JPS59122705A - Turbine blade - Google Patents

Turbine blade

Info

Publication number
JPS59122705A
JPS59122705A JP23456882A JP23456882A JPS59122705A JP S59122705 A JPS59122705 A JP S59122705A JP 23456882 A JP23456882 A JP 23456882A JP 23456882 A JP23456882 A JP 23456882A JP S59122705 A JPS59122705 A JP S59122705A
Authority
JP
Japan
Prior art keywords
blade
cooling
holes
turbine
small holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23456882A
Other languages
Japanese (ja)
Inventor
Hideo Iwasaki
秀夫 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23456882A priority Critical patent/JPS59122705A/en
Publication of JPS59122705A publication Critical patent/JPS59122705A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To perform the cooling of a blade efficiently and uniformly without setting up transparent holes in a blade web part, by installing blowoff holes in a back part of the blade which has cooling passages in its inside, and also installing a lot of blade height directional small holes in the blade web part. CONSTITUTION:Cooling passages 13 are installed inside a turbine blade 11, while blowoff holes 14 are installed in the backside as well as a lot of blade height directional small holes 12 in the blade web side. These small holes 12 open to each of cooling passages 13 at the blade top part. Since no blowoff hole is installed in the blade web side like this, no loading happens there so that the blade web side can be cooled efficiently and uniformly owing to the cooling air passed through these small holes 12.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はタービン翼、特に高温にさらされるガスタービ
ン第1段に使用するに適したタービン翼に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a turbine blade, particularly a turbine blade suitable for use in a first stage of a gas turbine exposed to high temperatures.

〔発明の技術的背景〕   □ ガスタービンにおいては、その熱効率を上昇させるには
、そのタービン入口ガス温度を上昇させるりが最も有効
である。
[Technical Background of the Invention] □ The most effective way to increase the thermal efficiency of a gas turbine is to increase the gas temperature at the turbine inlet.

しかし乍ら、現用の耐熱合金では高譚のタービン運転状
態において発生する熱応力、高温酸化、ホントコロ−ジ
ョン等に耐える能力が十分でなく、入口ガス温度を高く
するにも限度がある。
However, current heat-resistant alloys do not have sufficient ability to withstand thermal stress, high-temperature oxidation, real corrosion, etc. that occur under high-temperature turbine operating conditions, and there is a limit to how high the inlet gas temperature can be raised.

そのため、入口ガス温度をできるだけ上昇させる手段と
して、種々の空気冷却タービン翼が提案されている。
Therefore, various air-cooled turbine blades have been proposed as means for increasing the inlet gas temperature as much as possible.

第1図、第2図は代表的な空気冷却タービン翼を示す。1 and 2 show typical air-cooled turbine blades.

タービン翼1は中空とされ、内部は隔壁2によってリー
ディングエツジ3から約もの部分、隔壁2からトレーリ
ングエツジ4までの部分とに区切られている。
The turbine blade 1 is hollow, and the interior thereof is divided by a partition wall 2 into a portion from a leading edge 3 to a portion approximately 100 degrees wide, and a portion from the partition wall 2 to a trailing edge 4.

リーディングエツジ側の室の内面には、具申方向の多数
のフィン5およびジグザグの流路を形成するためのパン
フルロが設けてあり、またその室の壁には空気吹出し用
の透孔7が設けられている。
The inner surface of the chamber on the leading edge side is provided with a large number of fins 5 in the application direction and a pan fluro for forming a zigzag flow path, and a through hole 7 for air blowing is provided in the wall of the chamber. ing.

トレーリングエツジ4には、翼の高さ方向のスリット8
が設けてあり、壁体の内面間はピンフィン9で連結され
ている。
The trailing edge 4 has a slit 8 in the height direction of the wing.
are provided, and the inner surfaces of the walls are connected by pin fins 9.

冷却空気は翼根部の開口10かも供給され、リーディン
グエツジおよび翼背部の透孔7から吹出して空気のフィ
ルムを形成し冷却を行う。また、トレーリングエツジの
スリットから翼後方下流に負 吹出した空気は対流冷却を行う。リターンフロ一部11
では、翼のトレーリングエツジからリーディングエツジ
に向って3列のリターンフローが行われ対流冷却がなさ
れると同時に、翼腹部に設けた透孔から吹出した空気が
形成するフィルムによる冷却も行われる。
Cooling air is also supplied through the opening 10 in the blade root, and is blown out from the leading edge and through holes 7 in the blade back to form a film of air for cooling. In addition, the air blown negatively downstream from the rear of the blade from the slit in the trailing edge is cooled by convection. Return flow part 11
In this case, three rows of return flows are performed from the trailing edge of the blade toward the leading edge to achieve convection cooling, and at the same time, cooling is also performed by a film formed by air blown out from the through holes provided in the blade abdomen.

〔背景技術の問題点〕[Problems with background technology]

上記の構成のタービン翼において、翼腹側は翼背側より
も圧力が高く、燃焼ガス中に含まれる灰分、不燃物等の
付着を生じ易く、それらにより透孔が閉塞されるおそれ
がある。また、タービン翼外面の圧力分布は一様でない
ので、各透孔の空気の吹出量が異ることとなり、翼面上
の温度分布が不均一となり勝ちである。
In the turbine blade having the above configuration, the pressure on the blade vent side is higher than that on the blade back side, and ash, incombustibles, etc. contained in the combustion gas tend to adhere to the blade, and there is a risk that the through holes may be blocked by them. Further, since the pressure distribution on the outer surface of the turbine blade is not uniform, the amount of air blown out from each through hole is different, which tends to cause the temperature distribution on the blade surface to be non-uniform.

〔発明の目的〕[Purpose of the invention]

本発明は上記の事情に基きなされたもので、翼 、腹部
に空気吹出し用の透孔を有せず、しかも良好な冷却効果
の得られるタービン翼を得ることを目的としている。
The present invention has been made based on the above-mentioned circumstances, and an object of the present invention is to obtain a turbine blade that does not have a through hole for air blowing in the blade or abdomen, and that can provide a good cooling effect.

〔発明の概要〕[Summary of the invention]

本発明においては、翼のリーディングエツジから翼腹全
体に、翼の高さ方向の細孔を多数設け、これらの細孔を
翼背の空気吹出し用の透孔に連通する流路と連通させて
タービン翼を構成して、前記目的を達成している。
In the present invention, a large number of pores are provided in the height direction of the blade from the leading edge of the blade to the entire blade belly, and these pores are communicated with a flow path that communicates with the air blowing hole in the blade spine. A turbine blade is configured to achieve the above objectives.

〔発明の実施例〕[Embodiments of the invention]

第3図、第4図は本発明の一実施例を示して℃・る。こ
れらの図において、タービン翼11の壁体には、そのリ
ーディングエツジからトレーリングエツジにかけて、翼
腹側に、多数の細孔12力l翼根部端面から壁面にそっ
て翼頂部方向に穿設され、翼頂部側で真中空部すなわち
冷却流路13に開口しており開口は翼頂部方向に向って
穿たれている。
3 and 4 show an embodiment of the present invention. In these figures, the wall of the turbine blade 11 has a large number of pores drilled from the leading edge to the trailing edge on the blade vent side from the blade root end surface along the wall surface toward the blade top. , which opens into a hollow space, that is, a cooling channel 13, on the blade top side, and the opening is bored toward the blade top.

図中、14は翼背側に穿たれたフィルム冷却のための空
気吹出孔を示す。
In the figure, reference numeral 14 indicates an air blowing hole for cooling the film, which is bored on the back side of the wing.

上記構成の本発明タービン翼においては、翼根部端面か
ら流入し細孔12内を流過して、冷却流路13に流入す
る空気によって、リーディングエツジおよび翼腹側の壁
体の冷却が行われる。
In the turbine blade of the present invention having the above configuration, the leading edge and the wall on the ventral side are cooled by the air flowing from the end face of the blade root, passing through the pores 12, and flowing into the cooling channel 13. .

従って、翼腹に吹出孔を設けた場合のように、圧力分布
の不均一に基く吹出量従って冷却の不均一を生じるおそ
れはない。また、吹出孔を設けていないので、当然その
目詰り等を生じることもない。さらに、細孔12から冷
却流路13内に流入した空気は、翼頂部壁体内面に衝突
するので、翼頂部の冷却にも寄与する。
Therefore, there is no risk of non-uniform cooling due to non-uniform pressure distribution, unlike in the case where a blow-off hole is provided in the blade belly. Furthermore, since no blow-off holes are provided, there is no possibility of clogging of the blow-off holes. Furthermore, since the air flowing into the cooling channel 13 from the pores 12 collides with the inner surface of the blade top wall, it also contributes to cooling the blade top.

なお、本発明は上記実施例のみに限定されない。Note that the present invention is not limited to the above embodiments.

例えば、細孔12にかえ、翼腹側壁体内にジグザグの流
路を形成し、その一端を冷却通路13に、他端を翼根部
端面に開放させる′ようにしてもよい。
For example, instead of the pores 12, a zigzag flow path may be formed in the blade vent wall, with one end open to the cooling passage 13 and the other end open to the blade root end surface.

また、細孔またはジグザグの流路に、空気にかえ水を供
給するようにしてもよい。この場合において、水が冷却
流路13内に流入する部分をノズル状としておき、ここ
で水をフンツシュさせて蒸気として、冷却流路に吹込む
ようにしてもよい。なお、前記の蒸気は空気と共に吹出
孔14から吹出され、フィルム冷却を行う。また、細孔
にかえジグザグの流路を設けた場合にあっては、このR
路を冷却流路13と翼の下部で連通させ、ここで冷却水
をフラッジ−させるようにし、この蒸気と冷却流路13
内に供給された空気とにより冷却を行うようにしてもよ
い。
Alternatively, water may be supplied instead of air to the pores or zigzag channels. In this case, the portion where the water flows into the cooling channel 13 may be formed into a nozzle shape, and the water may be blown there to be blown into the cooling channel as steam. Note that the above-mentioned steam is blown out from the blow-off hole 14 together with air to perform film cooling. Also, if a zigzag channel is provided instead of a pore, this R
The passage communicates with the cooling passage 13 at the lower part of the blade, and the cooling water is flooded here, and this steam and the cooling passage 13 are communicated with each other at the bottom of the blade.
Cooling may be performed with air supplied inside.

〔発明の効果〕〔Effect of the invention〕

上記から明らかなように、本発明によれば、翼の圧力が
高い腹側に開口を有さない為、燃焼ガス中の灰分、′不
燃物による開孔閉塞の虞が軽減されるとと本に翼根部か
ら翼頂部にわたり冷却材が通流する為、冷却が良好且つ
均一に行われるタービン翼が得られ、その結果、努スタ
ービン入ロガス温度を増大させるこ゛とができ、その熱
効率の向上をはかることができる。
As is clear from the above, according to the present invention, since the blade does not have an opening on the ventral side where the pressure is high, the risk of the opening being blocked by ash in the combustion gas and non-combustible matter is reduced. Since the coolant flows from the blade root to the blade top, a turbine blade with good and uniform cooling can be obtained.As a result, the temperature of the log gas entering the turbine can be increased, and its thermal efficiency can be improved. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のガスタービン翼の縦断面図、第2図は第
1図n −II線における断面図、第3図は本発明一実
施例の横断面図、第4図はそのIV−IV線における断
面模式図である。 11・・・タービン翼、   12・・・i  孔、1
3・・・冷却流路、    14・・・吹出孔出願代理
人 弁理士 菊 池 五 部 ill/If 第31I 4 第4@
FIG. 1 is a longitudinal sectional view of a conventional gas turbine blade, FIG. 2 is a sectional view taken along the line n-II in FIG. 1, FIG. 3 is a cross-sectional view of an embodiment of the present invention, and FIG. FIG. 3 is a schematic cross-sectional view taken along the IV line. 11...Turbine blade, 12...i hole, 1
3...Cooling channel, 14...Blowout port Application agent Patent attorney Kikuchi Go Department ill/If No. 31I 4 No. 4 @

Claims (2)

【特許請求の範囲】[Claims] (1)翼内部に冷却流路を有するものにおいて、翼背部
には前記冷却流路に連通ずる吹出孔を設け、翼のリーデ
ィングエツジから翼腹部におよぷ翼壁体には翼根部端面
から前記冷却流路に向って翼壁面に沿った多数の細孔を
穿ったことを特徴とするタービン翼。
(1) In a blade having a cooling passage inside the blade, a blow-off hole communicating with the cooling passage is provided in the blade back, and the blade wall extends from the leading edge of the blade to the blade abdomen. A turbine blade characterized in that a large number of pores are bored along the blade wall surface toward the cooling flow path.
(2)冷却流路に向って穿たれた細孔が翼頂部内面に向
って開口していることを特徴とする特許請求の範囲第1
項記載のタービン翼。
(2) Claim 1, characterized in that the pores bored toward the cooling flow path open toward the inner surface of the blade top.
Turbine blades described in section.
JP23456882A 1982-12-28 1982-12-28 Turbine blade Pending JPS59122705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23456882A JPS59122705A (en) 1982-12-28 1982-12-28 Turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23456882A JPS59122705A (en) 1982-12-28 1982-12-28 Turbine blade

Publications (1)

Publication Number Publication Date
JPS59122705A true JPS59122705A (en) 1984-07-16

Family

ID=16973050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23456882A Pending JPS59122705A (en) 1982-12-28 1982-12-28 Turbine blade

Country Status (1)

Country Link
JP (1) JPS59122705A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2678318A1 (en) * 1991-06-25 1992-12-31 Snecma COOLED VANE OF TURBINE DISTRIBUTOR.
US6089826A (en) * 1997-04-02 2000-07-18 Mitsubishi Heavy Industries, Ltd. Turbulator for gas turbine cooling blades
US6116854A (en) * 1997-12-08 2000-09-12 Mitsubishi Heavy Industries, Ltd. Gas turbine moving blade
US6276897B1 (en) * 1998-12-05 2001-08-21 Abb Alstom Power (Schweiz) Ag Cooling in gas turbines

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2678318A1 (en) * 1991-06-25 1992-12-31 Snecma COOLED VANE OF TURBINE DISTRIBUTOR.
US6089826A (en) * 1997-04-02 2000-07-18 Mitsubishi Heavy Industries, Ltd. Turbulator for gas turbine cooling blades
US6116854A (en) * 1997-12-08 2000-09-12 Mitsubishi Heavy Industries, Ltd. Gas turbine moving blade
US6276897B1 (en) * 1998-12-05 2001-08-21 Abb Alstom Power (Schweiz) Ag Cooling in gas turbines

Similar Documents

Publication Publication Date Title
JP2862536B2 (en) Gas turbine blades
JP3758792B2 (en) Gas turbine rotor platform cooling mechanism
US4474532A (en) Coolable airfoil for a rotary machine
US6283708B1 (en) Coolable vane or blade for a turbomachine
US6089822A (en) Gas turbine stationary blade
EP1445424B1 (en) Hollow airfoil provided with an embedded microcircuit for tip cooling
US4105364A (en) Vane for a gas turbine engine having means for impingement cooling thereof
US3574481A (en) Variable area cooled airfoil construction for gas turbines
JP4553285B2 (en) End rail cooling method for high pressure and low pressure turbine combined shroud.
JP4801513B2 (en) Cooling circuit for moving wing of turbomachine
US5915923A (en) Gas turbine moving blade
US3902820A (en) Fluid cooled turbine rotor blade
US5711650A (en) Gas turbine airfoil cooling
JPS6147286B2 (en)
US10655474B2 (en) Turbo-engine component having outer wall discharge openings
JPS6148609B2 (en)
US3994622A (en) Coolable turbine blade
JP2005127314A (en) Converging pin cooled airfoil
JP2001073704A (en) Cooling tip of rotor blade
JP2006112429A (en) Gas turbine engine part
JPS6326242B2 (en)
US3111302A (en) Blades for fluid flow machines
KR20010105148A (en) Nozzle cavity insert having impingement and convection cooling regions
GB2301405A (en) Gas turbine guide nozzle vane
JP2000337102A (en) Cooling circuit for steam air cooling turbine nozzle stage