JPS59122721A - Filter regenerating device - Google Patents

Filter regenerating device

Info

Publication number
JPS59122721A
JPS59122721A JP57230046A JP23004682A JPS59122721A JP S59122721 A JPS59122721 A JP S59122721A JP 57230046 A JP57230046 A JP 57230046A JP 23004682 A JP23004682 A JP 23004682A JP S59122721 A JPS59122721 A JP S59122721A
Authority
JP
Japan
Prior art keywords
filter
exhaust gas
carbon
engine
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57230046A
Other languages
Japanese (ja)
Inventor
Shigenori Sakurai
桜井 茂徳
Mikio Murachi
村知 幹夫
Yoshitsugu Ogura
義次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57230046A priority Critical patent/JPS59122721A/en
Publication of JPS59122721A publication Critical patent/JPS59122721A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion

Abstract

PURPOSE:To perform optimum regenerating treatment, by a method wherein, when hydrocarbon and carbon monoxide are introduced in and regenerated on the upstream side of a carbon particle filter, which carries a catalyst oxide and is mounted in the middle of the exhaust pipe of an engine, an introducing amount and an introducing time are controlled. CONSTITUTION:A filter container 4, catching carbon particle in exhaust gas, is mounted in the middle of an exhaust pipe 3 of a diesel engine 1. The detecting values of an exhaust gas temperature sensor 12, mounted to an exhaust pipe 3 on the upstream side of the filter container 4, and a pulse generator 9 operating in synchronism with rotation of an engine are inputted in a microcomputer 8, the optimum amount of petroleum injected is computed according to the temperature of exhaust gas and the number of revolutions, and an injection valve 5 is opened through a lead wire 14. As a result, the optimum amount of petroleum in a tank 7 is injected to the upstream side of the filter 4 with the aid of a pump 6 to regenerate the filter.

Description

【発明の詳細な説明】 本発明は、ディーゼルエンノンの排ガス中に含まれるカ
ーボン微粒子を有()捉するフィルタを再生する装置に
閂するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to an apparatus for regenerating a filter that traps carbon particulates contained in diesel engine exhaust gas.

この種のフィルタとして、三次元網目ゼキ造を有するセ
ラミックフィルタ(以下フメームフィルタと呼ぶ)、あ
るいはセルの排ガスの入口卦よひ出口に交互に栓をした
ウオールスルータイツ0のセラミックフィルタ(以下)
\ニカムフィルタと呼ぶ)等、種々のものがある。しか
してこれらのフィルタは、カーボン微粒子の捕捉子があ
る程度増加すると、背圧が上昇するため、これを避ける
べく捕捉したカーボン微粒子を定期的に燃焼してフィル
タを再生する必要がある。
This type of filter includes a ceramic filter with a three-dimensional mesh structure (hereinafter referred to as a frame filter), or a wall-through tights ceramic filter (hereinafter referred to as below) in which plugs are alternately plugged at the inlet and outlet of the exhaust gas of the cell.
There are various types such as \Nicum filter). However, in these filters, when the number of carbon particulate traps increases to a certain extent, the back pressure increases, so in order to avoid this, it is necessary to periodically burn the trapped carbon particulates to regenerate the filter.

このカーボン微粒子の燃焼手段として、排ガス温度をカ
ーボン微粒子の燃焼温度である550〜600℃以上に
上昇させる方法、すなわち、吸気絞りや排気絞りを行な
って排ガス温度を上昇させる方法がある。しかし排ガス
温度をこのように高温にすることは、高速走行時には可
能であっても低速走行時においては不可能である。また
カーボン微粒子を燃焼させる他の手段とじ1゛、ヒータ
あるいはバーナをフィルタの排ガス入口部に設は飄カー
ボン微粒子に着火して燃焼伝播させる方法がある。しか
しこの方法においても、全走行領域でフィルタ再生を可
能とするには、排ガス流量および着火時期の制御あるい
は着火システム等、構成が複雑になるという問題がある
。また上記いずれの方法においても、カーボン微粒子の
捕捉量が少ないと、着火あるいは燃焼伝播がうまく行な
われず、逆にカーボン微粒子の捕捉量が多過ぎると、フ
ィルタ材は昇温か著しく、熱劣化が激しい。
As a means of combustion of the carbon particles, there is a method of raising the exhaust gas temperature to 550 to 600° C. or higher, which is the combustion temperature of the carbon particles, that is, a method of raising the exhaust gas temperature by restricting the intake air or the exhaust gas. However, although it is possible to raise the exhaust gas temperature to such a high temperature when the vehicle is running at high speeds, it is not possible when the vehicle is running at low speeds. Another method for burning the carbon particles is to install a heater or burner at the exhaust gas inlet of the filter to ignite the carbon particles and propagate the combustion. However, even with this method, there is a problem in that in order to enable filter regeneration in the entire driving range, the configuration such as control of the exhaust gas flow rate and ignition timing or the ignition system becomes complicated. Furthermore, in any of the above methods, if the amount of captured carbon particles is small, ignition or combustion propagation will not be carried out well, and conversely, if the amount of captured carbon particles is too large, the temperature of the filter material will rise significantly and thermal deterioration will be severe.

さて車両の一般走行において、排ガス温度は250℃程
度であり、全走行領域でフィルタ再生を可能にずべく、
従来よりこれくf−いの温度でカーボン微粒子を燃焼さ
せる方法なり出すことが望捷れていた。。
Now, in general driving of a vehicle, the exhaust gas temperature is around 250 degrees Celsius, and in order to enable filter regeneration in the entire driving range,
It has been desired to develop a method for burning carbon particles at a temperature higher than that in the past. .

本発明者らは上配間叩点に詐み、既に特願昭57−21
0576号において、全走行領域でフィルタの再生が可
能で、しかもカー21−゛ン微粒子の捕捉量に関係々く
安定した燃焼を行なうことので六るフィルタの再生方法
を提案した。すなわちこの再生方法は、フィルタに酸化
触媒を設け、このフィルタに500〜50000 pp
mの炭化水素(HC)および(脣だは)−酸化炭素(C
O)を排ガス温度150℃以上で10秒〜5分間導入し
て酸化触媒を酸化させ、この酸化反応に伴う発熱により
カーボン微粒子を燃焼させるように1.たものである。
The inventors have already filed a patent application in 1983-21 by deceiving the above-mentioned points.
In No. 0576, a method for regenerating a filter was proposed because it is possible to regenerate the filter in the entire driving range and also performs stable combustion regardless of the amount of captured particulates. That is, in this regeneration method, an oxidation catalyst is provided in the filter, and 500 to 50,000 ppm is applied to the filter.
m hydrocarbons (HC) and carbon oxides (C
1. O) is introduced for 10 seconds to 5 minutes at an exhaust gas temperature of 150° C. or higher to oxidize the oxidation catalyst, and the carbon particles are combusted by the heat generated by this oxidation reaction. It is something that

しかして上記再生方法を実pするにあたり、フィルタ材
および触媒を劣化さ七ることなく最適状態で再生さぜる
には、HC,Coの添加量、添加時期等と1.て最適条
件を選定する必要があり、まだ再生時期としても適当な
時期を選定することが好ましい。
However, when carrying out the above regeneration method, in order to regenerate the filter material and catalyst in an optimal state without deterioration, it is necessary to adjust the amount and timing of addition of HC and Co, etc. Therefore, it is necessary to select optimal conditions, and it is preferable to select an appropriate time for regeneration.

本発明はり上の点に鑑み、フィルタを最適条件下で再生
すみことのできる装置を提供することを目的としてなさ
れたもので、排気ガス温度を検知する機構と、エンジン
の排気系であってフィルタより上流側にIICおよび(
または)COを導入する供給機構と、Heおよび(また
は)COの導入量および導入時間を制御する枦IQを備
えることを特徴としている。
In view of the above points of the present invention, the purpose of this invention is to provide a device that can regenerate a filter under optimal conditions. IIC and (
or) a supply mechanism for introducing CO, and a control IQ for controlling the amount and time of introduction of He and/or CO.

以下図示実施例により説明する。The present invention will be explained below using illustrated embodiments.

第1図は本発明の一実施例に係る、排気1’12.2 
tのディーゼルエンジンの概略を示し、エンジン本体1
のエキゾーストマニホールド2から延びる排気管3の途
中には、フィルタ容器4が設けられる。
FIG. 1 shows an exhaust gas 1'12.2 according to an embodiment of the present invention.
The outline of the diesel engine of t is shown, and the engine body 1
A filter container 4 is provided in the middle of an exhaust pipe 3 extending from an exhaust manifold 2 .

フィルタ容器4内には、フィルタ相として、直径130
φ、長さ100町の大きさの13メツシユ(3次元網目
の空孔数が13ケ/インチの割合のもの)のフオームフ
ィルタに、フィルタ容積1tあたシ2gのI?ラジウム
(pa)を含有させたものが収容されている。
Inside the filter container 4 there is a diameter 130 mm as a filter phase.
A foam filter with a diameter of 13 meshes (the number of holes in the three-dimensional mesh is 13 holes/inch) with a length of 100 square meters is coated with an I? of 2 g per 1 ton of filter volume. Contains radium (pa).

エンジン本体1と容器4との間には、排気管3内に臨む
噴射弁5が配設される。この噴射弁5は、従来公知の燃
料噴射弁と同様な構成含有し、電磁iRバルブ開放する
ことによシ排気管3内に軽油を供給するようになってい
る。すなわち噴射弁5には、ポンゾロによυ、タンク7
内の軽油が常に一定圧力で給送されておシ、電磁バルブ
を開放する時間によシ、軽油の噴射量が定められる。し
かしてこの軽油によシ排ガス中にHCが導入される。
An injection valve 5 facing into the exhaust pipe 3 is disposed between the engine body 1 and the container 4. This injection valve 5 has the same structure as a conventionally known fuel injection valve, and is adapted to supply light oil into the exhaust pipe 3 by opening the electromagnetic iR valve. In other words, the injection valve 5 has Ponzoro's υ, and the tank 7
The light oil inside is always fed at a constant pressure, and the amount of light oil injected is determined by the time the solenoid valve is opened. However, HC is introduced into the exhaust gas by the light oil.

制御回路8は、上記電磁パルプの開放時間、すなわち、
排ガス中へのHCの導入量および導入時間を制御するマ
イクロコンビーータで、エンジン回転数および排気ガス
温度に応じて、その開放時間を制御する。パルス発生器
9は、エンジン本体1から突出するクランク軸10に近
接して取付けられ、この軸10の回転に応じてパルスを
発生し、これをリード線11を介して制御回路8へ出力
する。制御回路8はこのパルスによジエンジン回転数を
知る。一方、排気温センサ12は、フィルタ容器4内の
フィルタに近接して取付けられ、排気ガス温度を検知し
てこれをリード線13を介して制御回路8へ出力する。
The control circuit 8 controls the opening time of the electromagnetic pulp, that is,
This is a microconbeater that controls the amount and time of HC introduced into the exhaust gas, and its open time is controlled according to the engine speed and exhaust gas temperature. The pulse generator 9 is attached close to a crankshaft 10 protruding from the engine body 1, generates pulses in response to the rotation of the shaft 10, and outputs the pulses to the control circuit 8 via a lead wire 11. The control circuit 8 learns the engine rotation speed from this pulse. On the other hand, the exhaust gas temperature sensor 12 is installed close to the filter in the filter container 4, detects the exhaust gas temperature, and outputs it to the control circuit 8 via the lead wire 13.

しかして制御回路8は、これらエンジン回転数および排
気ガス温度から、排気管3中への軽油の1!^射景を決
定し、リード線14を介して噴射弁5を開放する。
Accordingly, the control circuit 8 calculates the amount of light oil into the exhaust pipe 3 based on the engine speed and exhaust gas temperature. ^Determine the shooting scene and open the injection valve 5 via the lead wire 14.

次に、上記実施例装置を用いて行ったフィルタ拐の再生
実験の結果を述べる。なお、制御回路8であるコンビー
ータには、次の(イ)、(ロ)、(ハ)、に)に示すよ
う表手順で実験を行なうべく、プログラムを入力した。
Next, the results of a filter regeneration experiment conducted using the apparatus of the above embodiment will be described. Note that a program was input into the control circuit 8, ie, the converter, in order to carry out the experiment according to the table procedure shown in (a), (b), (c), and (b) below.

また、車両の走行・母ターンは11ラツゾとした。In addition, the vehicle's running time and mother turn were set to 11 degrees.

(イ)エンジン回転数の積算値が1g万回に達したらフ
ィルタの再生準備を行なう。
(a) When the cumulative value of engine rotational speed reaches 10,000 g, prepare to regenerate the filter.

(ロ)排気ガス温度が250℃〜450℃の範囲で15
秒間継続したら、第2図に示す噴射時間の・母ターンに
従って軽油を噴射し、フィルタの再生を行なう。この時
、噴射時間の決定は、排気ガス温度が250℃に達して
から16秒後の時の排気ガス温度によシ行なう。
(b) 15 when the exhaust gas temperature is in the range of 250℃ to 450℃
When the injection continues for seconds, light oil is injected according to the main turn of the injection time shown in Fig. 2, and the filter is regenerated. At this time, the injection time is determined based on the exhaust gas temperature 16 seconds after the exhaust gas temperature reaches 250°C.

(ハ) フィルタの再生中、排気ガス温度が450℃以
上になった場合、軽油の噴射を停止する。
(c) During filter regeneration, if the exhaust gas temperature reaches 450°C or higher, stop the injection of diesel oil.

に)軽油の噴射が停止され、再生が完了したら、再びエ
ンジン回転数の積算を開始する。以後、(イ)、(ロ)
、(ハ)、に)を繰返す。
(2) After the injection of diesel oil is stopped and regeneration is complete, start integrating the engine speed again. Hereafter, (a), (b)
, (c), ni) are repeated.

しかしてエンジンを始動するとパルス発生器9が作動し
て回転数の積算を開始するが、この積算値が1g万回に
達したのは、11ラップ走行の2サイクル目の1ラツプ
目であった。すなわち、上記(イ)によシフィルタの再
生準備体制となるが、この2サイクル目の1〜9ラツプ
までは、排気ガス温度が15秒間250℃以上を維持す
ることがなかったため、軽油の噴射は行なわれなかった
。しかして走行・母ターンが10ラツプ目に入ると、排
気ガス温度が320℃となシ、制御回路8は、250℃
以上の排気ガス温度が15秒間継続したことを確認して
、噴射弁5から軽油を15秒間噴射させた。
However, when the engine is started, the pulse generator 9 operates and starts accumulating the number of rotations, but it was during the first lap of the second cycle of 11 laps that this accumulated value reached 10,000 g. . In other words, the above (a) prepares for regeneration of the filter, but since the exhaust gas temperature did not remain above 250°C for 15 seconds from the 1st to 9th lap of the second cycle, the injection of diesel oil was not possible. It wasn't done. However, when the running/main turn enters the 10th lap, the exhaust gas temperature reaches 320°C, and the control circuit 8 reaches 250°C.
After confirming that the above exhaust gas temperature continued for 15 seconds, light oil was injected from the injection valve 5 for 15 seconds.

この時、再生中の排ガス中のHC濃度(Ct換算)は、
4500〜6000 ppmの範囲にあシ、フィルタ内
の温度は最高560℃であった。
At this time, the HC concentration (in terms of Ct) in the exhaust gas during regeneration is:
The concentration ranged from 4,500 to 6,000 ppm, and the temperature inside the filter was a maximum of 560°C.

上記再生処理の終了後、容器4からフィルタを取出して
、付着1〜ていたカーボン微粒子の#号を測定すると、
0.16g/ケであり、捕捉したカーボン微粒子は上記
再生処理により実質的に全て燃焼されたこと、および、
フィルタ材あるいは触媒の劣化が起こることのない比較
的低温で再生が行なわれたことがわかる。ちなみに、1
1ラップ走行中の平均カー水ン微粒子排出斧と、フィル
タ材の捕集効率とから、エンジン始動から再生開始まで
にフィルタに捕捉されたカーボン微粒子の重帯は約3.
5117ケと推定される。
After the above-mentioned regeneration process is completed, the filter is removed from the container 4 and the number # of the attached carbon particles is measured.
0.16 g/piece, and the captured carbon fine particles were substantially all burned by the above-mentioned regeneration treatment, and
It can be seen that regeneration was carried out at a relatively low temperature without deterioration of the filter material or catalyst. By the way, 1
From the average car water and particulate discharge ax during one lap and the collection efficiency of the filter material, the heavy band of carbon particulates captured by the filter from engine start to regeneration start is approximately 3.
It is estimated that there are 5,117 pieces.

上記(イ)、(ロ)、(ハ)、に)に示されるプログラ
ムの内容は、あくまでも1例であシ、エンジンのカーボ
ン微粒子排出特性、あるいは排気ガス温度特性、フィル
タ材の伸率特性等により、再生時期、再生条件等を変化
させればよい。ただし、これら再生条件、再生時期を決
定するにあたり、次の点に注意しなければならない。
The contents of the programs shown in (a), (b), (c), and (b) above are just examples, such as engine carbon particulate emission characteristics, exhaust gas temperature characteristics, filter material elongation characteristics, etc. Accordingly, the playback timing, playback conditions, etc. may be changed. However, when determining these regeneration conditions and regeneration timing, the following points must be kept in mind.

すなわち′l−l1′句ガス温度(d、噴射される軽油
と触媒との反応において′ji要な影響を及ぼし、この
排気ガス温度により軽油の噴射時間を制御しないと、フ
ィルタ材の完全な再生は保証されない。第3図はとのこ
とを裏づけるもので、フィルタ1個あたシのカーボン微
粒子・の捕捉量が5gで、排ガス中のHC濃度が500
0 ppmの場合の、HC噴射時間とカーボン微粒子の
燃焼率との関係を示す。この図かられかるように、排ガ
ス温が高い砥どHeの噴射時間は短くてよい。
In other words, the gas temperature (d) has an important effect on the reaction between the injected light oil and the catalyst, and if the injection time of light oil is not controlled by this exhaust gas temperature, complete regeneration of the filter material will not be possible. Figure 3 confirms this, and shows that if the amount of carbon particles captured per filter is 5g, and the HC concentration in the exhaust gas is 500%.
The relationship between the HC injection time and the combustion rate of carbon particles in the case of 0 ppm is shown. As can be seen from this figure, the injection time of abrasive He, which has a high exhaust gas temperature, may be short.

また、フィルタの再生時期はカーボン微粒子捕捉量と密
接な関係にあシ、この捕捉量が多すぎると、すなわち再
生サイクルが長すぎると、カーボン微粒子の燃焼時の発
熱によシフィルタ内温度が著しく上昇し、フィルタ材あ
るいは触媒を劣化させてしまう。第一4図はこれを示す
もので、排ガス温が200℃、排ガス中のHC濃度が5
000 ppmの場合の、カーボン微粒子捕捉量とフィ
ルタ内温度との関係を示している。
Additionally, the regeneration timing of the filter is closely related to the amount of carbon particles captured; if the amount of captured carbon particles is too large, that is, if the regeneration cycle is too long, the temperature inside the filter will rise significantly due to the heat generated during combustion of the carbon particles. This may cause the filter material or catalyst to deteriorate. Figure 14 shows this, where the exhaust gas temperature is 200°C and the HC concentration in the exhaust gas is 5.
10 shows the relationship between the amount of captured carbon particles and the temperature inside the filter in the case of 000 ppm.

上記プログラムにおいて、排ガス温が450℃以上の場
合には、軽油の噴射を行なわないようになっているが、
これは、450℃以上ではフィルタに担持された触媒の
効果によシカ−がン微粒子が燃焼を開始し、事実上HC
を添加する必要がないこと、および、排ガ゛ス泥が45
0℃以上の、鳩舎にHCを添加すると、フィルタ材の温
度上昇が著し7く、フィルタ材あるいは触媒を劣化させ
るだめである。
In the above program, diesel oil is not injected when the exhaust gas temperature is 450°C or higher.
This is because at temperatures above 450°C, the carbon particles begin to burn due to the effect of the catalyst supported on the filter, and in fact, HC
There is no need to add
If HC is added to a pigeon house at a temperature of 0°C or higher, the temperature of the filter material will rise significantly and the filter material or catalyst will deteriorate.

なお、カーボン微粒子捕捉量を検知する手段としては、
上n1コ実施例のようにエンジン回転数の積算値を用い
る他、車両の走行距離を用いたシ、あるいはフィルタ材
による排気ガスの圧力損失の大きさを用いること等が考
えられ、また行にこれらの手段に限定されるものではな
い。
In addition, as a means of detecting the amount of captured carbon particles,
In addition to using the integrated value of the engine rotation speed as in the above n1 example, it is also possible to use the mileage of the vehicle, or the magnitude of the pressure loss of exhaust gas due to the filter material. It is not limited to these means.

また排ガス中に供給する炭化水素源は、必ずしも軽油で
ある必要はなく、例えばメタノール、エタノール等であ
ってもよく、また供給機構は噴射弁に限るものではない
Further, the hydrocarbon source supplied to the exhaust gas does not necessarily have to be light oil, and may be, for example, methanol, ethanol, etc., and the supply mechanism is not limited to an injection valve.

さらに、HCの供給場所は排気管で々くともよく、例え
ばエンジンの爆発工程直後にシリンダ内に炭化水素源を
噴射し、これ(だよりフィルタにHCを供給するように
してもよい。この場合、シリンダ内に噴射された炭化水
素源はシリンダ内の熱により分解され、COとHCの混
合物上なる。
Furthermore, the HC may be supplied to the exhaust pipe; for example, a hydrocarbon source may be injected into the cylinder immediately after the engine's explosion process, and HC may be supplied to the exhaust pipe. , the hydrocarbon source injected into the cylinder is decomposed by the heat inside the cylinder, resulting in a mixture of CO and HC.

このCOとHCldl、いずれもフィルり表面で角・I
I砂、と反応して発熱するだめ、上記実が1例と同様な
効果が得られる。
Both CO and HCldl have an angle of I on the fill surface.
Since it reacts with sand and generates heat, the same effect as in the above example can be obtained.

またフィルタに設ける触媒としては、Pdの仙、ロノウ
ム、白金、イリジウム竺、ICやCOの酸化を促進する
ものであれば何でもよく、さらに排ガス中にHCを供給
せずCOのみを供給するよう構成1.てもよい。
The catalyst provided in the filter may be any catalyst such as Pd, ronium, platinum, or iridium, as long as it promotes the oxidation of IC or CO. Furthermore, it is configured to supply only CO without supplying HC to the exhaust gas. 1. You can.

々お、本発明は)・二カムフィルタにも適用できること
は言う迄もない。
Needless to say, the present invention can also be applied to a two-cam filter.

以上のように本究明によれは、フィルタの再生処理を、
フィルタ材あるいは触〃v、の劣化の少ない最適条件下
で行なうことが可能と々るという効果が得られる。
As described above, according to this research, the filter regeneration process is
The effect can be obtained that the process can be carried out under optimal conditions with little deterioration of the filter material or the filter material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略図、第2図は排劣
ガス温度に対する軽油噴射時間の・やターンを示すグラ
フ、第3図は各種エンジン条件下におけるHC噴射時間
とカーボン椴粒子の燃焼率との1JA係を示すグラフ、
第4図はカーボン微粒子捕捉量とフィルタ内温度の関係
を示すグラフである。 3・・・排り1管、5・・・噴射弁(供給機構)、訃・
・制御回路(制御機構)、9・・・パルス発生器。 特許出、願人 トヨタ自動車株式会社 tr¥許出願代理人 弁理士 青 木   朗 弁理士西舘和之 弁理士 中 山 恭 介 弁理士 山 口 昭 之 Φ1r二:ζ) :3....:、 2 :’: )−、t、;排気ガス
温度(℃) 第3 Yi?J 12345 HC噴射時間(分) 吋L 4 ’r’:;・j 0 5 10 2030 カーホソ微粒子量(ψ勿)
Fig. 1 is a schematic diagram showing one embodiment of the present invention, Fig. 2 is a graph showing the turn of light oil injection time with respect to exhaust gas temperature, and Fig. 3 is a graph showing HC injection time and carbon oil injection time under various engine conditions. A graph showing the 1JA relationship with the combustion rate of particles,
FIG. 4 is a graph showing the relationship between the amount of captured carbon particles and the temperature inside the filter. 3... 1 drain pipe, 5... Injection valve (supply mechanism),
- Control circuit (control mechanism), 9... pulse generator. Patent issued, applicant: Toyota Motor Corporation, patent attorney: Akira Aoki, patent attorney, Kazuyuki Nishidate, patent attorney, Kyo Nakayama, patent attorney, Akira Yamaguchi (Φ1r2:ζ) :3. .. .. .. :, 2 :': )-, t,; Exhaust gas temperature (℃) 3rd Yi? J 12345 HC injection time (minutes) 吋L 4 'r':;・j 0 5 10 2030 Amount of fine particles (ψ)

Claims (1)

【特許請求の範囲】 1、酸化触媒を担持し、ディーゼルエンジンの排気管途
中に設けられてカーボン微粒子を捕捉するフィルタを、
再生する装置であって、上記排気管に設けられて排気ガ
ス温度を検知する温度検知機構と、エンジンの排気系で
あって上記フィルタより上流側に炭化水素および(iた
け)−酸化炭素を導入する供給援構と、炭化水素および
(または)−酸化炭素の導入量および導入時間を制御す
る制御機構とを備えるととを特徴とするフィルタ再生装
置。 2、フィルタに捕捉されたカーボン微粒子量を検知する
カーボン検知手段が設けられることを特徴とする特許請
求の範囲第1項記載のフィルタ再生装置。 3、カーボン検知手段がエンジン回転数の積算値を検知
する手段であることを特徴とする特許請求の範囲第2項
制を則のフィルタ町生装置。 4、カーボン検知手段が重両の走行p[i Iaf ′
!)杉i知する手段であることを特徴とする特許請求の
fiiQ ll1l第2項記載の再生装置。 5 カーボン検知手段がフィルタの圧力4眉失を検知す
る手段であることを特徴とする特nHF(求の範囲第2
項記載のフィルタの再生装置。
[Claims] 1. A filter supporting an oxidation catalyst and installed in the middle of the exhaust pipe of a diesel engine to capture carbon particles,
The regeneration device includes a temperature detection mechanism installed in the exhaust pipe to detect exhaust gas temperature, and introduces hydrocarbons and (i)-carbon oxide into the engine exhaust system upstream of the filter. and a control mechanism that controls the amount and time of introduction of hydrocarbons and/or carbon oxides. 2. The filter regeneration device according to claim 1, further comprising carbon detection means for detecting the amount of carbon particles captured by the filter. 3. A filter townhouse device according to claim 2, characterized in that the carbon detection means is a means for detecting an integrated value of engine rotational speed. 4. Carbon detection means detects heavy vehicle running p[i Iaf '
! ) The playback device according to claim 2, characterized in that it is a means for knowing cedar. 5 Special nHF (required range 2nd
Filter regeneration device as described in Section 1.
JP57230046A 1982-12-29 1982-12-29 Filter regenerating device Pending JPS59122721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57230046A JPS59122721A (en) 1982-12-29 1982-12-29 Filter regenerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57230046A JPS59122721A (en) 1982-12-29 1982-12-29 Filter regenerating device

Publications (1)

Publication Number Publication Date
JPS59122721A true JPS59122721A (en) 1984-07-16

Family

ID=16901710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57230046A Pending JPS59122721A (en) 1982-12-29 1982-12-29 Filter regenerating device

Country Status (1)

Country Link
JP (1) JPS59122721A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321718U (en) * 1986-07-28 1988-02-13
US5193340A (en) * 1990-05-10 1993-03-16 Nissan Motor Co., Ltd. Exhaust gas purifying system for internal combustion engine
EP0737802A2 (en) * 1995-04-10 1996-10-16 Nippon Soken, Inc. Hydrocarbon supplementing device mounted in exhaust purification device of internal combustion engine
US6199375B1 (en) * 1999-08-24 2001-03-13 Ford Global Technologies, Inc. Lean catalyst and particulate filter control system and method
US6594990B2 (en) 2000-11-03 2003-07-22 Ford Global Technologies, Llc Method for regenerating a diesel particulate filter
US6644020B2 (en) 2001-09-25 2003-11-11 Ford Global Technologies, Llc Device and method for regenerating an exhaust gas aftertreatment device
US7055313B2 (en) 1999-08-24 2006-06-06 Ford Global Technologies, Llc Engine control system and method with lean catalyst and particulate filter
JP2006275051A (en) * 2006-05-25 2006-10-12 Honda Motor Co Ltd Engine control method
CN113137301A (en) * 2020-01-16 2021-07-20 康明斯有限公司 Hydrocarbon delivery for exhaust aftertreatment systems

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321718U (en) * 1986-07-28 1988-02-13
US5193340A (en) * 1990-05-10 1993-03-16 Nissan Motor Co., Ltd. Exhaust gas purifying system for internal combustion engine
EP0737802A2 (en) * 1995-04-10 1996-10-16 Nippon Soken, Inc. Hydrocarbon supplementing device mounted in exhaust purification device of internal combustion engine
EP0737802A3 (en) * 1995-04-10 1997-03-05 Nippon Soken Hydrocarbon supplementing device mounted in exhaust purification device of internal combustion engine
US5806310A (en) * 1995-04-10 1998-09-15 Nippon Soken, Inc. Exhaust purification apparatus
US7055313B2 (en) 1999-08-24 2006-06-06 Ford Global Technologies, Llc Engine control system and method with lean catalyst and particulate filter
US6199375B1 (en) * 1999-08-24 2001-03-13 Ford Global Technologies, Inc. Lean catalyst and particulate filter control system and method
US6594990B2 (en) 2000-11-03 2003-07-22 Ford Global Technologies, Llc Method for regenerating a diesel particulate filter
US6644020B2 (en) 2001-09-25 2003-11-11 Ford Global Technologies, Llc Device and method for regenerating an exhaust gas aftertreatment device
JP2006275051A (en) * 2006-05-25 2006-10-12 Honda Motor Co Ltd Engine control method
JP4550770B2 (en) * 2006-05-25 2010-09-22 本田技研工業株式会社 Engine control method
CN113137301A (en) * 2020-01-16 2021-07-20 康明斯有限公司 Hydrocarbon delivery for exhaust aftertreatment systems
CN113137301B (en) * 2020-01-16 2023-09-19 康明斯有限公司 Hydrocarbon distribution for exhaust aftertreatment system

Similar Documents

Publication Publication Date Title
KR102159068B1 (en) Method and apparatus for post-treatment of exhaust gas from internal combustion engine
CN103527290B (en) System and method for improving SCR operations
US7107764B1 (en) Exhaust treatment system
US4549399A (en) Exhaust emission control system for diesel engine
JPS61123709A (en) Controller for internal-combustion engine provided with exhaust gas particulate emission control function
JP2003524106A (en) Method and apparatus for controlling regeneration by combustion of a filter holding particles
MXPA06004773A (en) Soot burn-off control strategy for a catalyzed diesel particulate filter.
US20050241295A1 (en) Device and method for purification of exhaust gas in an internal combustion engine
CN101929380B (en) Detecting particulate matter load density within a particulate filter
US20080078170A1 (en) Managing temperature in an exhaust treatment system
JP5033869B2 (en) Emission reduction system operating method and apparatus
JPS59122721A (en) Filter regenerating device
US20080155969A1 (en) Filter regeneration using ultrasonic energy
CN203925695U (en) The control system of engine exhaust temperature
US8864875B2 (en) Regeneration of a particulate filter based on a particulate matter oxidation rate
JP5827136B2 (en) Engine exhaust purification system
EP1072764A1 (en) System and method of treating exhaust gases of a combustion engine
JP2011137381A (en) Exhaust emission control device for internal combustion engine
US20150113963A1 (en) Control of regeneration in a diesel after-treatment system
KR101250367B1 (en) Apparatus for regeneration of diesel particulate filter and apparatus for reduction of diesel particulate matter having the same
JP6658211B2 (en) Exhaust gas purification device
WO2006095146A1 (en) Process and apparatus for the regeneration of a particulate filter
JP6642199B2 (en) Exhaust gas purification device
CN105531451B (en) Internal combustion engine
US20110047992A1 (en) Partial coating of platinum group metals on filter for increased soot mass limit and reduced costs