JPS59122377A - Rectifier - Google Patents

Rectifier

Info

Publication number
JPS59122377A
JPS59122377A JP23401882A JP23401882A JPS59122377A JP S59122377 A JPS59122377 A JP S59122377A JP 23401882 A JP23401882 A JP 23401882A JP 23401882 A JP23401882 A JP 23401882A JP S59122377 A JPS59122377 A JP S59122377A
Authority
JP
Japan
Prior art keywords
switching element
voltage
diode
input
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23401882A
Other languages
Japanese (ja)
Inventor
Hiroshi Uchino
内野 広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23401882A priority Critical patent/JPS59122377A/en
Publication of JPS59122377A publication Critical patent/JPS59122377A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Power Conversion In General (AREA)

Abstract

PURPOSE:To reduce the harmonic wave of an input current and a reactive current by controlling a current flowed from a single phase AC power source to a reactor via a switching element and rectifying it. CONSTITUTION:A series circuit of a reactor 11 and a switching element 12 is connected between single phase AC input terminals 1 and 2. A series circuit of diodes 13, 14 and capacitors 15, 16 is connected between both terminals of the switching element 12. A DC output voltage is generated between the output terminals 3 and 4 by controlling ON or OFF the element 12 via a controller 22. The controller 22 is composed of a multiplier 23, a level detector 24, an output voltage reference value, an adder 26 and a voltage controller 27.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、単相交流電流を整流して、直流をを得る整流
装置に係シ、特に、交流入力電流の高調波と無効電流を
低減した整流装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a rectifier that rectifies a single-phase alternating current to obtain a direct current, and in particular, relates to a rectifying device that rectifies a single-phase alternating current to obtain a direct current. It relates to a rectifier.

〔発明の技術的背景〕[Technical background of the invention]

最近、省エネルギーの目的で、従来一定速度で運転して
いた誘導電動機等を、必要最小限の速度で運転して、電
力消費量を低減することが行われる。例えば、家庭用エ
アコンでは、単相交流電流を整流して、−担直流にし、
これをインバータで可変周波数の交流に変換して、誘導
電導機を可変速運転することが行われている。
Recently, for the purpose of energy conservation, induction motors and the like, which conventionally operated at a constant speed, are now operated at the minimum necessary speed to reduce power consumption. For example, in a home air conditioner, single-phase alternating current is rectified to become negative direct current,
This is converted into variable frequency alternating current using an inverter to operate the induction machine at variable speed.

しかし、整流装置の入力電流に多大な高調波が含まれる
ため、これらの機器が増加するにしだがい、配電系統へ
与える悪影響が問題視されるようになってきた。
However, since the input current of the rectifier includes a large amount of harmonics, as the number of these devices increases, the negative impact they have on the power distribution system has become a problem.

〔背景技術の問題点〕[Problems with background technology]

第1図は、従来の整流装置の一例を示す構成図で、l、
2は交流入力端子、3,4は直流出力端子、5,6,7
.8はダイオード、9はリアクトル、10はコンデンサ
である。第2図は、従来の整流装置の動作波形でAは、
第1図の交流入力端子1.2へ印加される電圧波形、B
は、第1図の直流出力端子3.4に現われる電圧波形、
Cは、第1図のダイオード5.7のカソード側及びダイ
オード6.8のアノード側に現われる電圧波形、Dは、
交流入力電流波形である。
FIG. 1 is a block diagram showing an example of a conventional rectifier, in which l, l,
2 is AC input terminal, 3, 4 is DC output terminal, 5, 6, 7
.. 8 is a diode, 9 is a reactor, and 10 is a capacitor. Figure 2 shows the operating waveforms of a conventional rectifier, and A is:
Voltage waveform applied to AC input terminal 1.2 in Figure 1, B
is the voltage waveform appearing at the DC output terminal 3.4 in Fig. 1,
C is the voltage waveform appearing on the cathode side of diode 5.7 and the anode side of diode 6.8 in FIG.
This is an AC input current waveform.

交流入力電流は、整流電圧Cが出力電圧Bより大きくな
ると流入し、Dに示すように・卆ルス的な波形となる。
The alternating current input current flows in when the rectified voltage C becomes larger than the output voltage B, and has a waveform similar to that shown in D.

そのため特に、第3調波が大きく、第5調波、第7調波
以降も含まれる、高調波の大きい波形となる。このよう
な高調波電流は機器の過熱、効率の低下、計器類の誤差
の増大、誘導障害、電圧波形ひづみなどをもたらし、配
電系統及び他の機器へも悪影響を及ぼす。
Therefore, the third harmonic is particularly large, and the waveform has large harmonics, including the fifth harmonic, seventh harmonic and subsequent harmonics. These harmonic currents cause equipment overheating, reduced efficiency, increased instrumentation errors, inductive disturbances, voltage waveform distortion, and have a negative impact on power distribution systems and other equipment.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来装置の欠点を除去するために
なされるものであって、整流装置へ流入する交流入力電
流を、電源電圧と同相の正弦波に制御することによシ、
入力電流の高調波及び無効電流を大幅に低減出来る整流
装置を提供することにある。
An object of the present invention is to eliminate the drawbacks of the conventional devices described above, and by controlling the AC input current flowing into the rectifier into a sine wave having the same phase as the power supply voltage.
An object of the present invention is to provide a rectifier that can significantly reduce harmonics and reactive current of input current.

〔発明の概要〕[Summary of the invention]

本発明は、この目的を達成するだめに、単相交流入力端
子間に接続されるリアクトルとスイッチング素子とから
成る直列回路と、前記スイッチング素子の一端にアノー
ドが接続され、カソードが第1のコンデンサを介して前
記スイッチング素子の他端に接続される第1のダイオー
ドと、前記スイッチング素子の一端にカソードが接続さ
れアノードが第2のコンデンサヲ介して前記スイッチン
グ素子の他端に接続される第2のダイオードとから成υ
、前記スイッチング素子をオンオフ制御することにより
、前記第1のダイオードのカソードと前記第2のダイオ
ードのアノードとの間に直流出力電圧を得るようにした
ものである。
In order to achieve this object, the present invention includes a series circuit consisting of a reactor and a switching element connected between single-phase AC input terminals, an anode connected to one end of the switching element, and a cathode connected to a first capacitor. a first diode connected to the other end of the switching element via a second diode, and a second diode having a cathode connected to one end of the switching element and an anode connected to the other end of the switching element via a second capacitor. consists of a diode and υ
By controlling the switching element on and off, a DC output voltage is obtained between the cathode of the first diode and the anode of the second diode.

〔発明の実施例〕[Embodiments of the invention]

第3図は、本発明一実施例構成図で、l、2は交流入力
端子、3,4は直流出力端子、1ノはりアクドル、12
はスイッチング素子、13は、第1のダイオード、14
は第2のダイオード、15は第1のコンデンサ、J6は
第2のコンデンサ、17は、交流入力電圧を検出する第
1の電圧検出器、18は、直流出力電圧を検出する第2
の電圧検出器、J9は、交流入力電流を検出する電流検
出器で、例えば、変流器20と抵抗器2ノで構成される
。22は、スイッチング素子J2をオンオフ制御する制
御回路で、掛算器23、レベル検出器24、出力電圧基
準値25、加算器26、電圧制御回路27で構成される
FIG. 3 is a configuration diagram of one embodiment of the present invention, in which 1 and 2 are AC input terminals, 3 and 4 are DC output terminals, 1 beam axle, 12
is a switching element, 13 is a first diode, 14
is a second diode, 15 is a first capacitor, J6 is a second capacitor, 17 is a first voltage detector that detects an AC input voltage, and 18 is a second voltage detector that detects a DC output voltage.
The voltage detector J9 is a current detector that detects an AC input current, and is composed of, for example, a current transformer 20 and a resistor 2. Reference numeral 22 denotes a control circuit that controls on/off of the switching element J2, and includes a multiplier 23, a level detector 24, an output voltage reference value 25, an adder 26, and a voltage control circuit 27.

次に、第3図及びその動作波形図でおる第4図を参照し
ながら本発明の詳細な説明する。第4図Eは、第3図の
交流入力端子1.2へ印加される′電圧波形で通常、5
0H1又は60 Hzの正弦波形である。第1の電圧検
出器 17は、例えば、変圧器で、その2次側電圧は、
1次側電圧Eと同一波形で、電圧の太ささけ、制御回路
へ導入するのに適した値に低減され、かつ2次側は1次
側に対し、電気的に絶縁される。
Next, the present invention will be described in detail with reference to FIG. 3 and FIG. 4, which is an operational waveform diagram thereof. Figure 4E shows the voltage waveform applied to the AC input terminal 1.2 in Figure 3, which typically
It is a 0H1 or 60 Hz sine waveform. The first voltage detector 17 is, for example, a transformer, and its secondary voltage is
It has the same waveform as the primary side voltage E, but the voltage thickness is reduced to a value suitable for introduction into the control circuit, and the secondary side is electrically insulated from the primary side.

17の出力は掛算器23へ入力され、掛算器23へは更
に電圧制御回路27の出力が入力され、両者の積が掛算
器23の出力に得られる。
The output of the voltage control circuit 27 is input to the multiplier 23 , the output of the voltage control circuit 27 is further input to the multiplier 23 , and the product of the two is obtained as the output of the multiplier 23 .

したがって、掛算器23の出力波形は、Fに示すように
Eと同一波形となるが、その大きさは、電圧制御回路2
7の出力電圧値に比例して変化することになる。掛算器
23の出力波形Fは、交流入力電流の基準値としてレベ
ル検出器24へ入力される。一方電流検出器19の出力
もレベル検出器24へ入力され、基準値と比較される。
Therefore, the output waveform of the multiplier 23 is the same waveform as E as shown in F, but its magnitude is different from that of the voltage control circuit 2.
7 will change in proportion to the output voltage value. The output waveform F of the multiplier 23 is input to the level detector 24 as a reference value for the AC input current. On the other hand, the output of the current detector 19 is also input to the level detector 24 and compared with a reference value.

例えば、第4図の時刻tlに於て、交流入力端子値が基
準値FよシΔIだけ小さくなると、これをレベル検出器
24で検出して、スイッチング素子12をオンする。ス
イッチング素子12がオンす、ると、交流入力電圧Eが
リアクトル11に印加され、入力電流が増大する。次に
、時刻t2に於て、交流入力電流値が基準値FよりΔ工
だけ大きくなると、これをレベル検出器を 24で検出して、スイッチング素子12#オフする。こ
のとき第1のコンデンサー5の電圧が交流入力電圧Eよ
り大きいものとすれば、この差電圧が入力電流を減らす
方向にリアクトル11に加わシ、入力電流が減少する。
For example, at time tl in FIG. 4, when the AC input terminal value becomes smaller than the reference value F by ΔI, this is detected by the level detector 24 and the switching element 12 is turned on. When the switching element 12 is turned on, the AC input voltage E is applied to the reactor 11, and the input current increases. Next, at time t2, when the AC input current value becomes larger than the reference value F by .DELTA., this is detected by the level detector 24, and switching element 12# is turned off. At this time, if the voltage of the first capacitor 5 is greater than the AC input voltage E, this differential voltage is applied to the reactor 11 in a direction to reduce the input current, and the input current is reduced.

このように、交流入力電圧Eが正の半サイクルは、第1
のコンデンサ15の電圧が交流入力電圧Eの最大値より
大きければ、スイッチ素子12をオンオフ制御すること
により、交流入力電流Gを、基準値Fに対し、±Δ工の
幅内に制御しながら、第1のコンデンサ15へ充電する
ことができる。
In this way, the half cycle in which the AC input voltage E is positive is the first
If the voltage of the capacitor 15 is larger than the maximum value of the AC input voltage E, by controlling the switching element 12 on and off, the AC input current G is controlled within the range of ±Δ relative to the reference value F. The first capacitor 15 can be charged.

同様に、Eが負の半サイクルは、第2のコンデンサ、1
6の電圧がEの最大値より大きければ、スイッチ素子1
2をオンオフ制御することにより、交流入力電流Gを基
準値Fに対し、±Δ工の幅内に制御しながら第2のコン
デンサ16へ充電することができる。第1のコンデンサ
及び第2のコンデンサは交流入力電流によシ充電される
とともに、負荷電流によシ放電される。第4図のHは、
第1のコンデンサの電圧及び第2のコンデンサの電圧の
和、即ち、直流出力電圧の波形である。Hの大きさは、
負荷電流の太きさに対し、交流入力電流Gの大きさを制
御することによシ、一定に制御することができる。第3
図の18は、直流出力電圧を検出する第2の電圧検出器
で、直流出力電圧Hに比例しかつ電圧の大きさは、制御
回路へ導入するのに適した値に低減した、主回路側から
電気的に絶縁された電圧信号を出力する。第2の電圧検
出器18の出力は、加算器26によシ、出力電圧基準値
25と比較されその偏差を電圧制御回路27で増幅して
、電圧制御回路27の出力を掛算器23へ与える。前述
したように、電圧制御回路27の出力に比例して掛算器
23の出力、即ち、交流入力電流の基準値Fの大きさが
制御されるから負荷電流が増加して、直流出力電圧Hが
減少したら、この偏差を増幅して、電圧制御回路27の
出力を増加し、したがって基準値Fが増加し、交流入力
電流Gが増加するようにし、又は、負荷電流が減少して
直流出力電圧Hが増加したら、この偏差を増幅して電圧
制御回路27の出力を減少し、したがって、基準値Fが
減少し交流入力電流Gが減少するようにすれば、負荷電
流の変化にかかわらず直流出力電圧を基準値25に比例
して一定に制御することができる。
Similarly, the half cycle where E is negative is the second capacitor, 1
If the voltage of 6 is greater than the maximum value of E, switch element 1
2, the second capacitor 16 can be charged while controlling the alternating current input current G within a range of ±Δ relative to the reference value F. The first capacitor and the second capacitor are charged by the AC input current and discharged by the load current. H in Figure 4 is
It is the sum of the voltage of the first capacitor and the voltage of the second capacitor, that is, the waveform of the DC output voltage. The size of H is
By controlling the magnitude of the AC input current G with respect to the thickness of the load current, it can be controlled to be constant. Third
18 in the figure is a second voltage detector that detects the DC output voltage, which is proportional to the DC output voltage H and whose voltage magnitude is reduced to a value suitable for introducing into the control circuit, on the main circuit side. Outputs an electrically isolated voltage signal from the The output of the second voltage detector 18 is compared with the output voltage reference value 25 by the adder 26, the deviation thereof is amplified by the voltage control circuit 27, and the output of the voltage control circuit 27 is given to the multiplier 23. . As mentioned above, since the output of the multiplier 23, that is, the magnitude of the reference value F of the AC input current, is controlled in proportion to the output of the voltage control circuit 27, the load current increases and the DC output voltage H increases. If it decreases, this deviation is amplified to increase the output of the voltage control circuit 27, thus increasing the reference value F and causing the AC input current G to increase, or the load current to decrease and the DC output voltage H to increase. increases, this deviation is amplified and the output of the voltage control circuit 27 is decreased, so that the reference value F decreases and the AC input current G decreases. Regardless of changes in the load current, the DC output voltage can be controlled to be constant in proportion to the reference value 25.

第5図は、本発明の他の実施例構成図で、構成要素は、
第3図の同一記号と同一である。動作も同様であるから
説明は省略する。
FIG. 5 is a block diagram of another embodiment of the present invention, in which the constituent elements are:
It is the same as the same symbol in FIG. Since the operation is also similar, the explanation will be omitted.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明は、単相交流電源からりアク
ドルに流入する電流をスイッチング素子で制御して、か
つ整流し、直流出方を得ることを特徴としており、又入
力電流の波形を、入力電圧に応じて制御し、入力電流の
大きさを制御して出力電圧を制御することを特徴として
いる。第4図に示す入力電流波形Gは、ゎがシやすくす
るためにΔ■を大きくしているが、Δ■を小さく設定す
ることにより、入力電流をリッノルの少い正弦波形に制
御することができる。また、入力電流Gは1.交流入力
電圧Eと同相に制御される。したがって、入力電流に含
まれる高調波と無効蹴流を大幅に低減することができる
As described above, the present invention is characterized in that the current flowing into the accelerator from a single-phase AC power source is controlled and rectified by a switching element to obtain a DC current, and the waveform of the input current is , the output voltage is controlled according to the input voltage, and the magnitude of the input current is controlled. In the input current waveform G shown in Fig. 4, Δ■ is made large to make it easier to draw. However, by setting Δ■ small, it is possible to control the input current to a sinusoidal waveform with less rhinol. can. In addition, the input current G is 1. It is controlled to be in phase with the AC input voltage E. Therefore, harmonics and invalid kick current contained in the input current can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の整流装置の一例を示す構成図、第2図
は従来の整流装置の動作波形図、第3図は本発明の一実
施例を示す構成図、第4図は本発明の動作波形図、第5
図は本発明の他の実施例を示す構成図である。 1.2・・・交流入力端子、3,4・・・直流出力端子
、5 + 6 t 7 + 8・・・ダイオード、9・
・・リアクトル、ノ0・・・コンデンサ、1ノ・・・リ
アクトル、12・・・スイッチング素子、13・・・第
1のダイオード、14・・・第2のダイオード、J5・
・・第1のコンデンサ、16・・・第2のコンデンサ、
17・・・第1の電圧検出器、18・・・第2の電圧検
出器、19・・・電流検出器、20・・・変流器、2ノ
・・・抵抗器、22・・・制御回路、23・・・掛算器
、24・・・レベル検出器、25・・・出力電圧基準値
、26・・・加算器、27・・・電圧制御回路。 出願人代理人  弁理士 鈴 江 武 彦第1図 第2図 第3図 と 第4図 E 第5図
Fig. 1 is a block diagram showing an example of a conventional rectifier, Fig. 2 is an operating waveform diagram of the conventional rectifier, Fig. 3 is a block diagram showing an embodiment of the present invention, and Fig. 4 is a block diagram showing an example of the present invention. Operation waveform diagram, 5th
The figure is a configuration diagram showing another embodiment of the present invention. 1.2...AC input terminal, 3,4...DC output terminal, 5+6t7+8...diode, 9.
...Reactor, No.0...Capacitor, No.1...Reactor, 12..Switching element, 13..First diode, 14..Second diode, J5.
...first capacitor, 16...second capacitor,
17... First voltage detector, 18... Second voltage detector, 19... Current detector, 20... Current transformer, 2... Resistor, 22... Control circuit, 23... Multiplier, 24... Level detector, 25... Output voltage reference value, 26... Adder, 27... Voltage control circuit. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 and Figure 4 E Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)単相交流入力端子間に接続されるリアクトルとス
イッチング素子とから成る直列回路と、前記スイッチン
グ素子の一端にアノードが接続されカソードが第1のコ
ンデンサを介して前記スイッチング素子の他端に接続さ
れる第1のダイオードと、前記スイッチング素子の一端
にカソードが接続されアノードが第2のコンデンサを介
して前記スイッチング素子の他端に接続される第2のダ
イオードとから成シ、前記スイッチング素子をオンオフ
制御することによシ、前記第1のダイオードのカソード
と前記第2のダイオードのアノード間に直流出力電圧を
得るようにしたことを特徴とする整流装置。
(1) A series circuit consisting of a reactor and a switching element connected between single-phase AC input terminals, an anode connected to one end of the switching element, and a cathode connected to the other end of the switching element via a first capacitor. a first diode connected to the switching element; and a second diode having a cathode connected to one end of the switching element and an anode connected to the other end of the switching element via a second capacitor; A rectifying device characterized in that a DC output voltage is obtained between the cathode of the first diode and the anode of the second diode by controlling on/off of the rectifier.
(2)単相交流入力端子間に接続されるリアクトルとス
イッチング素子とから成る直列回路と、前記スイッチン
グ素子の一端にアノードが接続されカソードが第1のコ
ンデンサを介して、前記スイッチング素子の他端に接続
される第1のダイオードと、前記スイッチング素子の一
端にカソードが接続されアノードが第2のコンデンサを
介して、前記スイッチング素子の他端に接続される第2
のダイオードと、前記単相交流入力端子間の電圧を検出
する第1の電圧検出器と、前記第1のダイオードのカソ
ードと前記第2のダイオードのアノード間の直流出力電
圧を検出する第2の電圧検出器と、前記単相交流入力端
子を介して流入する交流入力電流を検出する電流検出器
と、これらの検出器の出力信号を入力とし前記スイッチ
ング素子を制御する制御回路を具備し、前記第1の電圧
検出器の出力信号に応じて、前記単相交流入力電流の波
形を、前記第2の電圧検出器の出力信号に応じて前記単
相交流入力電流の大きさを制御するようにしたことを特
徴とする整流装置。
(2) A series circuit consisting of a reactor and a switching element connected between single-phase AC input terminals, an anode connected to one end of the switching element and a cathode connected to the other end of the switching element via a first capacitor. a first diode connected to the switching element, and a second diode having a cathode connected to one end of the switching element and an anode connected to the other end of the switching element via a second capacitor.
a first voltage detector that detects the voltage between the single-phase AC input terminal; and a second voltage detector that detects the DC output voltage between the cathode of the first diode and the anode of the second diode. A voltage detector, a current detector that detects an AC input current flowing through the single-phase AC input terminal, and a control circuit that receives output signals from these detectors and controls the switching element, The waveform of the single-phase AC input current is controlled according to the output signal of the first voltage detector, and the magnitude of the single-phase AC input current is controlled according to the output signal of the second voltage detector. A rectifying device characterized by:
JP23401882A 1982-12-27 1982-12-27 Rectifier Pending JPS59122377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23401882A JPS59122377A (en) 1982-12-27 1982-12-27 Rectifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23401882A JPS59122377A (en) 1982-12-27 1982-12-27 Rectifier

Publications (1)

Publication Number Publication Date
JPS59122377A true JPS59122377A (en) 1984-07-14

Family

ID=16964263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23401882A Pending JPS59122377A (en) 1982-12-27 1982-12-27 Rectifier

Country Status (1)

Country Link
JP (1) JPS59122377A (en)

Similar Documents

Publication Publication Date Title
US5654591A (en) Uninterruptible power supply with passing neutral, comprising a twin step-up chopper
US4143414A (en) Three phase ac to dc voltage converter with power line harmonic current reduction
US7616455B2 (en) Power factor correction using current sensing on an output
CN101185044A (en) Digital implementation of power factor correction
JPS61224857A (en) Controller of rectifier circuit
JPH03128691A (en) Voltage type pwm converter-inverter system and control system thereof
DE2961319D1 (en) Alternating voltage integrator for producing a voltage signal which is proportional to one flux component in a rotating-field machine; the use of two of such alternating voltage integrators in connection with a rotating-field machine drive, and a method of operating such a drive
Facchinello et al. Closed-loop operation and control strategy for the dual active half bridge ac-ac converter
CN108023411A (en) A kind of single-phase contactless power supply system with power factor emendation function
Nabae et al. Suppression of Flicker in an Arc-Furnace Supply System an Active Capacitance—A Novel Voltage Stabilizer in Power Systems
GB2114780A (en) Current control pulse width modulated inverter machine drive system
JPS59122377A (en) Rectifier
WO2003044933A1 (en) A parallel feed-forward compensating type power factor correction circuit for a three-phase power source
CN108215806B (en) Regenerative braking energy feedback system
JPH0865810A (en) Electric railcar controller
JPS6192173A (en) Power converter
JPH0783605B2 (en) Rectifier circuit controller
JP2677738B2 (en) Switching regulator
JPS5819169A (en) Controlling method for pwm control converter
JPH0425660Y2 (en)
JPH02112881A (en) Power source for arc welding and cutting
JPS60216773A (en) Constant voltage power converter
KR910009074B1 (en) Control circuit of electric power for compensation of power factor
JPH03261394A (en) Apparatus and method for control of motor
SU1367122A1 (en) Electric drive