JPS59123167A - Fuel cell system - Google Patents

Fuel cell system

Info

Publication number
JPS59123167A
JPS59123167A JP57233459A JP23345982A JPS59123167A JP S59123167 A JPS59123167 A JP S59123167A JP 57233459 A JP57233459 A JP 57233459A JP 23345982 A JP23345982 A JP 23345982A JP S59123167 A JPS59123167 A JP S59123167A
Authority
JP
Japan
Prior art keywords
gas
fuel
fuel gas
differential pressure
oxidizing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57233459A
Other languages
Japanese (ja)
Inventor
Hiroshi Hayashi
宏 林
Takeshi Kuwabara
武 桑原
Mitsuru Kono
河野 満
Hiroshi Tomiki
富来 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57233459A priority Critical patent/JPS59123167A/en
Publication of JPS59123167A publication Critical patent/JPS59123167A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a fuel cell system having highly increased safety without decreasing performance by installing a discharge valve in a fuel gas exhaust part and oxidizing gas exhaust part respectively, and opening each discharge valve according to differential pressure of a fuel gas and oxidizing gas. CONSTITUTION:In a fuel cell system, control valves 24 and 25 are installed in a fuel gas supply pipe 11F and an oxidizing gas supply pipe 11A respectively and flow rate of fuel gas F and oxidizing gas A is controlled depending on the output of a cell main body 11. Differential pressure of fuel gas F and oxidizing gas A in the main body 11 is detected with a differential pressure gage 26 and inputted to a controller 27. A fuel gas discharge valve 28 is installed between a fuel gas exhaust part 11f2 and burning equipment 12, and an oxidizing gas discharge valve 29 is connected between an oxidizing gas exhaust part 11a2 and mixing equipment 13. The controller 27 opens discharge valves 28 and 29 according to a signal from the differential pressure gage 26 to discharge fuel gas and oxidizing gas which finished reaction.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は燃料電池本体内における燃料ガスと酸化ガスと
の差圧を制御するようにした燃料電池装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell device that controls the differential pressure between fuel gas and oxidizing gas within a fuel cell main body.

〔発明の技術的背景〕[Technical background of the invention]

燃料電池装置は燃料のもつ化学的エネルギを直接電気的
エネルギに変換するものであって、電解質を挾んで1対
の多孔質電極を配置するとともに、一方の電極の背面に
水素々どの燃料ガスを接触させ、他方の電極の背面に酸
素を含む酸化ガスを接触させて化学反応を生じさせ、こ
のとき発生する電気的エネルギを」二記1対の多孔質電
極から取出すように構成されている。
A fuel cell device directly converts the chemical energy of fuel into electrical energy, and has a pair of porous electrodes sandwiching an electrolyte, and a fuel gas such as hydrogen or the like is placed on the back of one electrode. A chemical reaction is caused by bringing an oxidizing gas containing oxygen into contact with the back surface of the other electrode, and the electrical energy generated at this time is extracted from the pair of porous electrodes.

電解質としては溶融塩、アルカリ溶液、酸性溶液などが
あるが、ここではリン酸を電解質とする燃料電池装置に
ついて説明する。
Examples of the electrolyte include molten salt, alkaline solution, and acidic solution, but here, a fuel cell device using phosphoric acid as the electrolyte will be described.

第1図において、図中1は繊維質シートや鉱物質粉末に
リン酸を含浸させた電解質層である。
In FIG. 1, 1 is an electrolyte layer made of a fibrous sheet or mineral powder impregnated with phosphoric acid.

また図中2はアノード、3はカソードである。Further, in the figure, 2 is an anode, and 3 is a cathode.

アノード2およびカソード3はいずれも炭素質の多孔性
の電極で、通常は電解質層1に接する面に触媒としての
白金を塗付しである。図中4は水素を含む燃料ガスFを
流入させる燃料ガス流入室、5は酸素を含む酸化ガス(
通常は空気)Aを流入させる酸化ガス流入室である。
Both the anode 2 and the cathode 3 are carbonaceous porous electrodes, and the surfaces in contact with the electrolyte layer 1 are usually coated with platinum as a catalyst. In the figure, 4 is a fuel gas inflow chamber into which fuel gas F containing hydrogen is introduced, and 5 is an oxidizing gas containing oxygen (
This is an oxidizing gas inflow chamber into which A (usually air) flows.

そこで、燃料ガス流入室4に流入した燃料ガスF中の水
素は多孔性電極であるアノード2の空隙を通して触媒に
接触する。ここで水素は触媒の作用により水素イオンと
電子に解離する。このときの反応式は、 H2→ 2H++2e  ・−・−<1)である。そし
て水素イオンは電解質層1に入り、起電圧による作用と
濃度拡散により、カソード3に向って泳動する。また水
素イオンの解離によって分離した電子は外部の電力負荷
6を通って仕事をし、カソード3に流れ込む。一方、前
記酸化ガス流入室5に流入した酸化ガスA中の酸素は多
孔性電極であるカソード3の空隙を通して触媒に接触し
、アノード2側より泳動してきた水素イオンおよび外部
の電力負荷6を通9カソード3に戻ってきた電子と共に
、触媒の作用で次の反応を起す。
Therefore, hydrogen in the fuel gas F that has flowed into the fuel gas inlet chamber 4 comes into contact with the catalyst through the pores of the anode 2, which is a porous electrode. Here, hydrogen is dissociated into hydrogen ions and electrons by the action of a catalyst. The reaction formula at this time is H2→ 2H++2e ·−·−<1). The hydrogen ions then enter the electrolyte layer 1 and migrate toward the cathode 3 due to the action of electromotive force and concentration diffusion. Further, electrons separated by dissociation of hydrogen ions perform work through an external power load 6 and flow into the cathode 3. On the other hand, oxygen in the oxidizing gas A that has flowed into the oxidizing gas inflow chamber 5 contacts the catalyst through the pores of the cathode 3, which is a porous electrode, and passes through the hydrogen ions migrating from the anode 2 side and the external power load 6. 9 Together with the electrons returned to cathode 3, the next reaction occurs due to the action of the catalyst.

4H++4e+02→2H20・・・・・・(2)かく
して水素は酸化されて水に々シ、同時に化学的エネルギ
は電気的エネルギに変換されて外部の電力負荷6に与え
られる。
4H++4e+02→2H20 (2) Thus, hydrogen is oxidized and converted into water, and at the same time, chemical energy is converted into electrical energy and provided to the external power load 6.

このとき電気的エネルギの一部は電解質層1中で電池の
外部抵抗により消費される。したがって、電池の効率を
高めるためには水素イオン5− の泳動距離を短かくして抵抗を小さくする必要があり、
このため電解質層1はきわめて薄く形成されている。
At this time, part of the electrical energy is consumed in the electrolyte layer 1 by the external resistance of the battery. Therefore, in order to increase battery efficiency, it is necessary to shorten the migration distance of hydrogen ions 5- to reduce resistance.
Therefore, the electrolyte layer 1 is formed extremely thin.

また流入室4,5に流入する燃料ガスFおよび酸化ガス
Aは、濃度を高めて反応速度を高めるために通常、数気
圧に加圧されている。
Further, the fuel gas F and the oxidizing gas A flowing into the inlet chambers 4 and 5 are normally pressurized to several atmospheres in order to increase their concentration and reaction rate.

ところで、前述のように電解質層1はきわめて薄く形成
されているので、アノード2側の燃料ガスFとカソード
3側の酸化ガスAとの差圧が大きいと燃料ガスF−iた
は酸化ガスAが電解質層1に含浸されたりん酸の表面張
力に抗して、泡と々って電解質層1をつき抜けてしまい
、局部燃焼を生ずるおそれがある。さらに装置の劣化や
性能低下をきたすおそれもある。そこで上記差圧はきわ
めて小さく、たとえば400mmH2O以内に抑える必
要がある(一般には酸化ガスAの圧力が燃料ガスFの圧
力よりも高い\このため燃料ガスFと酸化ガスAとの差
圧を制御することが行なわれている。すなわち第2図の
ように、燃料ガス供給管11Fを通して燃6一 料ガス供給部11f1よす燃料電池本体1ノ内の燃料ガ
ス反応部11fへ流入し、この本体11内で反応した燃
料ガスFは燃料ガス排出部11f2より燃料ガス排出管
11F′を通して燃焼器12へ送られ、残存の燃料成分
を燃焼させて混合器13に入る。一方、酸化ガス供給管
11kを通して酸化ガス供給部11 alより燃料電池
本体11内の酸化ガス反応部11hへ流入し、この本体
11内で反応した酸化ガスAは酸化ガス排出部11aよ
り酸化ガス排出管11A′を通して直接混合器13に入
る。かくして混合器13内で残存燃料ガスFの圧力と酸
化ガスAの圧力とは一致する。々お図中14.15は燃
料電池本体11内における燃料ガスFおよび酸化ガスA
に対する流路抵抗であり、図中16は燃焼器12内にお
ける燃料ガスFに対する流路抵抗である。また図中17
.18は各排出管11 F’ 。
By the way, as mentioned above, the electrolyte layer 1 is formed extremely thin, so if the pressure difference between the fuel gas F on the anode 2 side and the oxidant gas A on the cathode 3 side is large, the fuel gas F-i or the oxidant gas A There is a risk that the bubbles will break through the electrolyte layer 1 against the surface tension of the phosphoric acid impregnated into the electrolyte layer 1, causing local combustion. Furthermore, there is a risk that the device may deteriorate or its performance may deteriorate. Therefore, the pressure difference mentioned above must be kept extremely small, for example, within 400 mmH2O (generally, the pressure of oxidant gas A is higher than the pressure of fuel gas F. For this reason, the pressure difference between fuel gas F and oxidant gas A must be controlled. That is, as shown in FIG. The reacted fuel gas F is sent from the fuel gas discharge section 11f2 to the combustor 12 through the fuel gas discharge pipe 11F', burns the remaining fuel components, and enters the mixer 13.On the other hand, the fuel gas F reacted in The oxidizing gas A flows from the oxidizing gas supply section 11 al to the oxidizing gas reaction section 11h in the fuel cell main body 11, and reacts within this main body 11. The oxidizing gas A is directly transferred to the mixer 13 from the oxidizing gas discharging section 11a through the oxidizing gas discharging pipe 11A'. Thus, the pressure of the residual fuel gas F and the pressure of the oxidant gas A match in the mixer 13. In the figure, 14.15 indicates the pressure of the fuel gas F and the oxidant gas A in the fuel cell main body 11.
16 in the figure is the flow path resistance to the fuel gas F in the combustor 12. Also, 17 in the figure
.. 18 is each discharge pipe 11F'.

11八′にそれぞれ介挿された調節可能な流路抵抗で、
たとえば手動オリフィス等で構成される。
118' with adjustable flow path resistances inserted respectively;
For example, it consists of a manual orifice, etc.

燃料電池本体11内の流路抵抗14.15は小さいため
差圧制御を行なう際にあまり問題とはならないが、燃焼
器12内の流路抵抗16は大きいだめ流路抵抗17.1
8の調節によって燃料電池本体1ノ内における燃料ガス
Fと酸化ガスAとの差圧を規定値内に抑えるようにして
いる。
The flow path resistance 14.15 inside the fuel cell main body 11 is small, so it does not pose much of a problem when performing differential pressure control, but the flow path resistance 16 inside the combustor 12 is large, so the flow path resistance 17.1
8, the differential pressure between the fuel gas F and the oxidizing gas A within the fuel cell main body 1 is kept within a specified value.

また図中19.20は燃料ガス供給管11Fおよび酸化
ガス供給管11kにそれぞれ接続された燃料ガス放出弁
、酸化ガス放出弁であって、どれらは次のような機能を
有する。すなわち第2図に示す燃料電池装置では燃焼器
13における流路抵抗16が大きく、このため定格流量
での圧損が数千間H20(たとえば3000叫H20)
にも達する。したがって、第3図に示すように燃料ガス
F側と酸化ガスA側とを出力に比例して制御することに
より差圧ΔPを規定値(たとえば400 mm H2O
)以内に抑えるようにしているが、流量の制御を高精度
に行なうことが困難であり、また流量と圧損との関係も
、特に燃料ガス側では燃焼器13を通るだめ二乗特性近
似から外れてしまう。そこで燃料ガスF4たは酸化ガス
Aの流量制御だけでは、特に過度特性等に応答できない
ことになる。よって、差圧ΔPが急激に上昇したとき燃
料ガス放出弁19または酸化ガス放出弁20を操作して
燃料ガスFまたは酸化ガスAを放出することによシ差圧
ΔPの上昇を抑えるのである。
Reference numerals 19 and 20 in the figure denote a fuel gas release valve and an oxidant gas release valve connected to the fuel gas supply pipe 11F and the oxidant gas supply pipe 11k, respectively, which have the following functions. That is, in the fuel cell device shown in FIG. 2, the flow path resistance 16 in the combustor 13 is large, and therefore the pressure drop at the rated flow rate is several thousand hours H20 (for example, 3000 degrees H20).
reach even. Therefore, as shown in Fig. 3, by controlling the fuel gas F side and the oxidant gas A side in proportion to the output, the differential pressure ΔP is set to a specified value (for example, 400 mm H2O
), but it is difficult to control the flow rate with high precision, and the relationship between the flow rate and pressure drop, especially on the fuel gas side, as it passes through the combustor 13, deviates from the square-law characteristic approximation. Put it away. Therefore, only by controlling the flow rate of the fuel gas F4 or the oxidizing gas A, it is not possible to respond particularly to transient characteristics. Therefore, when the differential pressure ΔP increases rapidly, the increase in the differential pressure ΔP is suppressed by operating the fuel gas release valve 19 or the oxidizing gas releasing valve 20 to release the fuel gas F or the oxidizing gas A.

〔背景技術の問題点〕[Problems with background technology]

従来の燃料電池装置では燃料電池本体11内における燃
料ガスFの圧力と酸化ガス人の圧力との差圧が急激に上
昇したとき、燃料電池本体11のガス供給側に設けられ
た酸化ガス放出弁20または燃料ガス放出弁19を操作
して高圧側の未反応のガスを大気に急激に放出するよう
にしているので安全性に乏しく、燃料電池本体11の特
性を低下させることにもなる。
In conventional fuel cell devices, when the differential pressure between the pressure of the fuel gas F and the pressure of the oxidizing gas inside the fuel cell main body 11 suddenly increases, the oxidizing gas release valve provided on the gas supply side of the fuel cell main body 11 20 or the fuel gas release valve 19 to suddenly release unreacted gas on the high pressure side to the atmosphere, which is not safe and may also degrade the characteristics of the fuel cell main body 11.

〔発明の目的〕[Purpose of the invention]

本発明(第1の発明、第2の発明)はこのような事情に
もとづいてなされたもので、その目的は、高度な安全性
が得られ、燃料電池本体の9− 特性を低下させることもない燃料電池装置を提供するこ
とにある。
The present invention (first invention, second invention) was made based on such circumstances, and its purpose is to obtain a high degree of safety and also to reduce the 9- characteristics of the fuel cell main body. The objective is to provide a fuel cell device that does not require a fuel cell device.

〔発明の概要〕[Summary of the invention]

まず第1の発明は、燃料電池本体の出口側における燃料
ガス排出管および酸化ガス排出管に燃料ガス放出弁、酸
化ガス放出弁をそれぞれ接続し、燃料ガスと酸化ガスと
の差圧が危険値に達したとき高圧側のガス放出弁を開弁
させて差圧の上昇を抑えるように構成されている。
First, the first invention is to connect a fuel gas discharge valve and an oxidant gas discharge valve to a fuel gas discharge pipe and an oxidant gas discharge pipe on the outlet side of the fuel cell main body, respectively, so that the differential pressure between the fuel gas and the oxidant gas reaches a dangerous value. The system is configured to open the gas release valve on the high pressure side when the pressure reaches 1, thereby suppressing the rise in differential pressure.

また第2の発明は、上記第1の発明と同様の燃料ガス放
出弁および酸化ガス放出弁を設けるとともに、燃料電池
本体を密閉容器内に収容してこの密閉容器内に不活性ガ
スを充填し、密閉容器内の不活性ガス圧力を基準圧とし
て燃料ガスおよび酸化ガスの各圧力を上記基準圧と比較
し、いずれかの差圧が危険値に達したとき、該当する側
のガス放出弁を開弁させて差圧の上昇を抑えるように構
成されている。
Further, a second invention provides a fuel gas release valve and an oxidizing gas release valve similar to those of the first invention, and also includes housing the fuel cell main body in a sealed container and filling the sealed container with an inert gas. The pressure of the fuel gas and oxidizing gas are compared with the above reference pressure using the inert gas pressure in the sealed container as the reference pressure, and when either pressure difference reaches a dangerous value, the gas release valve on the relevant side is opened. It is configured to open the valve to suppress the rise in differential pressure.

〔発明の実施例〕[Embodiments of the invention]

第4図は第1の発明に係る一実施例を示すも10− ので、燃料ガス供給管11’Fを通して燃料ガス供給部
11f1より燃料電池本体11内の燃料ガス反応部11
fへ流入し、燃料ガス排出部11f2より燃料ガス排出
管11F′を通り、燃焼器12を経て混合器13に至る
燃料ガスFの流路、酸化ガス供給管J7Aを通して酸化
ガス供給部11a1より燃料電池本体11内の酸化ガス
反応部11hへ流入し、酸化ガス排出部11 Jより酸
化ガス排出管11A′を介して直接混合器13に至る酸
化ガスAの流路並びに燃料電池本体11内の流路抵抗1
4.16、燃焼器12内の流路抵抗16および各排出管
11 F’ 、 11 A’中に設けられた調節可能な
流路抵抗17.18は第2図の従来装置と同様である。
FIG. 4 shows an embodiment according to the first invention.
The fuel gas flows from the oxidizing gas supply section 11a1 through the oxidizing gas supply pipe J7A, the flow path of the fuel gas F which flows into the fuel gas F from the fuel gas discharging section 11f2, passes through the fuel gas discharging pipe 11F', passes through the combustor 12, and reaches the mixer 13. The flow path of the oxidant gas A that flows into the oxidant gas reaction section 11h in the battery main body 11 and directly reaches the mixer 13 from the oxidant gas discharge section 11J via the oxidant gas discharge pipe 11A', as well as the flow inside the fuel cell main body 11. road resistance 1
4.16, the flow resistance 16 in the combustor 12 and the adjustable flow resistance 17.18 provided in each exhaust pipe 11 F', 11 A' are similar to the conventional device of FIG.

そこで、燃料電池本体11内部で発電に使用された燃料
ガスFの、数チル数十チの残存ガスは流路抵抗17およ
び燃焼器12を経て混合器13へ至る。
Therefore, the residual gas of several tens of grams of the fuel gas F used for power generation inside the fuel cell main body 11 reaches the mixer 13 via the flow path resistance 17 and the combustor 12.

また燃料電池本体11より流出した酸化がスAは流路抵
抗18を経てそのまま混合器13へ至る。
Further, the oxidized gas A flowing out from the fuel cell main body 11 passes through the flow path resistance 18 and reaches the mixer 13 as it is.

前記混合器13より流出した残存燃料ガスFと酸化ガス
Aとの混合ガスはタービン22へ送られて、このタービ
ン22を駆動する。またタービン22はコンプレッサ2
3を駆動し、これによって残存の熱エネルギおよび圧力
エネルギが消費される。そしてこのコンプレッサ23は
大気を吸入し、圧縮して燃料電池本体11へ送り込む。
A mixed gas of residual fuel gas F and oxidizing gas A flowing out from the mixer 13 is sent to the turbine 22 and drives the turbine 22. Further, the turbine 22 is the compressor 2
3, thereby consuming the remaining thermal and pressure energy. The compressor 23 takes in atmospheric air, compresses it, and sends it to the fuel cell main body 11.

燃料ガス供給管11F中には制御弁24、酸化ガス供給
管11A中には制御弁25がそれぞれ介挿されている。
A control valve 24 is inserted into the fuel gas supply pipe 11F, and a control valve 25 is inserted into the oxidizing gas supply pipe 11A.

これらの制御弁24 、25は、燃料電池本体11にお
ける電気出力に応じて燃料ガスFおよび酸化ガスAの流
入量を制御するだめのものである。
These control valves 24 and 25 are for controlling the inflow amount of the fuel gas F and the oxidizing gas A according to the electrical output in the fuel cell main body 11.

一方、燃料電池本体11内における燃料ガスFと酸化ガ
スAとの差圧ΔPは、燃料ガス供給管11Fと酸化ガス
供給管11にとの間に接続された差圧計26によって検
出され、この検出信号は制御器27に入力される。また
燃料ガス排出管11F′の、燃料ガス排出部11flと
燃焼器12との間には燃料ガス放出弁28が、また酸化
ガス排出管11A′の一酸化ガス排出部11a。
On the other hand, the differential pressure ΔP between the fuel gas F and the oxidizing gas A in the fuel cell main body 11 is detected by a differential pressure gauge 26 connected between the fuel gas supply pipe 11F and the oxidizing gas supply pipe 11. The signal is input to controller 27. Further, a fuel gas discharge valve 28 is provided between the fuel gas discharge section 11fl of the fuel gas discharge pipe 11F' and the combustor 12, and a monoxide gas discharge section 11a of the oxidation gas discharge pipe 11A'.

と混合器13との間には酸化ガス放出弁29が、それぞ
れ接続されている。
Oxidizing gas release valves 29 are connected between the mixer 13 and the mixer 13, respectively.

前記制御器27は差圧計26からの信号にもとづき燃料
ガスFと酸化ガスAとの差圧ΔPを監視しており、差圧
ΔPが一定の危険値まで上昇したとき、高圧ガス側のガ
ス放出弁28または29を開弁させてガス排出管11F
′または111より燃料電池本体11通過後の反応済の
燃料ガスまたは酸化ガスを放出させるように構成されて
いる。
The controller 27 monitors the differential pressure ΔP between the fuel gas F and the oxidizing gas A based on the signal from the differential pressure gauge 26, and when the differential pressure ΔP rises to a certain dangerous value, gas is released from the high pressure gas side. Open the valve 28 or 29 and open the gas exhaust pipe 11F.
' or 111, the reacted fuel gas or oxidizing gas after passing through the fuel cell main body 11 is discharged.

以上のような構成であると、燃料ガスFと酸化ガスAと
の差圧ΔPが危険値に達したとき、燃料ガスF1酸化ガ
スAのうち高圧側のガスが放出され、差圧ΔPの上昇が
抑えられる。また、このとき放出されるガスは燃料電池
本体11を通過した反応済のガスであって、従来装置の
ように未反応のガスが放出されることはないので安全性
が高められる。また燃料電池本体11通過=13− 後の放出であるから、ガス放出によって燃料電池本体1
1の特性に影響を及ぼすことはなく、特性低下のおそれ
はない。
With the above configuration, when the differential pressure ΔP between the fuel gas F and the oxidizing gas A reaches a dangerous value, the gas on the high pressure side of the fuel gas F1 and the oxidizing gas A is released, causing an increase in the differential pressure ΔP. can be suppressed. Further, the gas released at this time is the reacted gas that has passed through the fuel cell main body 11, and unreacted gas is not released as in the conventional device, so safety is improved. Also, since the gas is released after passing through the fuel cell main body 11 = 13-, the fuel cell main body 1
It does not affect the characteristics of No. 1, and there is no risk of deterioration of the characteristics.

なお上記実施例における差圧計26は、燃料ガス排出管
11F′と酸化ガス排出管11A′との間に接続しても
よい。
Note that the differential pressure gauge 26 in the above embodiment may be connected between the fuel gas exhaust pipe 11F' and the oxidizing gas exhaust pipe 11A'.

次に第5図は第2の発明に係る一実施例を示すものであ
る。この実施例は、燃料電池本体11を密閉容器30内
に収容しているもので、密閉容器30内には窒素等の不
活性ガスNが充填され、この圧力は一定に保持されてい
る。また、密閉容器30には不活性ガス供給管3ONお
よび不活性ガス排出管3ON′が接続され、この排気管
3ON′には手動オリフィス等よりなる調節可能な流路
抵抗3ノが設けられている。一方、不活性ガス供給管3
ONには不活性ガスNの流入量を制御する制御弁32が
介挿されている。
Next, FIG. 5 shows an embodiment according to the second invention. In this embodiment, the fuel cell main body 11 is housed in a sealed container 30, and the sealed container 30 is filled with an inert gas N such as nitrogen, and this pressure is maintained constant. Further, an inert gas supply pipe 3ON and an inert gas discharge pipe 3ON' are connected to the airtight container 30, and the exhaust pipe 3ON' is provided with an adjustable flow path resistance 3N consisting of a manual orifice or the like. . On the other hand, inert gas supply pipe 3
A control valve 32 for controlling the inflow amount of inert gas N is inserted into the ON state.

前記燃料ガス供給管11Fと不活性ガス供給管3ONと
の間には燃料ガス側差圧計26Fが、14− また酸化ガス供給管11にと不活性ガス供給管、9ON
との間には酸化ガス側差圧計26kがそれぞれ介挿され
ている。そして第4図の実施例と同様に、燃料ガス排出
管11F′の、燃料ガス排出部11f2と燃焼器12と
の間には燃料ガス放出弁28が、また酸化ガス排出管1
1にの、酸化ガス排出部11a2と混合器13との間に
は酸化ガス放出弁29がそれぞれ接続されている。
A fuel gas side differential pressure gauge 26F is connected between the fuel gas supply pipe 11F and the inert gas supply pipe 3ON, and an inert gas supply pipe 9ON is connected to the oxidizing gas supply pipe 11.
An oxidizing gas side differential pressure gauge 26k is inserted between the two. Similarly to the embodiment shown in FIG.
An oxidizing gas discharge valve 29 is connected between the oxidizing gas discharge portion 11a2 and the mixer 13, respectively.

また図中34は制御器であって、この制御器33は差圧
計26F、26kからの検出信号にもとづき燃料ガスF
と不活性ガスNとの差圧ΔPlおよび酸化ガスAと不活
性ガスNとの差圧ΔP2を監視している。そしていずれ
かの差圧が一定の危険値に達したときは、該当するガス
放出弁28または、29を開弁させて燃料ガス排出管1
1F′または酸化ガス排出管11A′より、燃料ガスF
または酸化ガスAを放出させる。
34 in the figure is a controller, and this controller 33 controls the fuel gas F based on the detection signals from the differential pressure gauges 26F and 26k.
The differential pressure ΔPl between the oxidizing gas A and the inert gas N and the differential pressure ΔP2 between the oxidizing gas A and the inert gas N are monitored. When any of the differential pressures reaches a certain dangerous value, the corresponding gas release valve 28 or 29 is opened and the fuel gas exhaust pipe 1 is opened.
1F' or the oxidizing gas discharge pipe 11A', the fuel gas F
Alternatively, oxidizing gas A is released.

したがって、この実施例によれば、まず燃料電池本体1
1が不活性ガスNを充填した密閉容器30内に収容され
ているので、安全性が高められる。また燃料ガスFおよ
び酸化ガスAのガス圧を、一定圧力に保持された不活性
ガスNのガス圧を基準として監視しているので、いずれ
か一方のガス圧が高くなったときは勿論のこと、燃料ガ
スFと酸化ガスAの両方が高くなり両者の差圧はさほど
高くならない場合でも両方のガスF、Aが放出されてガ
ス圧力の異常々上昇が抑えられる。そしてこの実施例に
おいてもガスの放出は燃料電池本体11内における反応
後に行なわれるので安全性は高められ、燃料電池本体1
1における特性が低下することもない。
Therefore, according to this embodiment, first, the fuel cell main body 1
1 is housed in an airtight container 30 filled with inert gas N, so safety is enhanced. Also, since the gas pressures of fuel gas F and oxidizing gas A are monitored based on the gas pressure of inert gas N, which is maintained at a constant pressure, it is of course possible to Even when both the fuel gas F and the oxidizing gas A become high and the differential pressure between them does not become very high, both gases F and A are released, and an abnormal increase in gas pressure is suppressed. Also in this embodiment, the gas is released after the reaction within the fuel cell main body 11, so safety is enhanced, and the fuel cell main body 11
The characteristics in No. 1 do not deteriorate either.

なお不活性ガスNとしては窒素以外のものであっても差
支えない。
Note that the inert gas N may be other than nitrogen.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明(第1.第2の発明)によれば、
高度な安全性が得られ、燃料電池本体の特性を低下させ
ることもない燃料電池装置を提供することができる。
As described above, according to the present invention (first and second inventions),
It is possible to provide a fuel cell device that provides a high degree of safety and does not cause deterioration in the characteristics of the fuel cell main body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃料電池装置の原理図、第2図は燃料電池装置
の従来例を示す系統図、第3図は流量と圧損との関係を
燃料ガス側と酸化ガス側について示すグラフ図、第4図
は第1の発明の実施例を示す系統図、第5図は第2の発
明の実施例を示す系統図である。 11・・・燃料電池本体、11!・・・燃料ガス反応部
、1111・・・燃料ガス供給部、11f1・・・燃料
ガス排出部、11a・・・酸化ガス反応部、11*1・
・・酸化ガス供給部、111L重・・・酸化ガス排出部
、12・・・燃焼器、13・・・混合器、26.26’
F’。 26k・・・差圧計、27.33・・・制御器、28・
・・燃料ガス放出弁、29・・・酸化ガス放出弁、30
・・・密閉容器、F・・・燃料ガス、A・・・酸化ガス
、N・・・不活性ガス。 出願人代理人  弁理士 鈴 江 武 彦17− 第1図
Fig. 1 is a principle diagram of a fuel cell device, Fig. 2 is a system diagram showing a conventional example of a fuel cell device, Fig. 3 is a graph showing the relationship between flow rate and pressure drop for the fuel gas side and the oxidizing gas side. FIG. 4 is a system diagram showing an embodiment of the first invention, and FIG. 5 is a system diagram showing an embodiment of the second invention. 11...Fuel cell body, 11! ... Fuel gas reaction section, 1111... Fuel gas supply section, 11f1... Fuel gas discharge section, 11a... Oxidizing gas reaction section, 11*1.
... Oxidizing gas supply section, 111L heavy... Oxidizing gas discharge section, 12... Combustor, 13... Mixer, 26.26'
F'. 26k...Differential pressure gauge, 27.33...Controller, 28.
... Fuel gas release valve, 29... Oxidizing gas release valve, 30
... airtight container, F... fuel gas, A... oxidizing gas, N... inert gas. Applicant's agent Patent attorney Takehiko Suzue 17- Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)燃料ガス供給部および燃料がス排出部を有する燃
料ガス反応部並びに酸化ガス供給部および酸化ガス排出
部を有する酸化ガス反応部を備えた燃料電池本体と、前
記燃料ガス排出部に接続された燃焼器と、この燃焼器の
出口側および前記酸化ガス排出部に接続され前記燃焼器
よシ排出された残存燃料ガスと前記酸化ガス排出部より
排出された酸化ガスとを混合する混合器と、前記燃料ガ
ス排出部に接続された燃料ガス放出弁と、前記酸化ガス
排出部に接続された酸化ガス放出弁と、前記燃料ガス供
給部と前記酸化ガス供給部との間または前記燃料ガス排
出部と前記酸化ガス排出部との間に接続されて燃料ガス
と酸化ガスとの差圧を検出する差圧計と、この差圧計の
検出信号にもとづき前記差圧を監視し前記差圧が危険値
に達したとき高圧ガス側に接続されたガス放出弁を開弁
させる制御器とを具備したことを特徴とする燃料電池装
置。
(1) A fuel cell body including a fuel gas reaction section having a fuel gas supply section and a fuel gas discharge section, and an oxidation gas reaction section having an oxidation gas supply section and an oxidation gas discharge section, and connected to the fuel gas discharge section. a combustor, and a mixer connected to the outlet side of the combustor and the oxidizing gas discharge section and mixing the residual fuel gas discharged from the combustor with the oxidizing gas discharged from the oxidizing gas discharge section. , a fuel gas release valve connected to the fuel gas discharge section, an oxidation gas release valve connected to the oxidation gas discharge section, and a gap between the fuel gas supply section and the oxidation gas supply section or between the fuel gas supply section and the oxidation gas supply section. A differential pressure gauge is connected between the exhaust part and the oxidizing gas discharge part to detect the differential pressure between the fuel gas and the oxidizing gas, and the differential pressure is monitored based on the detection signal of the differential pressure gauge to detect if the differential pressure is dangerous. 1. A fuel cell device comprising: a controller that opens a gas release valve connected to a high-pressure gas side when a certain value is reached.
(2)燃料ガス供給部および燃料ガス排出部を有する燃
料ガス反応部並びに酸化ガス供給部および酸化ガス排出
部を有する酸化ガス反応部を備えた燃料電池本体と、前
記燃料ガス排出部に接続された燃焼器と、この燃焼器の
出口側および前記酸化ガス排出部に接続され前記燃焼器
より排出された残存燃料ガスと前記酸化ガス排出部より
排出された酸化ガスとを混合する混合器と、前記燃料電
池本体を収容し内部に不活性ガスを充填した密閉容器と
、前記燃料ガス排出管に接続された燃料ガス放出弁と、
前記酸化ガス排出部に接続された酸化ガス放出弁と、前
記燃料ガス供給部または燃料ガス排出部と前記密閉容器
との間に接続されて燃料ガスと密閉容器内の不活性ガス
との差圧を検出する燃料ガス側差圧計と、前記酸化ガス
供給部または酸化ガス排出部と前記密閉容器との間に接
続されて酸化ガスと密閉容器内の不活性ガスとの差圧を
検出する酸化ガス側差圧計と、これらの差圧計の検出信
号にもとづき前記各差圧を監視し燃料ガスと前記密閉容
器内の不活性ガスとの差圧が危険値に達したときは燃料
ガス放出弁を開弁させ酸化ガスと前記密閉容器内の不活
性ガスとの差圧が危険値に達したときは酸化ガス放出弁
を開弁させる制御器とを具備したことを特徴とする燃料
電池装置。
(2) A fuel cell main body including a fuel gas reaction section having a fuel gas supply section and a fuel gas discharge section and an oxidation gas reaction section having an oxidation gas supply section and an oxidation gas discharge section, and a fuel cell main body that is connected to the fuel gas discharge section. a combustor, a mixer connected to the outlet side of the combustor and the oxidizing gas discharge section and mixing the residual fuel gas discharged from the combustor with the oxidizing gas discharged from the oxidizing gas discharge section; a closed container that houses the fuel cell main body and is filled with an inert gas; a fuel gas discharge valve connected to the fuel gas discharge pipe;
An oxidizing gas release valve connected to the oxidizing gas discharge section, and connected between the fuel gas supply section or the fuel gas discharging section and the sealed container to control the pressure difference between the fuel gas and the inert gas in the sealed container. and an oxidizing gas side differential pressure gauge connected between the oxidizing gas supply section or the oxidizing gas discharge section and the sealed container to detect the differential pressure between the oxidizing gas and the inert gas in the sealed container. The differential pressures are monitored based on the side differential pressure gauges and the detection signals from these differential pressure gauges, and when the differential pressure between the fuel gas and the inert gas in the sealed container reaches a dangerous value, the fuel gas release valve is opened. 1. A fuel cell device comprising: a controller that opens an oxidizing gas release valve when the differential pressure between the oxidizing gas and the inert gas in the closed container reaches a dangerous value.
(3)  前記不活性ガスを窒素とした特許請求の範囲
第(2)項記載の燃料電池装置。
(3) The fuel cell device according to claim (2), wherein the inert gas is nitrogen.
JP57233459A 1982-12-28 1982-12-28 Fuel cell system Pending JPS59123167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57233459A JPS59123167A (en) 1982-12-28 1982-12-28 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57233459A JPS59123167A (en) 1982-12-28 1982-12-28 Fuel cell system

Publications (1)

Publication Number Publication Date
JPS59123167A true JPS59123167A (en) 1984-07-16

Family

ID=16955359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57233459A Pending JPS59123167A (en) 1982-12-28 1982-12-28 Fuel cell system

Country Status (1)

Country Link
JP (1) JPS59123167A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105551A (en) * 1975-02-12 1976-09-18 United Technologies Corp
JPS57205971A (en) * 1981-06-12 1982-12-17 Hitachi Ltd Operating method of fuel cell
JPS57210573A (en) * 1981-06-19 1982-12-24 Hitachi Ltd Fuel-cell generating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105551A (en) * 1975-02-12 1976-09-18 United Technologies Corp
JPS57205971A (en) * 1981-06-12 1982-12-17 Hitachi Ltd Operating method of fuel cell
JPS57210573A (en) * 1981-06-19 1982-12-24 Hitachi Ltd Fuel-cell generating system

Similar Documents

Publication Publication Date Title
CA2123830C (en) Differential pressure controlling method for plate reformer of fuel cell power generation system
JPWO2005071781A1 (en) Fuel cell system
US9130219B1 (en) Method of making redox materials for solid oxide redox flow battery
JP4772470B2 (en) Fuel cell system
JP2007149360A (en) Fuel cell power generation system
JP2007109529A (en) Method of controlling fuel cell power generation system
JPH0763020B2 (en) Fuel cell start / stop device
JPS59123167A (en) Fuel cell system
JPS61116764A (en) Fuel cell system
EP2181476B1 (en) Electrode for fixed oxide reactor and fixed oxide reactor
JPS59123168A (en) Fuel cell system
JPS61116765A (en) Fuel cell system
JPS607065A (en) Fuel cell system
CN101479872A (en) Determination of the lambda value of reformate with the aid of a fuel cell
JPS63202860A (en) Fuel cell system
JPS62216175A (en) Fuel cell device
JPS60208061A (en) Fuel cell power generating system
JP2009123469A (en) Fuel battery power generation system
JPH06111840A (en) Fuel cell
CN216389456U (en) Air inlet system of molten carbonate fuel cell
JPS6010566A (en) Operation of fuel cell
JPS62259356A (en) Fuel cell device
JPH0654674B2 (en) Fuel cell power generator
JP2006073377A (en) Fuel cell system
JPS62249363A (en) Operating method for molten carbonate fuel cell