ装置が
その母斑の治療に適していると言える。また、母斑に最
適なレーザ装置による治療を行えば、正常細胞に与える
損傷が少なく、かつ治療効果が大きいことになる。
By the way, the laser equipment that can be used for nevus treatment at the moment is an argon laser with a wavelength of about 500 μm and a laser beam at about 700 f.
im ruby laser, 1.06μm YAG laser 3
It can be said that a laser device that outputs light at a wavelength close to the wavelength at which the quictre difference in reflectance between the normal and abnormal areas is the largest is suitable for treating the nevus. Furthermore, if a nevus is treated with an optimal laser device, there will be less damage to normal cells and the treatment will be more effective.

〔発明の目的〕[Purpose of the invention]

本発明は上記の事情に鑑みなされたもので、治療に使用
できるレーザの波長に近い複数個の波長の正常部と異常
部の反射強度を測定し、反射強度の差を割算して波長と
共に表示する母斑の治療に最も適したレーザ装置、を指
示できる分薯、割を士)I伊するものである。
The present invention was developed in view of the above circumstances, and measures the reflection intensities of normal and abnormal areas at multiple wavelengths close to the wavelength of a laser that can be used for treatment, and divides the difference in reflection intensities to calculate the This is a device that can be used to determine which laser device is most suitable for treating the nevus in question.

〔発明の概要〕[Summary of the invention]

即ち、本発明は上記目的を達成するため、光源と、この
光源からの光のうち指定された所定の波長の光を?択抽
出する波長設定器と、この選択抽出された光を被測定体
に導くと共に被測定体からの反射光を導入するライトガ
イドと、このライトガイドよシ導入された前記反射光の
強度を11111定する測定装置“と、測定開始の指令
を受けるとFil記波長波長設定器択させる波長を順次
指定し、また、各波長毎の測定値を測定装置より得て記
憶すると共に選択すべき波長すべての反射光強度の測定
が終ると一回目の111作を終了し、再び測定開始の指
令を受けると上記動作を実行すると共に各波長毎に前記
−回目に得た測定値との差の値を演算して波長データと
ともに出力するコントローラと、このコントローラの出
力する波長データ及び演算値を表示する表示装置とよυ
構成し、ライトガイドで被測定体となる患部近傍の皮膚
及び患部の皮膚に前記各波長の光を導くことによシ、そ
れぞれの反射光の強さを測定して波長毎に測定値の差を
求め、その結果を表示するようにして正常な組織と異常
な組織との光吸収差の大なる波長を知って治療に最適な
波長のレーデ装置を選定できるようにする。
That is, in order to achieve the above object, the present invention provides a light source and a light having a specified predetermined wavelength among the light from the light source. A wavelength setting device for selectively extracting the light, a light guide for guiding the selectively extracted light to the object to be measured and introducing the reflected light from the object to be measured, and the intensity of the reflected light introduced by the light guide to 11111. When receiving a command to start measurement, it sequentially specifies the wavelengths to be selected, obtains and stores measured values for each wavelength from the measuring device, and selects all wavelengths to be selected. When the measurement of the reflected light intensity is completed, the first 111 operation is completed, and when the instruction to start measurement is received again, the above operation is executed and the difference value from the measured value obtained at the -th time is calculated for each wavelength. A controller that calculates and outputs it together with wavelength data, and a display device that displays the wavelength data and calculated values that this controller outputs.
By guiding the light of each wavelength to the skin near the affected area and the affected skin of the object to be measured using a light guide, the intensity of each reflected light is measured and the difference in the measured value for each wavelength is determined. By determining the wavelength and displaying the results, it is possible to know the wavelength at which there is a large difference in light absorption between normal tissue and abnormal tissue, and to select the radar device with the optimal wavelength for treatment.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について第4図、第5図を参照
しながら説明する。
An embodiment of the present invention will be described below with reference to FIGS. 4 and 5.

第4図は本発明の一実施例を示すブロック図である。図
中41は白色光を発光する光源であシ、42はこの光源
4ノからの光よシ所定の波長の光を抽出する波長設定器
である。この波長設定器42は例えば外部指令によシ選
択できる複数個のフィルタが保持されて前記光源4ノよ
り照射される白色光から選択されたフィルタによって定
まる決められた波長の光のみを透過させる。43はライ
トガイドであシ、この波長選択器47の透過光を被測定
物Aへ伝えると共に、被測定物からの反射光を反射光測
定器44に伝える働きをする。
FIG. 4 is a block diagram showing one embodiment of the present invention. In the figure, 41 is a light source that emits white light, and 42 is a wavelength setting device that extracts light of a predetermined wavelength from the light from this light source 4. The wavelength setter 42 holds a plurality of filters that can be selected by, for example, an external command, and transmits only light of a predetermined wavelength determined by the filter selected from the white light emitted from the light source 4. Reference numeral 43 denotes a light guide, which functions to transmit the transmitted light of this wavelength selector 47 to the object to be measured A, and also to transmit the reflected light from the object to be measured to the reflected light measuring device 44.

反射光測定器44は、ライトガイド43から入る被測定
物Aの反射光の強さを測定する。
The reflected light measuring device 44 measures the intensity of the reflected light from the object A that enters from the light guide 43.

45は測定開始信号をシステム全体の制御を司るコント
ローラ46に与えるためのスタート釦であシ、コントロ
ーラ46は操作者がスタート釦45を押すことによって
このスタート釦45から1回目の48号を受けると波長
選択器47にフィルタ選択のための信号を送って最初に
測定する波長を指示し、その波長による光の測定反射強
度が反射光測定器44から入るとその測定値を記憶し、
再び波長選択器47に次に測定する波長を指示すると共
に、反射光測定器44から入る反射強度を記憶すると云
う具合にこの動作を繰シ返し、決められたすべての波長
の反射強度を記憶し終ると動作を一旦停止し、また再び
操作者がスタート釦45を押すと、上述と同様の動作を
成し、次に記憶しである先の反射強度測定値から次の反
射強度測定値を引きその差分値を波長と共に表示器48
に与えてこれを表示させる。
45 is a start button for giving a measurement start signal to the controller 46 which controls the entire system, and when the controller 46 receives the first No. 48 from the start button 45 by the operator pressing the start button 45, A signal for filter selection is sent to the wavelength selector 47 to instruct the wavelength to be measured first, and when the measured reflection intensity of light at that wavelength is received from the reflected light measuring device 44, the measured value is stored,
This operation is repeated by instructing the wavelength selector 47 again to determine the next wavelength to be measured and storing the reflection intensity coming from the reflected light measuring device 44, thereby storing the reflection intensities of all determined wavelengths. When the operation is finished, the operation is temporarily stopped, and when the operator presses the start button 45 again, the same operation as described above is performed, and the next reflection intensity measurement value is then memorized and subtracted from the previous reflection intensity measurement value. The difference value along with the wavelength is displayed on the display 48.
to display this.

前記波長選択器47は、コントローラ46から信号を受
け、測定する波長を波長設定器42に指示する働きをす
る。また表示器48は、コントローラ46で引算した反
射率差を波長と共に表示するものである。
The wavelength selector 47 receives a signal from the controller 46 and functions to instruct the wavelength setter 42 of the wavelength to be measured. Further, the display 48 displays the reflectance difference subtracted by the controller 46 together with the wavelength.

第7図は波長選択器47とライトガイド43の概略図で
ある。41は前述の光源で例えばタングステンランプ等
を用いている。42Aは入力用光学系であシ、光源41
から入る光を平行光線処する。42Bは回転円板であシ
、この回転円板42Bには測定する波長のみを通すフィ
ルタ42C,42D、42Eがそれぞれ固定された窓が
同一円周上に沿って設けてあり、回転円板4.?Bを回
転させて前記平行光線の光軸位置に来るフィルタを選択
することにより所望の波長を得るものである。42 F
d出出用用光学系あり、回転円板42Bのフィルタを透
過した光を照射用のライトガイド43の入力端面に伝え
る働きをする。
FIG. 7 is a schematic diagram of the wavelength selector 47 and the light guide 43. Reference numeral 41 represents the aforementioned light source, which uses, for example, a tungsten lamp. 42A is an input optical system, and a light source 41
Parallel light processing is applied to the light that enters from. 42B is a rotating disk, and this rotating disk 42B is provided with windows along the same circumference to which filters 42C, 42D, and 42E that pass only the wavelength to be measured are fixed, respectively. .. ? A desired wavelength is obtained by rotating B and selecting a filter that is located at the optical axis position of the parallel light beam. 42F
d There is an optical system for output, which functions to transmit the light transmitted through the filter of the rotating disk 42B to the input end face of the light guide 43 for irradiation.

波長選択器47における回転円板42Bは図示しない/
Fルスモータにより回転駆動される構成となっていると
共に、各フィルタの対応する位置に図示しない位置検出
器が取り伺けてあシ、波長選択器47で指示された波長
のフィルタを光路中に設定できるようになっている。
The rotating disk 42B in the wavelength selector 47 is not shown.
In addition to being configured to be rotationally driven by an F pulse motor, a position detector (not shown) can be located at a position corresponding to each filter, and a filter with a wavelength specified by a wavelength selector 47 is set in the optical path. It is now possible to do so.

また、光源41と、入力用レンズ系42にと、出力用レ
ンズ系42F及びレーザ光照射用のライトがイド43の
入力端面は光学的に同軸になるよりなイ1、(梠になっ
ている。また前記ライトガイド43は一端側が二経路に
分岐されておシ、集合端側か測定端となっていて、この
集合端側に手操作を行うためのハンドピース43Aが設
けられている。そして、分岐端の一方は前記レンズ系4
2Fに、また他方は反射光測定器44に光学的に連結さ
れ、波長設定器42がら入る光をハンドピース43kを
介して枦測定物Aに伝える働きをすると共に破測定物A
からハンドピース43Aを介して入る反射光を反射光測
定器44へ伝える。ハンドぎ−ス4 、? A Id、
光学系(図示せず)を内蔵1、被測定物Aで反射された
反射光が効率良く反射光導出側のライトガイド43へ伝
えることができる構造になっている。
In addition, the input end face of the light source 41, the input lens system 42, the output lens system 42F, and the laser beam irradiation light are optically coaxial. Furthermore, the light guide 43 has one end branched into two paths, and has a collecting end or a measuring end, and a hand piece 43A for manual operation is provided on the collecting end. , one of the branch ends is the lens system 4
2F, and the other is optically connected to the reflected light measuring device 44, which functions to transmit the light entering from the wavelength setting device 42 to the measuring object A via the handpiece 43k, and also to the measuring object A.
The reflected light that enters through the hand piece 43A is transmitted to the reflected light measuring device 44. Hand gear 4? A Id,
It has a built-in optical system (not shown) 1, and is structured so that the reflected light reflected by the object to be measured A can be efficiently transmitted to the light guide 43 on the reflected light output side.

次に上記構成の本装貨の動作について説明する。先ずオ
被レータは、ライトガイド43の先端のハンドピース4
3kを手で持ち、その先端側を患者の異常皮膚に隣接す
る正常皮膚に当てスI−)釦45を押す。すると、コン
トローラ46は最初に測定する波長を波長選択器47に
指示し、波長設定器42のフィルタをセットする。これ
によシ光源41からの光は波長設定器42のフィルタに
よシ特定波長の光となシ、ライトガイド43を通って正
常皮膚に照射される。
Next, the operation of the present cargo having the above configuration will be explained. First, the operator attaches the hand piece 4 at the tip of the light guide 43.
Hold the 3k in your hand and press the button 45 by applying the tip side to the patient's normal skin adjacent to the abnormal skin. Then, the controller 46 instructs the wavelength selector 47 about the wavelength to be measured first, and sets the filter of the wavelength setter 42. Thereby, the light from the light source 41 is converted into light of a specific wavelength by the filter of the wavelength setting device 42, and is irradiated to normal skin through the light guide 43.

そして、正常皮膚の反射光はライトガイド43を通って
反射光測定器44に導かれ、ここでその強度が測定され
コントローラ46によりその値が記1、章される。次に
コントローラ46は次の測定波長を波長選択器47に指
示し、上述の動作を行う。このようにして波長別の測定
を次々に繰り返し、測定対象とする全波長の反射光の測
定値がコントローラ46に記憶される。
The reflected light from the normal skin is guided to a reflected light measuring device 44 through a light guide 43, where its intensity is measured and the value is recorded by a controller 46. Next, the controller 46 instructs the wavelength selector 47 about the next wavelength to be measured, and performs the above-described operation. In this way, the measurement for each wavelength is repeated one after another, and the measured values of the reflected light of all wavelengths to be measured are stored in the controller 46.

次に、第4レータはライトガイド43の先端のハンドピ
ース4.9Aを治療すべき異常皮膚に当てスタート釦4
5を押す。すると上述と同様の動作が成されて異常皮膚
の反射光が反射光測定器44で測定され、その結果が次
々にコントローラ46に送られ、佐、にfiL!憶しで
ある波長別正常皮膚の測定値から同一波長の測定値を抽
出L/ 、その測定値に対する異常皮膚の測定値の差分
を計嘗して波長データとともに表示器48に遂る。こh
により表示器4・8には差分の値が波長と共に表示され
る。
Next, the fourth controller places the hand piece 4.9A at the tip of the light guide 43 on the abnormal skin to be treated and presses the start button 4.
Press 5. Then, the same operation as described above is carried out, and the reflected light of the abnormal skin is measured by the reflected light measuring device 44, and the results are sent one after another to the controller 46, and the fiL! A measured value of the same wavelength is extracted from the memorized measured values of normal skin for each wavelength L/, and the difference between the measured value of abnormal skin and the measured value is calculated and sent to the display 48 along with the wavelength data. Hey
The difference value is displayed on the displays 4 and 8 together with the wavelength.

これにより、オペレータは表示器48に表示されている
反射強度の差の最も大きい波長を知ることができ、その
波長に最も近いレーザ装置を選ぶことができるので、最
も高い治療効果を期待でき、従って、治療は効率良く行
えるので患者の苦痛は最小限に押えら牙する。
As a result, the operator can know the wavelength with the largest difference in reflection intensity displayed on the display 48, and can select the laser device closest to that wavelength, thereby expecting the highest therapeutic effect. Since the treatment can be performed efficiently, the patient's pain is kept to a minimum.

尚、上述したものは治療前のレーザ装置の選択について
のものであるが、治療後にとの装置を使用すれば、治療
の状態を定曜的につかむことができる。
Although the above description is about selecting a laser device before treatment, if the same device is used after treatment, the status of the treatment can be regularly checked.

効 〔発明の刻果〕 以上詳述したように本発明は光源と、この光源からの光
のうち指定された所定の波長の光を選択抽出する波長設
定器と、この選択抽出された光を被測定体に導くと共に
被測定体からの反射光を導入するライトガイドと、この
ライトガイドより導入された前記反射光の強度を測定す
る測定装置と、測定開始の指令を受けると前記波長設定
器に選択させる波長を順次指定し、また、波長毎の測定
値を測定装置から得て配憶すると共に選択すべき波長す
べての反射光強度の測定が終ると一回目の動作を終了し
、再び測定開始の指令を受けると上記動作を実行すると
共に各波長毎に前記−回目に得た測定値との差の値を演
算して波長データとともに出力するコントローラと、こ
のコントローラの出力する波長データ及び演初値を表示
する表示装置とよ多構成し、ライトガイドで被測定体と
なる患部近傍の皮膚及び患部の皮膚に前記各波長の光を
導くことによシ、それぞれの反射光の強さを測定して波
長毎に測定値の差を求め、その結果を表示するようにし
たので、波長別の反射強度の差がわかるから、正常皮膚
の光吸収が少なく、異常皮1(患部)の光吸収の大きい
波長を知ることができ、この波長に最も近い波長のレー
ザ装置を使用することで、正常組織をできるだけ保障し
つつ異常組織を焼灼できるから効率良く、シかも適切な
患部治療が可能となるなど、優れた特徴を有する分光計
を提供することができる。
Effects [Effects of the Invention] As described in detail above, the present invention includes a light source, a wavelength setter that selectively extracts light of a specified predetermined wavelength from among the light from the light source, and a wavelength setter that selectively extracts light of a specified predetermined wavelength from among the light from the light source. a light guide that guides the light reflected from the object while guiding it to the object to be measured; a measuring device that measures the intensity of the reflected light introduced from the light guide; and, upon receiving a command to start measurement, the wavelength setting device. The wavelengths to be selected are sequentially specified, and the measured values for each wavelength are obtained from the measuring device and stored, and when the reflected light intensity of all the wavelengths to be selected has been measured, the first operation is completed and the measurement is performed again. Upon receiving a start command, the controller executes the above operation and calculates the difference value for each wavelength from the measured value obtained the -th time and outputs it together with the wavelength data, and the controller outputs the wavelength data and operation. It consists of a display device that displays the initial value, and a light guide guides the light of each wavelength to the skin near the affected area and the skin of the affected area to measure the intensity of each reflected light. The difference in measured values for each wavelength is calculated and the results are displayed, so you can see the difference in reflection intensity for each wavelength, indicating that normal skin has less light absorption and abnormal skin 1 (affected area) has less light absorption. By knowing the wavelength with a large wavelength and using a laser device with a wavelength closest to this wavelength, it is possible to cauterize abnormal tissue while preserving normal tissue as much as possible, making it possible to treat the affected area efficiently and appropriately. It is possible to provide a spectrometer with excellent features such as.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はレーザ治療装置の概略的な構成を示す斜視図、
第2図は色素母斑の患部組織の断面図、第3図(、)は
正常部の反射率スペクトル特性の一例を示す図、第3図
伽)は黒色母斑の反射率ス4クトル特性の一例を示す図
、第3図(c)は第3図(a)から第3図(b)を差し
引いた正常部と黒色母斑の反射率スペクトル差を示す図
、第4図は本発明の一実施例を示すブロック図、第5図
は第4図の波長設定器42とライトガイド43の一具体
例を示す図である。 1・・・装置電源、IA・・・ケーブル、2・・・レー
ザ発振器、3・・・コネクタ、4・・・光導元部、5・
・・コネクタ、6・・・光放出部、21・・・正常皮膚
組織、22・・・患部母斑、23・・・表皮、24・・
・真皮、25・・・有色細胞あるいは有色物質、41・
・・光源、42・・・波長設定器、43・・・ライトガ
イド、44・・・反射率測定器、45・・・スタート釦
、46・・・コントローラ、47・・・波長選択器、4
8・・・表示器、42k・・・入力用光学系、42B・
・・回転円板、42F・・・出力用光学系、42C,4
2D,42E・・・フィルタ。 第1図 第2図 第3因 (a) (b) 光のC皮長へ〇m〕 第3図 (c) 光のり皮長大[μm]
FIG. 1 is a perspective view showing the schematic configuration of the laser treatment device;
Figure 2 is a cross-sectional view of the affected tissue of a pigmented nevus, Figure 3 (, ) is a diagram showing an example of the reflectance spectrum characteristics of a normal area, and Figure 3 (a) is a reflectance spectrum characteristic of a black nevus. A diagram showing an example, FIG. 3(c) is a diagram showing the reflectance spectrum difference between a normal area and a black nevus, which is obtained by subtracting FIG. 3(b) from FIG. 3(a), and FIG. FIG. 5 is a block diagram showing one embodiment of the present invention, and FIG. 5 is a diagram showing a specific example of the wavelength setter 42 and light guide 43 shown in FIG. DESCRIPTION OF SYMBOLS 1... Device power supply, IA... Cable, 2... Laser oscillator, 3... Connector, 4... Light guide part, 5...
... Connector, 6... Light emitting part, 21... Normal skin tissue, 22... Affected nevus, 23... Epidermis, 24...
・Dermis, 25... colored cells or colored substances, 41.
...Light source, 42...Wavelength setting device, 43...Light guide, 44...Reflectance measuring device, 45...Start button, 46...Controller, 47...Wavelength selector, 4
8... Display unit, 42k... Input optical system, 42B.
...Rotating disk, 42F...Output optical system, 42C, 4
2D, 42E...filter. Figure 1 Figure 2 Figure 3 Cause (a) (b) Light C skin length 〇m] Figure 3 (c) Light paste skin length [μm]

Claims (1)

【特許請求の範囲】[Claims] 光源と、この光源からの光のうち指定された所定の波長
の光を選択抽出する波長設定器と、この選択抽出された
光を被測定体に導くと共に被測定体からの反射光を導入
するライトガイドと、このライトガイドよシ導入された
前記反射光の強度を測定する測定装置と、測定開始の指
令を受けると前記波長設定器に選択させる波長を順次指
定し、また、各波長毎の測定値を測定装置よシ得て記憶
すると共に選択すべき波長すべての反射光強度の測定が
終ると一回目の動作を終了し、再び測定開始の指令を受
けると上記動作を実行すると共に各波長毎に前記−回目
に得た測定値との差の値を演算して波長データとともに
出力するコントローラと、このコントローラの出力する
波長データ及び演算値を表示する表示装置とよ多構成し
たことを特徴とする分光計。
A light source, a wavelength setter that selectively extracts light of a specified predetermined wavelength from the light from the light source, and a wavelength setting device that guides the selectively extracted light to the object to be measured and introduces reflected light from the object to be measured. A light guide, a measuring device that measures the intensity of the reflected light introduced by the light guide, and upon receiving a command to start measurement, sequentially specify the wavelength to be selected by the wavelength setting device, and The measurement device obtains and stores the measured values, and when the measurement of the reflected light intensity of all the wavelengths to be selected is completed, the first operation is completed, and when the instruction to start measurement is received again, the above operation is executed and each wavelength is A controller that calculates the value of the difference from the measured value obtained for each time and outputs it together with the wavelength data, and a display device that displays the wavelength data and the calculated value output by the controller. spectrometer.
JP12102082A 1982-07-12 1982-07-12 Spectrometer Granted JPS5912321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12102082A JPS5912321A (en) 1982-07-12 1982-07-12 Spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12102082A JPS5912321A (en) 1982-07-12 1982-07-12 Spectrometer

Publications (2)

Publication Number Publication Date
JPS5912321A true JPS5912321A (en) 1984-01-23
JPH0571270B2 JPH0571270B2 (en) 1993-10-06

Family

ID=14800815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12102082A Granted JPS5912321A (en) 1982-07-12 1982-07-12 Spectrometer

Country Status (1)

Country Link
JP (1) JPS5912321A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503388A (en) * 1973-05-11 1975-01-14
JPS51136474A (en) * 1975-05-06 1976-11-25 Siemens Ag Drift correcting apparatus for gas analyzer
JPS52138178A (en) * 1976-05-14 1977-11-18 Toshiba Machine Co Ltd Apparatus for measuring hue of liquid
JPS5311079A (en) * 1976-07-15 1978-02-01 Sterndent Corp Method of producing colorimeter and mixed ceramic material
JPS5360683A (en) * 1976-11-12 1978-05-31 Uragami Riko Kk Light detector for photometer
JPS5455881U (en) * 1978-09-21 1979-04-18
JPS55125528U (en) * 1979-03-01 1980-09-05

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503388A (en) * 1973-05-11 1975-01-14
JPS51136474A (en) * 1975-05-06 1976-11-25 Siemens Ag Drift correcting apparatus for gas analyzer
JPS52138178A (en) * 1976-05-14 1977-11-18 Toshiba Machine Co Ltd Apparatus for measuring hue of liquid
JPS5311079A (en) * 1976-07-15 1978-02-01 Sterndent Corp Method of producing colorimeter and mixed ceramic material
JPS5360683A (en) * 1976-11-12 1978-05-31 Uragami Riko Kk Light detector for photometer
JPS5455881U (en) * 1978-09-21 1979-04-18
JPS55125528U (en) * 1979-03-01 1980-09-05

Also Published As

Publication number Publication date
JPH0571270B2 (en) 1993-10-06

Similar Documents

Publication Publication Date Title
US11819270B2 (en) Light energy sealing, cutting and sensing surgical device
US10722293B2 (en) Surgical device with an end effector assembly and system for monitoring of tissue before and after a surgical procedure
CA2171260C (en) Method and apparatus for depilation using pulsed electromagnetic radiation
US7029469B2 (en) Method and apparatus for laser removal of hair
US8393330B2 (en) Hair treatment system and method
US10518106B2 (en) Device and method for low intensity optical hair growth control
Ross Laser versus intense pulsed light: competing technologies in dermatology
CA2195294C (en) Method and apparatus for depilation using pulsed electromagnetic radiation
US20050251117A1 (en) Apparatus and method for treating biological external tissue
CN112912026A (en) Real-time monitoring of the course of skin treatment for cosmetic laser cosmetology
JPH0237191B2 (en)
DE10120787A1 (en) Remission-controlled device with laser handpiece for sensor-controlled selective laser therapy of blood vessels and skin tissues has multiple-sensor system e.g. using near infrared or visible radiation
JP2008246003A (en) Laser treatment system and laser treatment method
Alhallak et al. The Ultimate Guide for Laser and IPL in the Aesthetic Field
JPS5912321A (en) Spectrometer
JPS5883934A (en) Medical spectrometer
EP1848356B1 (en) Tissue treatment system
WO2021019431A1 (en) Optical meter for eyebrow coloring treatment
JPH0113386B2 (en)
CN109788946B (en) Selective skin treatment using laser equivalent intense pulsed light device
Hædersdal et al. Risk assessment of side effects from copper vapor and argon laser treatment: the importance of skin pigmentation
Itzkan et al. Established Dermascan treatment parameters using cherry angiomas as a model
van Gemert et al. Argon-Ion-Laser Coagulation Of Dermal Lesions