JPS59122452A - Urea synthesis tube - Google Patents

Urea synthesis tube

Info

Publication number
JPS59122452A
JPS59122452A JP57231319A JP23131982A JPS59122452A JP S59122452 A JPS59122452 A JP S59122452A JP 57231319 A JP57231319 A JP 57231319A JP 23131982 A JP23131982 A JP 23131982A JP S59122452 A JPS59122452 A JP S59122452A
Authority
JP
Japan
Prior art keywords
synthesis
section
tube
liquid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57231319A
Other languages
Japanese (ja)
Inventor
Shigeru Inoue
繁 井上
Hidetsugu Fujii
藤井 英嗣
Masao Kato
正雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP57231319A priority Critical patent/JPS59122452A/en
Publication of JPS59122452A publication Critical patent/JPS59122452A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/245Stationary reactors without moving elements inside placed in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00103Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor in a heat exchanger separate from the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To decrease the height of a urea synthesis plant and mitigate the problems accompanied to a huge plant, and to produce urea in an efficiency comparable to or higher than that of the vertical synthesis tube, by using a synthesis tube placed horizontally or nearly horizontally and having the inner space divided into the sections connected with each other in series. CONSTITUTION:The synthesis tube 101 is divided into plural sections by partition walls, and furnished with a means for releasing and dispersing the raw material gas and a means for introducing the raw material liquid at the bottom of the tube. A carbamate solution is introduced to the bottom of the horizontally placed synthesis tube 101 from the carbamate condenser 103 through the line 3, and the uncondensed gas discharged from the condenser 103 is supplied to each section through the line 3. The gas is absorbed in the solution in the course of flowing upward concurrently with the solution, and the liquid containing the synthesized product obtained by the reaction is flowed over the partition walls to the next section. The unabsorbed gas is transferred through the connecting hole bored above the liquid level, discharged from the end section, and introduced to the scrubber 104 through the line 7. The synthesis liquid passed through all sections is sent to the stripper 102 through the line 5, and the urea solution is obtained from the line 11.

Description

【発明の詳細な説明】 本発明は尿素合成管に関し、さらに詳しくは水平ないし
略水平に設置された合成管に関する。アンモニアと二酸
化炭素を原料として工業的に尿素を合成することは広く
行なわれている。これに用いられる尿素合成管はすべて
竪型であり、基本的には下方から両原料が送入され、反
応は両原料物質の並流下に行なわれ上方から尿素、反応
中間体、副生物、未反応物、イナートガス、水等が含ま
れた生成物流が取出される。生成物流からは尿素が水溶
液として取出され濃縮等の工程を経て最終製品となる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a urea synthesis tube, and more particularly to a synthesis tube installed horizontally or substantially horizontally. Industrial synthesis of urea using ammonia and carbon dioxide as raw materials is widely practiced. The urea synthesis tubes used for this are all vertical, and basically both raw materials are fed from below, and the reaction is carried out in parallel flow of both raw materials. A product stream containing reactants, inert gas, water, etc. is removed. Urea is extracted as an aqueous solution from the product stream and becomes the final product through processes such as concentration.

生成物流中の残余の成分は必要に応じ一部排出されるが
、通常適宜の方法で回収され合成管に循環されて合成管
下部に送入され、同時に尿素水溶液の取出し分に対応す
るアンモニア、二酸化炭素等が系外から合成管下部に供
給される。
Although some of the remaining components in the product stream are discharged as necessary, they are usually recovered by an appropriate method, circulated to the synthesis tube, and sent to the lower part of the synthesis tube. At the same time, ammonia and Carbon dioxide, etc. are supplied to the lower part of the synthesis tube from outside the system.

合成反応の条件は大略温度160〜210℃、圧力10
0〜300kO/cwrG、NH3/CO2モル比2.
5〜6.0、合成管中の一回通過の滞留時間15〜70
分程度である。
The conditions for the synthesis reaction are approximately a temperature of 160 to 210°C and a pressure of 10°C.
0-300kO/cwrG, NH3/CO2 molar ratio 2.
5-6.0, residence time for one pass in synthesis tube 15-70
It takes about a minute.

生成物流中の再利用可能成分をなるべくエネルギーロス
少く経済的、効果的に回収し、循環させるだめに神々の
方法が実用されているが、とりわけ代表的なのがストリ
ッピング法である。すなわち生成物流は一般に尿素合成
反応と同じ高圧下、必要に応じ適宜分解後または分解を
伴って、ストリッパーの中で原料二酸化炭素ガスまたは
アンモニアガスによりストリッピングされ、このストリ
ッピング用ガスに同伴した有用成分は、代表的には、ア
ンモニウムカーバメートを主とする水溶液にカーバメー
トコンデンサーの中で少くとも一部が吸収されてから循
環液として、また残余の未吸収ガスはそのまま、合成管
下部に送入される。ストリッパー下部よりの流出液は適
宜の分離精製工程を経て尿素溶融液となる。この分離精
製■稈で回収された有用成分は、水またはいわゆる尿素
m液の中に吸収され、これがさらに上記カーバメートコ
ンデンサーの吸収用液とされることが一般的である。
God's methods are being put into practice to recover and circulate reusable components in product streams economically and effectively with as little energy loss as possible, and one of the most representative is the stripping method. That is, the product stream is generally stripped with raw carbon dioxide gas or ammonia gas in a stripper under the same high pressure as in the urea synthesis reaction, after or with appropriate decomposition as necessary, and the useful material entrained in this stripping gas is stripped. Typically, the components are at least partially absorbed in an aqueous solution mainly containing ammonium carbamate in a carbamate condenser, and then the remaining unabsorbed gas is sent to the lower part of the synthesis tube as a circulating fluid. Ru. The effluent from the lower part of the stripper undergoes appropriate separation and purification steps to become a urea melt. The useful components recovered from this separated and purified culm are generally absorbed into water or a so-called urea solution, which is further used as an absorption liquid for the carbamate condenser.

今日では、とりわけ二酸化炭素ガスによるストリッピン
グで得られた有用ガスをカーバメートコンデンサーで吸
収するのが代表的である。このような方法においては、
カーバメートコンデンサー、合成管、ストリッパーをこ
の順で上から下に配置するのが、格別の動力を用いずに
重力を利用した系を組立てることができて好都合である
Today, it is typical to absorb the useful gases obtained, inter alia, by stripping with carbon dioxide gas, in carbamate condensers. In such a method,
It is convenient to arrange the carbamate condenser, synthetic tube, and stripper in this order from top to bottom, since it is possible to assemble a system using gravity without using any special power.

しかしこれらの系は前記のとおり 100〜300/c
dGという高圧に耐えねばならないので生産量が大きい
場合には大重量かつ巨大なものとならざるを得ず、構築
、保守、点検等に物理的、経済的、人員上等の各種問題
が生じていた。具体的な例を述べれば合成のスタート時
、異常時の点検や緊急時の注水洗滌、定期修理や補修な
どのために系の頂部まで發っで作業する必要があってこ
れのための架台、足場、階段、手摺等の構造物が必要と
なり、またかかる作業は高所作業となって能率が悪くか
つ危険である。例えば尿素日産20001−ン程度のプ
ラントでは上記三者の系は、後記にて図面により説明す
るが、通常必要なスクラバーまで含めると高さ約70m
位にまで達してしまう。このうち40mという大半は合
成管に由来する。合成管中では気液が共存する原料流が
並流する必要があり合3− 成管は直立した竪型とすることが必須であった。
However, as mentioned above, these systems are 100-300/c
Since it has to withstand the high pressure of dG, if the production volume is large, it must be heavy and huge, causing various physical, economic, and personnel problems in construction, maintenance, and inspection. Ta. To give a specific example, when starting synthesis, it is necessary to reach the top of the system for inspection in the event of an abnormality, water injection in an emergency, periodic repairs, etc. Structures such as scaffolding, stairs, and handrails are required, and such work requires work at heights, which is inefficient and dangerous. For example, in a Urea Nissan 20001-N plant, the above three systems are approximately 70 m in height, including the necessary scrubber, as will be explained later with drawings.
It reaches the level of Most of this, 40m, comes from synthetic pipes. In the synthesis tube, it is necessary for the raw material flow in which gas and liquid coexist to flow in parallel, so it is essential that the synthesis tube be of an upright vertical type.

より低圧で行なわれることの多いストリッピング法では
とくに、直立した合成管では原わI気体成分の上方吹抜
け、合成管中の液の上方から下方への逆混合等の心配が
ありこれらの防止等に細かい配慮を余儀なくされるとい
う不都合があった。
Especially in the stripping method, which is often carried out at lower pressures, there are concerns such as upward blow-through of the raw material I gas component and back mixing of the liquid in the synthesis tube from the top to the bottom in an upright synthesis tube, and these should be prevented. This had the disadvantage of requiring careful consideration.

一方合成管を単に水平ないし略水平に設ければ高さは減
らせるが気液並流が不良となり合成率の低下を招く。
On the other hand, if the synthesis tube is simply provided horizontally or substantially horizontally, the height can be reduced, but the parallel flow of gas and liquid becomes poor, leading to a decrease in the synthesis rate.

アンモニアと二酸化炭素とを出発原料として、尿素合成
に適した高温度および高圧下、尿素合成管中で液体状お
よび気体状の原料流が互いに同じ向きに流されて尿素が
合成されるに際し、合成管を水平ないし略水平にしても
、従来と同等またはそれ以上に良好に尿素の合成反応を
進ませるために研究の結果得られたのが本発明である。
Using ammonia and carbon dioxide as starting materials, urea is synthesized by flowing liquid and gaseous raw materials in the same direction in a urea synthesis tube at high temperatures and high pressures suitable for urea synthesis. The present invention was obtained as a result of research to allow the urea synthesis reaction to proceed as well or better than conventional methods even when the tube is horizontal or substantially horizontal.

すなわち水平ないし略水平に設置され、その内部空間が
直列で連なる複数のセクションからなり、入口端のセク
ションへ原料流の少くとも一部が供給され、残余の部の
原料流は伯の少くとも一部のセクショ4− ンヘ供給され、該原料流はすべて出口端へ流通させられ
、尿素を含む生成物流が入口端と反対側の出口端から流
出させられる尿素合成管が提供される。
That is, it is installed horizontally or approximately horizontally, and its interior space consists of a plurality of sections connected in series, with at least a part of the raw material flow being supplied to the section at the inlet end, and at least part of the raw material flow in the remaining part being supplied to the section at the inlet end. A urea synthesis tube is provided which is fed into section 4 of the section, the feed stream being directed entirely to an outlet end, and a product stream comprising urea exiting from an outlet end opposite the inlet end.

本発明の合成管の各セクションはその底部に原料ガスの
放出分散機構と原料液の導入機構とを通常有し、原料の
ガスと液は充分接触させられつつ並流的にセクション内
を上昇し、液は上部液面の高さで、当該セクション内に
設けられた堰の上端から、溢流流下して、当該セクショ
ンとそれより出口端側の隣りのセクションとの間の隔壁
の下端またはその付近に設けられた流入口から該隣りの
セクションに流入する。堰および隔壁は一般に合成管軸
の傾きに対応して合成管軸に垂直ないし略垂直に設けら
れるのが通常好ましいが、必ずしもこれらに限定されな
い。セクション下部から上部液面上に出たガスは個々の
セクションの上部から抜かれてもよいが、通常は、夫々
の隔壁の液面よりも高い部位に必要に応じて適宜液や飛
沫の混入防止装置を付帯させた連通孔をへて、より出口
端に近い隣りのセクション内の液面」−空間に流入し、
出口端のセクションに全てが集まり、そこから排出され
る。また副生カーバメートに由来する成分を含むことも
多い循環溶液は入口端セクションの底部の導入機構から
導入され、一方合成液は、出目端セクションから、一般
には、それの、合成管の端部壁にあたる壁または側壁の
近くに設けられた堰すなわち溢流壁とこれらの壁との間
に溢流流入してから合成管外に取出される。
Each section of the synthesis tube of the present invention usually has a raw material gas release and dispersion mechanism and a raw material liquid introduction mechanism at its bottom, and the raw material gas and liquid rise within the section in parallel flow while being brought into sufficient contact with each other. , the liquid overflows and flows down from the upper end of the weir provided in the section at the height of the upper liquid level, and the lower end of the partition wall between the section and the adjacent section on the outlet end side or the It flows into the adjacent section from an inlet provided nearby. Generally, it is preferable that the weir and the partition wall be provided perpendicularly or substantially perpendicularly to the axis of the synthetic tube in accordance with the inclination of the axis of the synthetic tube, but the invention is not necessarily limited thereto. Gas discharged from the bottom of the section onto the upper liquid level may be vented from the top of each section, but usually a device to prevent liquid or droplets from getting mixed in is installed at a portion of each bulkhead higher than the liquid level as necessary. The liquid level in the adjacent section closer to the outlet end flows into the space through the communication hole with the
Everything collects in the exit end section and exits from there. The circulating solution, which also often contains components derived from by-product carbamates, is introduced from the introduction mechanism at the bottom of the inlet end section, while the synthesis solution is introduced from the open end section, generally at the end of the synthesis tube. The overflow flows between the weir or overflow wall provided near the wall or side wall and these walls, and is then taken out of the synthesis tube.

本発明によれば、1産2000 トン規模のプラントで
も、尿素合成管に由来するプラントの高さは40mから
僅か7m程度に減じられ、スクラバー、カーバメートコ
ンデンサー、ストリッパー等を含めても34m程度と略
半減する。従って上記各種問題は著しく軽減される。し
かも合成管が複数のセクションに分かたれるので、さき
にふれた原料気体成分の上方吹抜け、合成管中の液入口
方向への逆混合等の心配がない。
According to the present invention, even in a plant with a production capacity of 2,000 tons, the height of the plant derived from the urea synthesis pipe can be reduced from 40 m to only about 7 m, and even including the scrubber, carbamate condenser, stripper, etc., it is approximately 34 m. Reduce by half. Therefore, the various problems mentioned above are significantly alleviated. Moreover, since the synthesis tube is divided into a plurality of sections, there is no need to worry about upward blow-through of the previously mentioned raw material gas components or back mixing toward the liquid inlet in the synthesis tube.

本発明では、合成管のセクション数はとくに限定はない
が一般には数個から20個程度であって、個々のセクシ
ョンの液の容積は通常互に等しいが必要に応じ異ってい
てもよい。循環液は入口端のセクションから導入され、
二酸化炭素ガスまたはさらにアンモニア、水を含む混合
ガスおよび液体アンモニアはいずれも入口端を含む一般
に複数のセクションの少くとも一つに必要に応じ適宜分
割されて導入され、各原料等の供給物はいずれも個々の
セクションの下方から導入されセクション内で上方に並
流しつつ吸収および/または反応が行われ、次のセクシ
ョンへの移動は下方へは液が溢流によりもたらされ、ガ
スは、液に未吸収のイナートガスを主とするが、各セク
ション間の隔壁の液面より上方の部分にある連通孔を通
って移動し、最後に出口端のセクションより合成液と未
吸収ガスを含む合成物流が、一般に液とガスに分離させ
られて流出させられる。各原料はいずれも反応等が好ま
しく行われる様な少くとも1つの適当位置のセクション
に、セクション位置に応じて反応等が好ましく行われる
様な量で導入されるが、液体アンモニアの場合とくに、
これが充分反応しまた7− は吸収されてガス化がほとんど起らない、またはこれの
導入が合成率の向上に寄与し始める以降のセクションで
なされるとよい。ガスは各セクションの下部から例えば
スパージャ−等の適宜の分散装置により細胞にされて上
方へ流れている液の中を一ヒ胃し、セクション内上方の
液面に達するまでの間に実質上全部ないし大部分のガス
は液に吸収される。また各セクション内には必要に応じ
て目皿板等を通常2〜3段程度設置して気液の接触を促
すと好ましく、とくに合成温度に比して操作圧力の低い
場合有効である。
In the present invention, the number of sections in the synthesis tube is not particularly limited, but is generally from several to about 20, and the volumes of liquid in the individual sections are usually equal to each other, but may be different if necessary. Circulating fluid is introduced from the inlet end section;
Carbon dioxide gas or a gas mixture containing further ammonia, water, and liquid ammonia are generally introduced in at least one of a plurality of sections, including the inlet end, in appropriate portions as necessary, and each raw material or other feed is Gas is introduced from the bottom of each section and absorption and/or reaction takes place in parallel flow upwards within the section; movement to the next section is brought about by overflow of the liquid downwards; The unabsorbed inert gas is the main stream, but it moves through the communication hole in the part above the liquid level of the partition wall between each section, and finally the synthetic liquid and unabsorbed gas are released from the outlet end section. , generally separated into liquid and gas and discharged. Each raw material is introduced into at least one section at an appropriate position where the reaction etc. can preferably take place, and in an amount so that the reaction etc. can take place preferably depending on the section position. In the case of liquid ammonia, in particular,
It is preferable to carry out the introduction in a later section when this reacts sufficiently and 7- is absorbed so that almost no gasification occurs, or when it starts to contribute to improving the synthesis rate. The gas is dispersed from the bottom of each section into cells by a suitable dispersion device such as a sparger, and then emptied into the liquid flowing upward, and virtually all of the gas is absorbed by the time it reaches the liquid level above the section. Most of the gas is absorbed by the liquid. It is also preferable to install two or three perforated plates or the like in each section as necessary to promote contact between gas and liquid, and this is particularly effective when the operating pressure is low compared to the synthesis temperature.

なお出目端セクションないしその付近のセクションでは
、実際上ガスが供給されずに合成反応が進行させられる
こともできる。
In addition, in the exposed end section or the section near it, the synthesis reaction can be allowed to proceed without actually being supplied with gas.

あるセクションから伯のセクションへの移液は溢流によ
ってなされるので、各セクション内上方の液面の位置は
セクションが人目端側から遠(出口端側に近い程低くな
る。従って円筒形の合成管では一般に、水平に設置され
れば各セクション内の液の深さは、各セクションの底部
の高さが同じ一〇− 位置にある通常の場合には、より出口端側程浅い。
Since the liquid is transferred from one section to the other section by overflow, the position of the upper liquid level within each section is lower as the section is farther from the end (closer to the outlet end). In pipes, the depth of liquid in each section is generally shallower toward the outlet end if the pipe is installed horizontally, which is the normal case when the bottom height of each section is at the same 10-degree position.

合成管を若干傾斜させて同じ深さにすることもできるが
、一般にセクション内の液の深さの一様さは減るので、
反応等が良好に行われる様に各セクションの底部の形状
等、また気液の分散混合の方法や装置等に配慮をすべき
である。
The synthetic tube can be tilted slightly to achieve the same depth, but this generally reduces the uniformity of liquid depth within the section.
In order to ensure good reaction, consideration should be given to the shape of the bottom of each section, as well as the method and equipment for dispersion and mixing of gas and liquid.

以下の例で本発明を具体的に説明するが、この例は本発
明の典型的な代表例にすぎず、本発明はこれに限定され
ない。
The present invention will be specifically explained in the following example, but this example is only a typical representative example of the present invention, and the present invention is not limited thereto.

例 効果の著しいストリッピングプロセスによる、生産12
000トン/日の大型プラントの場合につき操作と装置
の設計値を示す。
Production 12 due to the highly effective stripping process
The operating and equipment design values are shown for a large-scale plant of 1,000 tons/day.

第1図でストリッパー102、合成管101(内部構造
の理解の便のため他の機器よりとくに大きく描いである
。)、カーバメート凝縮器103およびスクラバー10
4は、一つの架台の中に、下から上へこの順序で組込ま
れる。内径3m長さ38mの合成管は水平に設置されそ
の内部は液容積の等しい8個のセクション、すなわち図
の合成管101の左端すなわち入口端の第1セクシヨン
から右端すなわち出口端の第8セクシヨンまでの8セク
シヨンに区画される。ストリッパーからスクラバーまで
の全高は配管も含めて約30IIlになる。なお架台の
奥行は約7mとなる。
In FIG. 1, a stripper 102, a synthesis pipe 101 (drawn larger than other equipment for ease of understanding the internal structure), a carbamate condenser 103, and a scrubber 10.
4 are assembled into one frame in this order from bottom to top. A synthetic tube with an inner diameter of 3 m and a length of 38 m is installed horizontally, and its interior is divided into eight sections of equal liquid volume, from the first section at the left end, or inlet end, to the eighth section at the right end, or outlet end of the synthetic pipe 101 in the figure. It is divided into eight sections. The total height from the stripper to the scrubber including piping will be approximately 30 IIl. The depth of the pedestal is approximately 7m.

この系は圧力1り0kfll/C11fで操作される。The system is operated at a pressure of 1 to 0 kfl/C11f.

カーバメート凝縮器103で生成した温度170℃のカ
ーバメート溶液(N H373,95,G O273,
98,および1」2023.65各t / kr )が
ライン3より合成管101の底部(図の左端)に入る。
Carbamate solution (NH373.95, G O273,
98, and 1''2023.65 t/kr each) enter the bottom of the synthesis tube 101 (left end in the figure) from line 3.

一方力−バメート凝縮器103での未凝縮の混合ガス(
N H327,06,C0224,05およびHz 0
2.32各t/#r)はライン4をへて8分割され合成
管101に導入される。
On the other hand, the uncondensed mixed gas in the Bamate condenser 103 (
N H327,06, C0224,05 and Hz 0
2.32 each t/#r) is divided into eight parts through line 4 and introduced into synthesis tube 101.

すなわち第1セクシヨンにその12.1%、第2セクシ
ヨンに13.4%、第3セクシヨンに58.9%、第4
セクシヨンに2.4%が導入され、第5〜第8セクシヨ
ンには各2.4〜0.7%の範囲の量で導入される。第
3セクシヨンにはまたこの系からの尿素のアウトプット
に対応する新規の液体アンモニア41.5t/I?rが
導入される。このためこのセクションへのガスの導入割
合が多い。なおこの例では液体アンモニアは第3セクシ
ヨンのみに導入されているが、勿論必要に応じ適宜の複
数のセクションに導入されて差支えない。各セクション
に導入される混合ガスは夫々の底部に設けられた分散器
(スパージャ−)より細かい気泡となり液相中を上昇し
、この間にガスの実質的に大部分ないし殆どが液相に吸
収される。第1セクンヨンの底部から導入された循環カ
ーバメート溶液は上方へ流れ、液の再上部では堰から溢
流して第2セクシヨンの底部へ流入する。同様の流れが
順次第2〜第8セクシヨンで繰返される。第5〜第8セ
クシヨンでは、ここに導入される前記した少量のガスに
ついては結果的にはCO2の液相への吸収のみが起り、
逆に液相からその組成に応じたNH3、Hz0の蒸発が
起る。第1〜第8セクシヨンの間でガスの吸収により液
温は次第に上昇しかつ尿素の生成が起り、最後の第8セ
クシヨンでは平衡に近い値まで尿素が合成される。この
例での各セクションにおける尿素の合成率等は表1のと
おりである。
That is, 12.1% of that is in the first section, 13.4% in the second section, 58.9% in the third section, and 58.9% in the fourth section.
2.4% is introduced into the section, and sections 5 to 8 are each introduced in amounts ranging from 2.4 to 0.7%. The third section also contains a new liquid ammonia 41.5t/I? corresponding to the urea output from this system. r is introduced. Therefore, a large proportion of gas is introduced into this section. In this example, liquid ammonia is introduced only into the third section, but of course it may be introduced into a plurality of appropriate sections as necessary. The mixed gas introduced into each section becomes fine bubbles through a sparger installed at the bottom of each section and rises in the liquid phase, during which time substantially most of the gas is absorbed into the liquid phase. Ru. The circulating carbamate solution introduced from the bottom of the first section flows upwards and at the top it overflows the weir and flows into the bottom of the second section. A similar flow is repeated for the second to eighth sections in order. In the fifth to eighth sections, the small amount of gas introduced here results in only absorption of CO2 into the liquid phase;
Conversely, evaporation of NH3 and Hz0 occurs from the liquid phase depending on its composition. Between the first to eighth sections, the liquid temperature gradually rises due to gas absorption and urea is produced, and in the final eighth section, urea is synthesized to a value close to equilibrium. Table 1 shows the urea synthesis rate in each section in this example.

11− (表1) セクション 温度(℃)  合成率(%)1    1
75     33 2    184     52 3    187     60 4    188     62 5    189     63 6    189     64 7    190     65 8    190     6に の結果第8セクシヨンの上部からはNH3/GO2モル
比0.65で平衡達成率95%の合成液が得られる。こ
のセクションのガス相からはイナートガスに伴われてN
H34,57,CO20,32およびH200,36各
t//?rが抜かれライン1をへてスクラバー104に
導かれる。スクラバー104では、図外の中圧吸収塔で
得られた温度100℃のカーバメート溶液(N H32
2,44,CO229,03オヨび142018.70
各t/Arの組成)により該イナートガス中のNH3、
CO2および1(20が吸収・除去12− され、この処理後のイナートガスはごく少量であるがな
お含有するNH3、CO2を除去するため、弁502で
減圧後中圧または低圧系で処理される。
11- (Table 1) Section Temperature (℃) Synthesis rate (%) 1 1
75 33 2 184 52 3 187 60 4 188 62 5 189 63 6 189 64 7 190 65 8 190 Result of 6. From the upper part of the 8th section, a synthetic solution with an NH3/GO2 molar ratio of 0.65 and an equilibrium achievement rate of 95% is obtained. From the gas phase in this section, N accompanies the inert gas.
H34,57, CO20,32 and H200,36 each t//? r is extracted and guided through line 1 to scrubber 104. In the scrubber 104, a carbamate solution (NH32
2,44,CO229,03 Oyobi 142018.70
NH3 in the inert gas,
CO2 and 1 (20) are absorbed and removed, and the inert gas after this treatment is depressurized by a valve 502 and then treated in a medium pressure or low pressure system in order to remove the NH3 and CO2 that it still contains, although it is a very small amount.

一方策8セクションから得られた上記合成液(尿素87
.70.NH394,24、CO233,39およびH
2O51,92各j/I?rの組成)はライン5をへて
ストリッパー102の頂部へ導入され、ライン2をへて
その底部から導入される新規のCO2ガス(56,67
t/ l?r 、温度130℃)と向流的に接触し、ラ
イン23からの高圧スチームによる加熱によりこの合成
液溶液中の未反応NH3、CO2の一部がストリップさ
れるとともに、塔底から温度180℃ノ尿素溶液(Fi
j2素85.04.NH32L75  、CO223,
33,およびH2O44,20各j/#rの組成)が(
ライン11)得られる。
On the other hand, the above synthetic solution obtained from section 8 (urea 87
.. 70. NH394,24, CO233,39 and H
2O51,92 each j/I? r composition) is introduced into the top of the stripper 102 through line 5, and fresh CO2 gas (56, 67
t/l? r, at a temperature of 130°C), and by heating with high pressure steam from line 23, a portion of unreacted NH3 and CO2 in this synthetic liquid solution is stripped, and at the same time, a part of unreacted NH3 and CO2 is removed from the bottom of the column at a temperature of 180°C. Urea solution (Fi
j2 elementary 85.04. NH32L75, CO223,
33, and H2O44,20 each j/#r composition) is (
Line 11) is obtained.

該尿素溶液は減圧弁501による減圧後図外の18ka
 / at Gの中圧カーバメート分解器で処理され、
以後さらに低圧分解、精製等の常法による処理に付され
る。精製工程から得られる稀炭安水溶液に、中圧分解よ
りも以降で分離された未反応NH3,。
After the pressure is reduced by the pressure reducing valve 501, the urea solution has a pressure of 18 ka (not shown).
/ at G medium pressure carbamate decomposer,
Thereafter, it is further subjected to conventional treatments such as low-pressure decomposition and purification. Unreacted NH3, which was separated after medium pressure decomposition, is added to the dilute aqueous ammonium carbonate solution obtained from the purification process.

CO2が吸収されて前記の中圧吸収溶液が得られ、これ
は合成圧力に背圧後ライン8よりスクラバー104に導
入される。
The CO2 is absorbed to obtain the above-mentioned medium pressure absorption solution, which after backpressure to the synthetic pressure is introduced into the scrubber 104 via line 8.

またストリッパー102からの分離後の混合ガス(N 
H374,00,CO268,67およびl−1206
,92各j/#rの組成)は、ライン6よりカーバメー
ト凝縮器103の頂部に導入され、該ガスの一部はスク
ラバー 104からのライン10をへた吸収用液に、該
液が該凝縮器内を下降する間に凝縮しまたは吸収される
。この際発生する吸収熱はライン21により 4.5k
g/enrQの低圧スチームとして回収される。
Also, the mixed gas (N
H374,00, CO268,67 and l-1206
. Condenses or is absorbed while descending through the vessel. The absorbed heat generated at this time is 4.5k due to line 21.
It is recovered as low pressure steam of g/enrQ.

この熱量回収は合成管101の最終段すなわち図では右
端の第8セクシヨンでの液温が190℃に保たれるよう
に行われる。
This heat recovery is performed so that the liquid temperature at the final stage of the synthesis tube 101, that is, the eighth section at the right end in the figure, is maintained at 190°C.

上記本発明の例では、系の個々の部分の、配管等の付帯
部分をも含めた高さは上側にあるものから大略夫々スク
ラバー7m 、カーバメート凝縮器10m 9合成管7
m 、ストリッパー10Illとなり、合計的30mで
すむ。
In the above example of the present invention, the heights of the individual parts of the system, including incidental parts such as piping, are approximately 7 m from the top for the scrubber, 10 m for the carbamate condenser, 9 synthetic pipes, 7
m, the stripper will be 10Ill, and the total length will be 30m.

これに対し従来の竪形合成管の場合には、同程度の能力
の系が第2図の様な構成となり(ただしスクラバー10
4は作図上の都合がらカーバメート凝縮器103よりも
高い実際の位置よりも低い位置に描かれている。)、系
の個々の部分の、配管等の付帯部分をも含めた高さは上
側にあるものから大略夫々スクラバー 1047m、カ
ーバメート凝縮器103 10m  、竪形合成管10
1a  40m  、ストリッパー102 10mとな
り、合計的7oI11にも達する。
On the other hand, in the case of a conventional vertical synthetic pipe, a system with similar capacity has a configuration as shown in Figure 2 (however, the scrubber 10
4 is drawn at a lower position than the actual position, which is higher than the carbamate condenser 103, for convenience of drawing. ), the heights of the individual parts of the system, including incidental parts such as piping, are approximately 1047 m from the top, 10 m for the scrubber, 10 m for the carbamate condenser, and 10 m for the vertical synthesis pipe.
1a 40m, stripper 102 10m, reaching a total of 7oI11.

そこで前述した各種問題がある上また、合成管を第一と
する諸装置等の、より高い分だけより重さを要する付帯
設備類を含めた巨大な重量がより狭い土地に集中するの
で、基礎の確保も本発明のばあいに比しより困難となら
ざるを得ず建設の工期、コスト等の前記以外の問題もあ
る。かがる従来の問題が本発明により解決された。
Therefore, in addition to the various problems mentioned above, the huge weight of equipment, including synthetic pipes and other equipment, which is heavier due to its height, is concentrated in a smaller area. It is also more difficult to secure the required amount than in the case of the present invention, and there are also other problems such as construction period and cost. This conventional problem has been solved by the present invention.

従来尿素の合成管を水平に設けると合成率が落ちると信
じられてきたが、前記説明した内部構造の採用により充
分高い値が得られる。かりに、イナートガスが多くこれ
に同伴するNH3、CO2が多い場合でも、高圧スクラ
バーで熱回収を行い15一 つつこれらを吸収するので損失とはならない。
It has conventionally been believed that if the urea synthesis tube is installed horizontally, the synthesis rate will drop, but by adopting the internal structure described above, a sufficiently high value can be obtained. On the other hand, even if there is a large amount of inert gas and a large amount of NH3 and CO2 accompanying it, the high pressure scrubber recovers heat and absorbs these one by one, so there is no loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の合成管を用いた系の概念的なフロー図
、第2図は従来の竪型合成管を用いた系の概念的なフロ
ー図である。 1   101.101a ヘの新NH3人ロライン2
102への新CO2人口ライン 3103から 101へのカーバメート溶液ライン 4103から101への未凝縮混合ガスライン5101
から 102への合成液ライン6102から 103へ
の混合ガスライン1101から104への混合ガスライ
ン8104への吸収液入口ライン 9104から 502へのイナートパージライン10 
  104から 103への吸収用液ライン11   
102から501心の尿素液出口ライン21    回
収低圧スチームライン 22    冷却媒体ライン 16− 23    高圧スチームライン 101   合成管 101a   竪型合成管 102   ストリッパー 103   カーバメート凝縮器 104   スクラバー 501   減圧弁 502   イナートバージ減圧弁 出願人 東洋エンジニアリング株式会社特開昭59−1
22452 (6)
FIG. 1 is a conceptual flow diagram of a system using the synthetic tube of the present invention, and FIG. 2 is a conceptual flow diagram of a system using a conventional vertical synthetic tube. 1 101.101a New NH 3 person Lorain 2
New CO2 population line 3103 to 102 Carbamate solution line 4103 to 101 Uncondensed mixed gas line 5101 to 101
Synthetic liquid line 6102 to 102 Absorption liquid inlet line 9104 to mixed gas line 8104 1101 to 104 Inert purge line 10 to 502
Absorption liquid line 11 from 104 to 103
102 to 501 core urea liquid outlet line 21 Recovery low pressure steam line 22 Coolant line 16-23 High pressure steam line 101 Synthesis tube 101a Vertical synthesis tube 102 Stripper 103 Carbamate condenser 104 Scrubber 501 Pressure reducing valve 502 Inert barge pressure reducing valve Applicant Toyo Engineering Co., Ltd. JP-A-59-1
22452 (6)

Claims (1)

【特許請求の範囲】 アンモニアと二酸化炭素とを出発原料として、尿素合成
に適した高温度および高圧下、尿素合成管中で液体状お
よび気体状の原Fl流が互いに同じ向きに流されて尿素
が合成されるに際し、合成管が水平ないし略水平に設置
され、合成管内空間が直列に連なるセクションからなり
、 原料流の少なくとも一部が合成管の入口端のセクション
へ供給され、 残余の部の原!’l流は伯の少なくとも一部のセクショ
ンへ供給され、 該原料流はすべて出口端へ流通させられ、合成物を含む
合成物流が合成管の出口端のセクションから流出させら
れる、 尿素合成管。
[Claims] Using ammonia and carbon dioxide as starting materials, liquid and gaseous raw Fl streams are flowed in the same direction in a urea synthesis tube under high temperature and pressure suitable for urea synthesis. When the synthesis tube is synthesized, the synthesis tube is installed horizontally or substantially horizontally, and the synthesis tube interior space consists of sections connected in series, and at least a part of the raw material flow is supplied to the section at the inlet end of the synthesis tube, and the remaining part is original! a urea synthesis tube, wherein the stream is fed to at least some sections of the tube, the feed stream is all passed to the outlet end, and the compound stream containing the compound is discharged from the outlet end section of the synthesis tube.
JP57231319A 1982-12-29 1982-12-29 Urea synthesis tube Pending JPS59122452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57231319A JPS59122452A (en) 1982-12-29 1982-12-29 Urea synthesis tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57231319A JPS59122452A (en) 1982-12-29 1982-12-29 Urea synthesis tube

Publications (1)

Publication Number Publication Date
JPS59122452A true JPS59122452A (en) 1984-07-14

Family

ID=16921765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57231319A Pending JPS59122452A (en) 1982-12-29 1982-12-29 Urea synthesis tube

Country Status (1)

Country Link
JP (1) JPS59122452A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1000416C2 (en) * 1995-05-23 1996-11-25 Dsm Nv Process for the preparation of urea.
US5767313A (en) * 1995-05-23 1998-06-16 Dsm N.V. Method for the preparation of urea
WO2006118071A1 (en) 2005-04-27 2006-11-09 Toyo Engineering Corporation Apparatus for urea synthesis and method of improving the same
EP1876170A4 (en) * 2005-04-27 2009-07-29 Toyo Engineering Corp Apparatus for urea synthesis

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1000416C2 (en) * 1995-05-23 1996-11-25 Dsm Nv Process for the preparation of urea.
US5767313A (en) * 1995-05-23 1998-06-16 Dsm N.V. Method for the preparation of urea
WO2006118071A1 (en) 2005-04-27 2006-11-09 Toyo Engineering Corporation Apparatus for urea synthesis and method of improving the same
EP1876170A4 (en) * 2005-04-27 2009-07-29 Toyo Engineering Corp Apparatus for urea synthesis
US7579502B2 (en) 2005-04-27 2009-08-25 Toyo Engineering Corporation Apparatus for synthesizing urea
US7582795B2 (en) 2005-04-27 2009-09-01 Toyo Engineering Corporation Apparatus for synthesizing urea and method for revamping the same

Similar Documents

Publication Publication Date Title
US4752306A (en) Method and apparatus for treating liquid/gas mixtures
US7687041B2 (en) Apparatus and methods for urea production
US4421725A (en) Process for purifying a gas containing hydrogen sulfide and carbon dioxide and apparatus therefor
US3691729A (en) Process and apparatus for the recovery of ammonia and carbon dioxide from the tail gas of a urea synthesis
EP0834501B1 (en) Improved urea synthesis process and apparatus therefor
JP4994226B2 (en) Urea synthesizer
EP2941417B1 (en) Urea synthesis process and plant
AU767574B2 (en) Method for carrying out gas-liquid reactions and corresponding flow reactor
CA2323432C (en) Apparatus for effecting gas/liquid contact
JPS59122452A (en) Urea synthesis tube
EA003222B1 (en) Process for the preparation of urea
EP0873182B1 (en) Hydrolysis reactor for removal of urea, ammonia and carbon dioxide from a liquid phase comprising urea in aqueous solution
CA2896706C (en) Urea plant revamping method
CA2460516C (en) Process for the preparation of urea
CA2057418C (en) Cocurrent flow process for the manufacture of sodium sulfite and bisulfite solutions
EP0224340B1 (en) Sulphur trioxide absorption tower and process
US6881862B2 (en) Process for the preparation of urea
WO2003037790A2 (en) Process and apparatus for producing sulfuric acid
EP0136765A2 (en) Process for the preparation of urea
MXPA98003310A (en) Reactor of hydrolysis for the removal of urea, ammonia and carbon bioxide from a liquid phase comprising urea in solution acu