JPS59122902A - Light applied sensor - Google Patents
Light applied sensorInfo
- Publication number
- JPS59122902A JPS59122902A JP57233505A JP23350582A JPS59122902A JP S59122902 A JPS59122902 A JP S59122902A JP 57233505 A JP57233505 A JP 57233505A JP 23350582 A JP23350582 A JP 23350582A JP S59122902 A JPS59122902 A JP S59122902A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- optical signal
- optical waveguide
- waveguide
- lightguides
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000087 stabilizing effect Effects 0.000 claims abstract description 23
- 238000005452 bending Methods 0.000 claims abstract description 10
- 230000003287 optical effect Effects 0.000 claims description 158
- 238000001514 detection method Methods 0.000 claims description 9
- 238000009826 distribution Methods 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 16
- 230000035945 sensitivity Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005253 cladding Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/268—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Optical Couplings Of Light Guides (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Optical Transform (AREA)
- Geophysics And Detection Of Objects (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Optical Communication System (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、光信号を用いて物理量の測定を行なう光応用
センサ装置の改良に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to improvements in optical sensor devices that measure physical quantities using optical signals.
第1図および第2図は従来における光応用センサ装置の
構成図である。先ず第1図に示す光応用センサ装置につ
いて説明する。1は光信号発信部であシ、この発光素子
1&の発光によシ光信号が送り側光導波路2を伝送して
検出部3へ送られる。この検出部3では、光信号を被測
定物理量(例えば圧力)によシ(イ)方向に変位する反
射板3aにより物理量に対応した光強度にして反射し、
その1部を受は側光導波路4に入射する。ここで、受は
側光導波路4に入射する光信号は検出部3における送シ
側および受は側光導波路2,4の端面と反射板3aとの
距離の関数の光量となる。受は側光導波路4に入射した
光信号は光信号受信部5に送られ、光信号受信部5は受
光素子5aによって電気信号に変換し光信号の光量を測
定し、この光量は反射板3aの変位(イ)の関数となっ
ているため、光量によシ物理量が求められる0次に第2
図に示す光応用センサ装置について説明する。この光応
用センサ装置は、検出部6が被測定物理量によって←)
方向に変位するじゃ元板6a、送シ側光導波路7からの
光信号をしゃ元板6aに当てる第1の光学レンズ6bお
よびしゃ元板6aを介して送られてくる光信号を受は側
光導波路8へ入射する第2の光学レンズ6cから構成さ
れ、第1図に示すセンサ装置と同様光信号の光量によっ
て物理量を測定するものである◎このような光応用セン
サ装置においては、光信号発信部1の発光・9ワーの安
定化、また送シ側および受は側光導波路2,4,7.8
の損失変化の補償を行い光信号の安定化をはかつている
。しかし、発光パワーの安定化と損失変化の補償だけで
は常に安定した光信号が得られない場合があシ、特に光
導波路の湾曲あるいは発光源と光導波路とを接続するコ
ネクタの着脱により光信号に大きな変動が生じてしまう
。FIG. 1 and FIG. 2 are configuration diagrams of a conventional optical sensor device. First, the optical sensor device shown in FIG. 1 will be explained. Reference numeral 1 denotes an optical signal transmitting section, and an optical signal is transmitted through the sending optical waveguide 2 and sent to the detecting section 3 by light emission from the light emitting element 1&. In this detection unit 3, the optical signal is reflected by a reflecting plate 3a that is displaced in the A direction according to the physical quantity to be measured (for example, pressure), and is converted into a light intensity corresponding to the physical quantity.
A portion of the light is incident on the side optical waveguide 4. Here, the optical signal incident on the receiving and receiving side optical waveguides 4 is a light amount that is a function of the distance between the transmitting side and the receiving side optical waveguides 2 and 4 and the reflecting plate 3a in the detection section 3. The optical signal incident on the side optical waveguide 4 is sent to the optical signal receiving section 5, which converts it into an electric signal by the light receiving element 5a and measures the light intensity of the optical signal. Since it is a function of the displacement (a) of
The optical sensor device shown in the figure will be explained. In this optical application sensor device, the detection unit 6 depends on the physical quantity to be measured ←)
The first optical lens 6b applies the optical signal from the transmitting side optical waveguide 7 to the blocking plate 6a, and the receiving side receives the optical signal sent via the blocking plate 6a. It is composed of a second optical lens 6c that enters the optical waveguide 8, and measures a physical quantity by the amount of light of the optical signal, similar to the sensor device shown in FIG. Stabilization of the light emission and 9W from the transmitting section 1, and the transmitting and receiving side optical waveguides 2, 4, 7.8
The optical signal is stabilized by compensating for changes in loss. However, it may not always be possible to obtain a stable optical signal simply by stabilizing the light emitting power and compensating for changes in loss.In particular, it may not be possible to obtain a stable optical signal due to the curvature of the optical waveguide or the attachment or detachment of the connector that connects the light source and the optical waveguide. Big changes will occur.
そこで、光導波路の湾曲および着脱により光信号が変動
する原因について説明する。第3図(a)(b)は光導
波路の構造およびこの光導波路からの出射パターンを示
した図である。ここで、9が光導波路のクラッドであり
、10がコアであシ、その屈折率分布はステップ状でコ
ア10の屈折率がクラッド9のそれよシ少し大きく設定
されている0このため、光信号はコア10からクラッド
9へ向う時に全反射し、コア10内に導波モードが存在
するようになる。Therefore, the causes of fluctuations in optical signals due to curvature and attachment/detachment of the optical waveguide will be explained. FIGS. 3(a) and 3(b) are diagrams showing the structure of an optical waveguide and the emission pattern from this optical waveguide. Here, 9 is the cladding of the optical waveguide, 10 is the core, and its refractive index distribution is step-like, and the refractive index of the core 10 is set slightly larger than that of the cladding 9. When the signal goes from the core 10 to the cladding 9, it is totally reflected, and a waveguide mode exists within the core 10.
このような光信号が光導波路27から出射されると第3
図(b)のような出射ノ9ターンSとなる。この出射パ
ターンSは、光導波路2,7における複数の導波モード
が一様に励起された場合のものである。When such an optical signal is emitted from the optical waveguide 27, the third
This results in nine turns S of exit as shown in Figure (b). This emission pattern S is obtained when a plurality of waveguide modes in the optical waveguides 2 and 7 are uniformly excited.
そして光導波路出射端面におけるi4ターン(アフィー
ルドパターン)は屈折率分布と同じステップ状分布とな
るが、端面かられずかに離れた位置rでの出射パターン
Sは第3図(b)に示すようにほぼ台形に近似される。The i4 turn (Afield pattern) at the output end face of the optical waveguide has the same step-like distribution as the refractive index distribution, but the output pattern S at a position r slightly away from the end face is as shown in Figure 3(b). is approximated by a trapezoid.
ここで、光信号の光導波路端面における出射角θは低次
モードから高次モードになるに従って大きくなる。また
、この出射パターンSは、光導波路の複数の導波モード
から構成されておシ、導波モードの状態、モード間のパ
ワー比の影響を大きく受ける。周知のように光導波路を
所定の曲率半径以上に曲げた場合には、高次の導波モー
ドが放射モードとなってリークしたり、またモード変換
が起こるので、出射角θが小さくなシ出射・ぐターンS
が変化することになる。第4図は光導波路を曲げた場合
における出射パターン変化図を示す。Here, the output angle θ of the optical signal at the end face of the optical waveguide increases as the mode changes from a low-order mode to a high-order mode. Further, this emission pattern S is composed of a plurality of waveguide modes of the optical waveguide and is greatly influenced by the state of the waveguide modes and the power ratio between the modes. As is well known, when an optical waveguide is bent beyond a predetermined radius of curvature, the higher-order waveguide mode becomes a radiation mode and leaks, or mode conversion occurs.・Gutan S
will change. FIG. 4 shows a diagram of changes in the output pattern when the optical waveguide is bent.
第4図に示すように高次モードがリークすると出射A?
メタ−Sは出射パターンS1から出射パターンS2にな
る。このように、光導波路2゜4 s 7 t 8の曲
げの度合に応じて光信号の光量が変化し、特に受は側光
導波路4,8に入射する光量が減少するので、反射板3
aおよびしや元板6aが変位せずとも見かけ上の変位と
して測定されてしまう。As shown in Fig. 4, when the higher-order mode leaks, the emission A?
The meta-S changes from the emission pattern S1 to the emission pattern S2. In this way, the amount of light of the optical signal changes depending on the degree of bending of the optical waveguide 2゜4s7t8, and in particular, the amount of light incident on the side optical waveguides 4 and 8 decreases, so the reflection plate 3
Even if the a and the base plate 6a are not displaced, the displacement is measured as an apparent displacement.
また、光導波路2,4.7.8の曲がシによる影響は光
量の減少だけではなく、光信号における出力特性にも影
響を与える。第5図(a) (b)は光信号の出力特性
を示し、(&)は正常な場合の出力特性図、(b)はリ
ークが生じた場合の特性図である。第5図(a) (b
)に示すように光導波路にリークが生じると、その出力
特性における信号の立ち上がシ位置および最大ピーク位
置が変化してしまう。このため特に最初の立ち上がシ特
性を使用して物理量の測定を行なう場合、感度が変化し
たり、ゼロ点ドリフトが生じてしまう。したがって、物
理量の測定において正確な測定値が得られなくなってし
まう。このことは、光導波路2,4,7.8がステップ
インデックスでない例えば屈折率分布が放物線状をした
グレーテッドインデックス光導波路でも同様である。Further, the influence of the curves of the optical waveguides 2, 4, 7, and 8 not only reduces the amount of light but also affects the output characteristics of the optical signal. 5(a) and 5(b) show the output characteristics of the optical signal, (&) is an output characteristic diagram in a normal case, and (b) is a characteristic diagram in a case where a leak occurs. Figure 5(a)(b)
), when a leak occurs in the optical waveguide, the rise position and maximum peak position of the signal in its output characteristics change. For this reason, especially when measuring a physical quantity using the initial rise characteristic, sensitivity changes or zero point drift occurs. Therefore, accurate measured values cannot be obtained when measuring physical quantities. This also applies to graded index optical waveguides in which the optical waveguides 2, 4, 7.8 are not step index, but have a parabolic refractive index distribution, for example.
さらに、第2図に示す光応用センサ装置においても感度
の変化およびゼロ点ドリフトが生じる。Furthermore, changes in sensitivity and zero point drift occur also in the optical sensor device shown in FIG.
本発明は上記実情に鑑みてなされたもので、光導波路の
曲げあるいは光信号の伝送路上の接続部の着脱によって
も安定した出射パターンの光信号を得、感度の変化およ
びゼロ点ドリフトの生じない光応用センサ装置を提供す
ることを目的とする。The present invention has been made in view of the above-mentioned circumstances, and it is possible to obtain an optical signal with a stable output pattern even by bending the optical waveguide or attaching/detaching the connection part on the optical signal transmission path, and eliminates sensitivity changes and zero point drift. The purpose is to provide a light-applied sensor device.
本発明は、光通信を用いて物理量の測定を行なう光応用
センサ装置において、前記光応用センサ装置における信
号発信部および光信号受信部と検出部との間の光信号を
伝送する光導波路に次のような出射パター/安定手段す
なわち■前記光導波路を所定の曲率半径をもって曲ける
■屈折率の異なる複数の光導波路を交互に設けて上記目
的を達成しようとする光応用センサ装置である。In an optical sensor device that measures physical quantities using optical communication, the present invention provides an optical waveguide that transmits an optical signal between a signal transmitter, an optical signal receiver, and a detector in the optical sensor device. This is an optical sensor device which attempts to achieve the above object by providing an output pattern/stabilizing means such as (1) bending the optical waveguide with a predetermined radius of curvature and (2) alternately providing a plurality of optical waveguides having different refractive indexes.
以下、本発明の第1の実施例について第6図を参照して
説明する。なお、第1図と同一部分には同一符号を封し
て詳しい説明は省略する。A first embodiment of the present invention will be described below with reference to FIG. Note that the same parts as in FIG. 1 are denoted by the same reference numerals and detailed explanations will be omitted.
第1図は本発明に係る光応用センサ装置の構成図である
。この光応用センサ装置は送シ側および受は側光導波路
2,4と検出部3との接続部分に近接した光導波路2,
4部分を所定の半径(例えば3 cm以下程度)で数タ
ーンないし数十ター7巻いた出射・ぞターン安定手段2
0を設けたものである。FIG. 1 is a block diagram of an optical sensor device according to the present invention. This optical sensor device has an optical waveguide 2, which is close to the connecting portion between the transmitting side and receiving side optical waveguides 2, 4 and the detection section 3.
Output/Zo-turn stabilizing means 2, which is made by winding the four parts seven turns at a predetermined radius (for example, about 3 cm or less) from several turns to several tens of turns.
0 is set.
次に上記の如く構成された装置の作用について説明する
。光信号発信部1の発光素子1aが発光して、光信号が
送シ側光導波路2に入射する。これによシ、送シ側光導
波路2に光信号が伝送する。そして光信号は、出射・ぞ
ターン安定手段20に達すると、次のように伝送する。Next, the operation of the apparatus configured as described above will be explained. The light emitting element 1a of the optical signal transmitter 1 emits light, and the optical signal enters the transmitting side optical waveguide 2. As a result, an optical signal is transmitted to the transmitting side optical waveguide 2. When the optical signal reaches the output/zoom stabilizing means 20, it is transmitted as follows.
すなわち、光信号における高次モードは、前述した如く
光導波路の曲iによって放射したシまたモード変換が行
なわれるため、所定の曲率半径(本実施例では半径3
cm以下)の出射パターン安定手段20を伝送すると光
導波路の外部へ放射される。これにより、検出部3にお
ける反射板3aに出射される光信号は曲がりの影響の少
ない低次モードからなるものとなる。In other words, since the higher-order mode in the optical signal undergoes mode conversion in the radiated mode by the curve i of the optical waveguide as described above,
cm or less) and is transmitted through the output pattern stabilizing means 20, it is radiated to the outside of the optical waveguide. As a result, the optical signal emitted to the reflection plate 3a in the detection unit 3 becomes a low-order mode that is less affected by bending.
また、反射板3aから送り側光導波路4に入射し伝送す
る光信号は、上述した作用と同様に出射・母ターン安定
手段20によって低次モードからなる光信号となって光
信号受信部5に入射する。そして、光信号受信部5の受
光素子5aによシ光信号が電光変換されて光信号の光量
が測定され、この光量がら検出部3によって測定された
物理量が求められる。Further, the optical signal that enters and is transmitted from the reflection plate 3a to the sending optical waveguide 4 is converted into an optical signal consisting of a lower order mode by the output/mother turn stabilizing means 20 and sent to the optical signal receiving section 5, in the same manner as described above. incident. Then, the optical signal is subjected to electro-optical conversion by the light receiving element 5a of the optical signal receiving section 5, and the amount of light of the optical signal is measured, and the physical quantity measured by the detecting section 3 is determined from this amount of light.
このように本装置によれば、検出部3に近接した部分の
光導波路2.4を所定の半径で数ター7〜数士ターン巻
いた出射ノ4ターン安定手段20を設けたので、たとえ
送り側および受は側光導波路2,4が曲がって光信号に
おける高次モードが放射あるいはモード変換したとして
も、いずれにせよ出射パターン安定手段20において高
次モードは送り側および受は側光導波路、。In this way, according to the present device, the output stabilizing means 20 is provided in which the optical waveguide 2.4 in the vicinity of the detection part 3 is wound several turns from seven to several turns at a predetermined radius. Even if the side optical waveguides 2 and 4 are bent and the higher-order modes in the optical signal are radiated or mode converted, in any case, in the output pattern stabilizing means 20, the higher-order modes are transferred to the sending and receiving side optical waveguides, .
4の外部へ放射され、その出射パターン、詩ニ反射板3
aにおける出射ノ々ターンは曲がりの影響の少ない低次
モードからなる安定したものとする。したがって、高次
モードが光導波路2.4の外部へ放射されても、これに
影響されることなく物理量の測定が行なえる。4 is emitted to the outside, and its emission pattern is reflected by the reflection plate 3.
It is assumed that the exit nodal turn at a is stable and consists of low-order modes that are less affected by bending. Therefore, even if the higher-order mode is radiated to the outside of the optical waveguide 2.4, physical quantities can be measured without being affected by this.
ここで、出射ノ々ターン安定手段20は次のような手段
を用いて高次モードを放射させても良い。たとえば凹凸
部を多数設けた安定化部材21で光導波路2.41を挾
む手段である。群7図はこの手段の構成図を示す。この
ような1段によって光導波路2,4を所定の曲率半径1
もって曲げることによシ第1の実施例と同様に、光信号
における高次モードが外部へ放射され低次モードからな
る安定した出射・ぐターンが有られる。Here, the emission no-turn stabilizing means 20 may radiate the higher-order mode using the following means. For example, it is a means for sandwiching the optical waveguide 2.41 between the stabilizing member 21 provided with a large number of uneven parts. Group 7 shows a block diagram of this means. With such a single stage, the optical waveguides 2 and 4 are formed with a predetermined radius of curvature 1.
By bending the optical signal, the higher-order mode in the optical signal is radiated to the outside, and a stable output pattern consisting of the lower-order mode is created, as in the first embodiment.
次に本発明の第2の実施例について第8図および第9図
を参照して説明する。なか、第1の実施例と同様に第1
図と同一部分には同一符号を付して詳しい説明は省略す
る。第8図は第2の実施例における構成図である。第8
図に示す光応用センサ装置は、第1の実施例と同様に検
出部3と光導波路2,4との接続部分に出射A?ターン
安定手段3oを設けたものである。この出射パターン安
定手段3oは、屈折率分布が放物線状をしたグレーテッ
ドインデックス光導波路31.32および屈折率分布が
ステップ上のステップインデックス光導波路33.34
を交互に例えば融着によって接続したものである。Next, a second embodiment of the present invention will be described with reference to FIGS. 8 and 9. Among them, as in the first embodiment, the first
Components that are the same as those in the figures are given the same reference numerals and detailed explanations will be omitted. FIG. 8 is a block diagram of the second embodiment. 8th
The optical sensor device shown in the figure emits light A? A turn stabilizing means 3o is provided. The output pattern stabilizing means 3o includes a graded index optical waveguide 31.32 having a parabolic refractive index distribution and a step index optical waveguide 33.34 having a step refractive index distribution.
They are connected alternately, for example, by fusion bonding.
次に上記の如く構成された装置の動作について説明する
。第9図は出射パターン安定手段30における光信号の
伝送を示す図である。第9図において33にはステップ
インデックス光導波路33のコアであシ、31にはグレ
ーテッドインデックス光導波路31のコアである。ここ
で、光信号の導波モードは、ステップインデックス光導
波路33では光信号がいがなる角度で全反射を繰返して
いるかで決定し、グレーテッドインデックス光導波路3
1ではいかなる位置でいかなる角度でもって入射された
かで決定される。このようなことから、ステップインデ
ックス光導波路334おいては、光信号CI。Next, the operation of the apparatus configured as described above will be explained. FIG. 9 is a diagram showing the transmission of optical signals in the emission pattern stabilizing means 30. In FIG. 9, 33 is the core of the step index optical waveguide 33, and 31 is the core of the graded index optical waveguide 31. Here, the waveguide mode of the optical signal is determined by whether the optical signal undergoes repeated total reflection at a given angle in the step index optical waveguide 33, and
1 is determined by the position and angle at which the light is incident. For this reason, in the step index optical waveguide 334, the optical signal CI.
C2は第9図に示すように平行となる。つまシ同じ導波
モードとなっている。一方、グレーテッドインデックス
光導波路31においては、光信号C1,C2の入射位置
が異なるので光信号C1は高次モードで光信号C2は低
次モードで伝送するようになる。すなわち、グレーテッ
ドインデックス光導波路31では、光信号CI。C2 becomes parallel as shown in FIG. The tabs have the same waveguide mode. On the other hand, in the graded index optical waveguide 31, since the incident positions of the optical signals C1 and C2 are different, the optical signal C1 is transmitted in a high-order mode and the optical signal C2 is transmitted in a low-order mode. That is, in the graded index optical waveguide 31, the optical signal CI.
C2の入射角が等しくても入射位置が異ることによシそ
れぞれ異なった導波モードとなって伝送するようになる
。したがって、ステップインデックス光導波路33にお
いて、同じ角度で反射し伝送してきた1つの導波モード
の光信号CI、C2がグレーテッドインデックス光導波
路31に入射することによって複数の導波モードに分散
される。このような出射ノ<?ターン安定手段30を伝
送した光信号発信部1からの光信号は、検出部3におけ
る反射板3&に一様化された出射パターンとなって出射
される。Even if the incident angle of C2 is the same, since the incident position is different, each waveguide mode becomes different and is transmitted. Therefore, in the step index optical waveguide 33, the optical signals CI and C2 in one waveguide mode that have been reflected and transmitted at the same angle enter the graded index optical waveguide 31 and are dispersed into a plurality of waveguide modes. This kind of output <? The optical signal from the optical signal transmitting section 1 transmitted through the turn stabilizing means 30 is outputted to the reflecting plate 3 & in the detecting section 3 in a uniform output pattern.
したがって第8図に示すような装置によれば、検出部3
と光導波路2,4との接続部分に屈折率分布の異なるグ
レーテッドインデックス光導波路31.32とステップ
インデックス光導波路33.34とを設けたので、送9
側光導波路2および受は側光導波路4の曲がり等で導波
モードの変換またはかたよりが生じても、各導波モード
が分散され一様化されることによシ安定化された出射パ
ターンを得ることができる。Therefore, according to the device as shown in FIG.
Since graded index optical waveguides 31, 32 and step index optical waveguides 33, 34 having different refractive index distributions are provided at the connecting portions between the optical waveguides 2 and 4, the transmission 9
The side optical waveguide 2 and the receiver have a stabilized output pattern because each waveguide mode is dispersed and made uniform even if the waveguide mode is converted or shifted due to bending of the side optical waveguide 4. can be obtained.
本発明によれば、検出部と光導波路との接続部分の光導
波路を所定の曲率半径をもって曲げるあるいは屈折率分
布の異なる光導波路を交互に設けたので、光導波路の曲
げあるいは光信号の伝送路上の接続部の着脱によっても
安定した出射パターンの光信号を得、感度の変化および
ゼロ点ドリフトの生じない光応用センサ装置を提供でき
る。According to the present invention, the optical waveguide at the connection portion between the detection unit and the optical waveguide is bent with a predetermined radius of curvature, or optical waveguides with different refractive index distributions are provided alternately. It is possible to obtain an optical signal with a stable emission pattern even by attaching and detaching the connecting portion, and to provide an optical sensor device that does not cause sensitivity changes or zero point drift.
第1図および第2図は従来における光応用センサ装置の
構成図、第3図(a) (b)は光導波路の構成とそQ
出射ツクターンを示す図、第4図は出射パターンの変化
を示す図、第5図(a) (b)は従来における光応用
センサ装置の出力特性図、第6図は本発明に係る光応用
センサ装置の第1の実施例を示す構成図、第7図は第1
の実施例における別の出射パターン安定手段の構成図、
第8図は本装置における第2の実施例を示す構成図、第
9図は第2の実施例における作用を説明するだめの図で
ある。
1・・・光信号発信部、2・・・送シ側光導波路、3・
・検出部、4・・・受は側光導波路、5・・・光信号受
信部、20.30・・・出射パターン安定手段、21・
・・安定化部材、31.32・・・ブレ4インデツクス
光導波路、33.34・・・ステップインデックス光導
波路。
出願人代理人 弁理士 鈴 江 武 彦第6図
第7図
第8図
第9図Figures 1 and 2 are configuration diagrams of conventional optical sensor devices, and Figures 3 (a) and 3 (b) show the configuration of the optical waveguide and its Q.
FIG. 4 is a diagram showing changes in the output pattern, FIG. 5 (a) and (b) are output characteristic diagrams of a conventional optical sensor device, and FIG. 6 is an optical sensor according to the present invention. A configuration diagram showing the first embodiment of the device, FIG.
A configuration diagram of another emission pattern stabilizing means in the embodiment of
FIG. 8 is a block diagram showing a second embodiment of the present device, and FIG. 9 is a diagram for explaining the operation of the second embodiment. DESCRIPTION OF SYMBOLS 1... Optical signal transmitter, 2... Transmission side optical waveguide, 3...
- Detection unit, 4... Receiving side optical waveguide, 5... Optical signal receiving unit, 20.30... Output pattern stabilizing means, 21.
... Stabilizing member, 31.32... Brake 4 index optical waveguide, 33.34... Step index optical waveguide. Applicant's Representative Patent Attorney Takehiko Suzue Figure 6 Figure 7 Figure 8 Figure 9
Claims (3)
サ装置において、前記光通信における光信号を発生する
光信号発生手段と、この光信号発生手段からの光信号を
伝送する複数の光導波路と、この光導波路を伝送してき
た光信号を前記物理量の変化に応じた光強度に変換して
前記物理量分検出する検出手段と、この検出手段によシ
変換された前記光信号を再び前記光導波路に伝送させ、
この伝送してきた前記光信号の光量を測定して前記物理
量を検出する光信号受信手段と、前記光導波路と前記検
出手段との接続部分の前記光導波路にこの光導波路から
放射される前記光信号の出射ノやターンを安、定さ−せ
る出射ノ4ターン安定手段とを具備したことを特徴とす
る光応用センサ装置。(1) In an optical sensor device that measures a physical quantity using optical communication, an optical signal generating means for generating an optical signal in the optical communication, and a plurality of optical waveguides for transmitting the optical signal from the optical signal generating means. a detection means for converting the optical signal transmitted through the optical waveguide into a light intensity corresponding to a change in the physical quantity and detecting the physical quantity; Transmit to the wave path,
an optical signal receiving means for measuring the amount of light of the transmitted optical signal and detecting the physical quantity; and the optical signal emitted from the optical waveguide to the optical waveguide at a connecting portion between the optical waveguide and the detecting means. An optical sensor device characterized in that it is equipped with an output four-turn stabilizing means for stabilizing and fixing the output and the turn.
曲率半径をもって曲げたものであることを特徴とする特
許請求の範囲第(1)項記載の光応用センサ装置。(2) The optical sensor device according to claim (1), wherein the output/arm turn stabilizing means is formed by bending the optical waveguide with a predetermined radius of curvature.
用センサ装置。(3) The output pattern stabilizing means is a sensor device that applies different light with refractive index distribution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57233505A JPS59122902A (en) | 1982-12-28 | 1982-12-28 | Light applied sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57233505A JPS59122902A (en) | 1982-12-28 | 1982-12-28 | Light applied sensor |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28385688A Division JPH01158312A (en) | 1988-11-11 | 1988-11-11 | Light-applied sensor apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59122902A true JPS59122902A (en) | 1984-07-16 |
JPH0129410B2 JPH0129410B2 (en) | 1989-06-09 |
Family
ID=16956074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57233505A Granted JPS59122902A (en) | 1982-12-28 | 1982-12-28 | Light applied sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59122902A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6287813A (en) * | 1985-10-14 | 1987-04-22 | Mitsubishi Cable Ind Ltd | Two-wavelength system optical sensor utilizing optical fiber |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5337438A (en) * | 1976-09-18 | 1978-04-06 | Nec Corp | Optical mode filter |
JPS5573005A (en) * | 1978-11-17 | 1980-06-02 | Corning Glass Works | Photo wave guide mode*scramble |
-
1982
- 1982-12-28 JP JP57233505A patent/JPS59122902A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5337438A (en) * | 1976-09-18 | 1978-04-06 | Nec Corp | Optical mode filter |
JPS5573005A (en) * | 1978-11-17 | 1980-06-02 | Corning Glass Works | Photo wave guide mode*scramble |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6287813A (en) * | 1985-10-14 | 1987-04-22 | Mitsubishi Cable Ind Ltd | Two-wavelength system optical sensor utilizing optical fiber |
Also Published As
Publication number | Publication date |
---|---|
JPH0129410B2 (en) | 1989-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4165496A (en) | Optical fiber light tap | |
US4593701A (en) | Catheter-tip micromanometer utilizing single polarization optical fiber | |
US6511222B1 (en) | Temperature sensor with optical fibre | |
US4465334A (en) | Multilayer fiber light conductor | |
US6124956A (en) | Optical transmitter output monitoring tap | |
US5004342A (en) | Measuring device having a laser and a ring resonator | |
US5003623A (en) | Bimodal intrusion detection in an optical fiber communication system using graded index fiber | |
JP3782260B2 (en) | Distributed waveguide tap | |
CN101325453A (en) | Whole optical fiber optical power monitor | |
JP4751118B2 (en) | Optical detection sensor | |
JPH08233695A (en) | Connecting-loss/reflection damping quantity measuring apparatus | |
JPS59122902A (en) | Light applied sensor | |
JP5054931B2 (en) | Optical sensor | |
JPS60178329A (en) | Optical fiber type temperature detector | |
CN212391610U (en) | Optical cable joint box positioning system based on optical fiber coding | |
JPH01158312A (en) | Light-applied sensor apparatus | |
US6591023B1 (en) | Optical transmitter having a modulation-capable wavelength-stable laser source | |
EP0534435B1 (en) | Fiber optic gyro | |
WO2024121906A1 (en) | Optical monitor device and light intensity measurement method | |
CN209689782U (en) | A kind of optical fiber grating temperature-measuring system | |
JPH01239508A (en) | Processing system for connection between single-mode optical fiber and multi-mode optical fiber | |
JPH0886815A (en) | Liquid crystal electric field sensor and measuring apparatus using the same | |
JP6769817B2 (en) | Antenna characteristic measuring device | |
SU1504522A1 (en) | Fibre-optics pressure transducer | |
JPS6039794Y2 (en) | Temperature sensor using optical fiber |