JPS59121342A - Electrophotographic recording electrically conductive paper base - Google Patents

Electrophotographic recording electrically conductive paper base

Info

Publication number
JPS59121342A
JPS59121342A JP23307182A JP23307182A JPS59121342A JP S59121342 A JPS59121342 A JP S59121342A JP 23307182 A JP23307182 A JP 23307182A JP 23307182 A JP23307182 A JP 23307182A JP S59121342 A JPS59121342 A JP S59121342A
Authority
JP
Japan
Prior art keywords
conductive
coating layer
paper base
layer
base paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23307182A
Other languages
Japanese (ja)
Inventor
Genichi Matsuda
元一 松田
Haruichi Shimomukai
下向井 晴一
Masakuni Okawa
大川 正邦
Yuji Ichida
市田 裕司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Kohjin Holdings Co Ltd
Kojin Co Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Kohjin Holdings Co Ltd
Kojin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd, Kohjin Holdings Co Ltd, Kojin Co Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP23307182A priority Critical patent/JPS59121342A/en
Publication of JPS59121342A publication Critical patent/JPS59121342A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To render conductivity uniform and stable, to improve photographic characteristics and to obtain a superior image by forming a conductive coating layer on the paper base of an electrophotographic recording layer made of TiO2 as an essensital photosensitive agent and a metal vapor-deposited layer on this coating layer. CONSTITUTION:A conductive coating layer and a metal vapor-deposited layer are formed on a paper base to obtain a conductive paper base. A photosensitive layer made of TiO2 as an essential photosensitive agent is formed on the paper base. Said coating layer has <=10<11> ohm surface resistivity a conductivity imparting material such as carbon black or polymer electrolyte is used and a water-soluble polymer or a hardenable resin is used as a principal component to improve solvent resistance. On this coating layer a metal vapor-deposited layer of aluminum or the like is formed. On the reverse side of the paper base another coating layer having <=10<11> ohm.cm volume resistivity is formed to improve conductivity in the thickness direction of the paper base, facilitate grounding, and prevent curling, etc. Such a paper base has uniform and stable conductivity and good compatibility with the TiO2 type photosensitive material, and an image free from image uneveness and good in gradation is obtained.

Description

【発明の詳細な説明】 主剤とする感光層を設けてなるエレクトロ7アックス方
式の電子写真記録に用いられる導電性基紙に関するもの
であり、さらに詳細には紙支持体に導電性コート層を設
けその上に金属蒸着を施すことにより、極めて均一で安
定(−た導電性を有し、・二酸化チタン系感光剤例対し
良好な電子写真特性を与え、優れた画像性を引き出す改
良された導電性基紙に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a conductive base paper used for electrophotographic recording of the electro7ax system, which is provided with a photosensitive layer as a main ingredient, and more specifically, a conductive base paper in which a conductive coat layer is provided on a paper support. By applying metal vapor deposition on top of it, it has extremely uniform and stable conductivity, and has improved conductivity that gives good electrophotographic properties and brings out excellent image quality compared to titanium dioxide-based photosensitizers. Regarding the base paper.

これ迄実用化されてきたエレクトロファックス方式の電
子写真は、導電処理を施した紙0#電件基紙)に酸化卯
鉛を感光主剤とする感光層を設け、その」二に直接画像
を形成するものであるが、酸近ではこの酸化卯鉛に替っ
て、二酸化チタン系の感光剤が研究され始めその優れた
特性が注目を集めている。すなわち、二酸化チタンは誘
電率が高く、感光層が薄くても電荷保持量が大きい事、
連続階調性が得られ易い事、樹脂バインター−と組合せ
て良好な平滑性が得られ゛ る事などの優れた特性を有
しており、これを利用したエレクトロファックス方式の
電子写真記録に於ては、液体トナーとの組合せにより、
高い解像性と優れた階調再現性を有し、銀塩写真にも匹
敵する緻密で鮮明な画像が得られるという特長があり、
特にカラー電子写真用として新たな発展が期待されてい
る。
The electrofax method of electrophotography, which has been put into practical use up until now, involves forming a photosensitive layer containing lead oxide as the main photosensitive material on conductive-treated paper (0# electronic base paper), and directly forming an image on the photosensitive layer. However, in the vicinity of acids, research has begun on titanium dioxide-based photosensitizers instead of lead oxide, and their excellent properties are attracting attention. In other words, titanium dioxide has a high dielectric constant and a large amount of charge retention even if the photosensitive layer is thin.
It has excellent properties such as the ability to easily obtain continuous gradation and the ability to obtain good smoothness when combined with a resin binder. In combination with liquid toner,
It has high resolution and excellent gradation reproducibility, and is characterized by the ability to produce detailed and clear images comparable to silver halide photography.
New developments are expected especially for color electrophotography.

しかしながら、該二酸化チタン系感光剤は基体に対する
辺択の巾が狭く例えば、金、翼板(箔)、金属蒸着フィ
ルムなどに対しては上述の良好な特性を発揮するのであ
るが、紙ベースめ通常の導電性基紙に対しては画像ムラ
が激しく発生したり、光感度が不足したりして、良好な
画像が得られず、これがために未だ実用化に到っていな
い。
However, the titanium dioxide-based photosensitizer has a narrow range of side selection with respect to the substrate, and although it exhibits the above-mentioned good properties with respect to gold, vanes (foils), metal-deposited films, etc., it does not work well with paper-based materials. When used with ordinary conductive base paper, good images cannot be obtained due to severe image unevenness and insufficient photosensitivity, and for this reason, it has not yet been put into practical use.

すなわち、従来系の導電性基紙は紙支持体に高分子電解
質などの導電性付与物質をポリビニルアルコール(PV
A)などの親水性高分子ノ(インダーやポリ酢酸ビニル
などの疏水性高分子エマルジョン、クレーなどの顔料な
どと共に混合した処理剤を塗布又は含浸などして得られ
るのであるが、かかる塗料系の導電処理剤では導電性の
絶対値が不足する、導電性の均一性が不足する、電子写
真特性への阻害性が有る、耐溶剤性が不足するなどの問
題点を有し、これ等特性に対して極めて敏感な二酸化チ
タン系感光剤に対しては全く不適当なものであった。
In other words, conventional conductive base paper uses polyvinyl alcohol (PV
It is obtained by coating or impregnating a treatment agent mixed with hydrophilic polymers such as A) (hydrophobic polymer emulsions such as inders and polyvinyl acetate, pigments such as clay, etc.); Conductive processing agents have problems such as insufficient absolute value of conductivity, insufficient uniformity of conductivity, inhibiting electrophotographic properties, and insufficient solvent resistance. On the other hand, it was completely unsuitable for titanium dioxide-based photosensitizers, which are extremely sensitive.

かかる従来系導電性基紙の問題点を解決するだめの一方
法として、塗料系導電処理剤を用いずに金属箔ラミネー
トや金属蒸着を行なう方法が考えられ、これ等の方法で
は一応前記要求特性をいずれも満足するかのように思わ
れるのであるが、実際には様々な問題点を有し実用化は
困難であった。すなわち、金属箔ラミネートの場合は、
紙支持体に接着層を介して金属箔を貼合するのであり、
金属表面の導電性は極Iv)て良好かつ均一であるが接
着層が電気絶縁層となり体積方向の導電性が不足し、エ
レクトロファックス方式に必要な裏面アースが不充分と
なり、満足な画像が得られ々いという問題があった。
One way to solve the problems of conventional conductive base paper is to perform metal foil lamination or metal vapor deposition without using a paint-based conductive treatment agent. However, in reality, there are various problems that make it difficult to put it into practical use. In other words, in the case of metal foil laminate,
The metal foil is laminated to the paper support via an adhesive layer,
The conductivity of the metal surface is very good and uniform, but the adhesive layer becomes an electrical insulating layer, resulting in insufficient conductivity in the volume direction, and the back ground required for the electrofax method is insufficient, making it impossible to obtain satisfactory images. There was a problem that it was rare.

また金属箔ラミネートのもうひとつの欠点は塑゛ 性変
形が生じ易く、記録紙を折り曲げると元に戻らなくなる
ということであった。
Another disadvantage of metal foil laminates is that they tend to undergo plastic deformation, and once the recording paper is bent, it cannot return to its original shape.

一方、金属蒸着の場合、塑性変形の問題はないのでむし
ろ好ましいのであるが、なお解決を保する問題点も少く
ない。すなわち紙に直接全組蒸着することりま含有水分
のため技術的に困難であり、1((3常は密着をよくす
るためプレコートを施して、真空中で表面から気体の発
生のないように処理してから蒸着を行う。しかしながら
、この場合には、(イ)プレコート層が絶縁性のだめ体
積方向(紙の表裏間)の導電性が低く、鼻面アースが不
完全となって基紙に帯電が乗り原画に対応した静電潜像
の形成ができない、(ロ)感光剤の塗工時にその溶剤に
より、該プレコート層の一部が溶解し発泡を呈し感光剤
の均一ガ塗工を妨げる、という欠点を有する。このよう
な基紙の欠点は、エレクトロファックス方式において感
光主剤に二酸化チタンを用いる場合に、酸化亜鉛の場合
に比べて記録画像の画質に及はす影響が太きく、その解
決が求められている。
On the other hand, in the case of metal vapor deposition, there is no problem of plastic deformation, so it is rather preferable, but there are still many problems that remain to be solved. In other words, it is technically difficult to deposit all the layers directly on the paper due to the water content, and 1 (3) Usually, a pre-coat is applied to improve adhesion, and the process is carried out in a vacuum to prevent the generation of gas from the surface. However, in this case, (a) the precoat layer is insulating and has low conductivity in the volume direction (between the front and back of the paper), and the nose surface is incompletely grounded, causing the base paper to become charged. It is said that an electrostatic latent image corresponding to the original image cannot be formed, and (b) when the photosensitive agent is applied, a part of the pre-coat layer is dissolved and foamed due to the solvent, which prevents uniform coating of the photosensitive agent. This disadvantage of base paper is that when titanium dioxide is used as the main photosensitive material in the electrofax method, it has a greater effect on the quality of the recorded image than when using zinc oxide, and it is difficult to solve this problem. It has been demanded.

本発明は、前記問題点の解決に係わる。すなわち本発明
の第一は、紙支持体圧導電性コート層と、その上に金属
蒸着層とを有することを特徴とする二酸化チタンを感光
主剤とする電子写真記録用導電性基紙であり、第二の発
明は紙支持体に導電性コート層表その上に金属蒸着層と
を有し、かグ紙支持体の金属蒸着層を設けた面の反対側
の面(裏面)K導電性コーナ4フフを有し、体積固有抵
抗が10110α以下であることを特徴とする二酸化チ
タンを感光主剤とする1は子写真記録用導屯性基紙であ
る。本発明の導電性基紙は基紙の体積方向の導1に性が
良好であってかつ耐溶剤性が優れたものである。このも
のは二酸化チタンを感光主剤とするエレクトロファック
ス方式において、感光剤との適合性が良く、画像ムラが
なく、連続階調性の良好な画像を再現するに11めて好
適なものである。さらに第二の発明のものは基紙の体積
方向の導電性が一層良好なものであって裏面アースがと
り易く、従って表面アースをとるための格別の装置付加
ないし感光層非塗工部を設けるなどの特殊な加工を省略
することができる。また基紙のカールを防ぐことができ
、作画操作を一層安定化させることができる。前記の特
長を有する本発明の導電性基紙は後記実施例に示すよう
に、感光主剤と1−て二酸化チタンを使用してエレクト
ロファックス方式でカラー画像を作画する場合に特に望
ましいものである。
The present invention relates to solving the above problems. That is, the first aspect of the present invention is a conductive base paper for electrophotographic recording using titanium dioxide as a photosensitive main ingredient, which is characterized by having a paper support pressure conductive coating layer and a metal vapor deposition layer thereon, The second invention has a conductive coating layer on the paper support and a metal vapor deposited layer thereon, and a conductive corner K on the opposite side (back side) of the surface on which the metal vapor deposited layer of the paper support is provided. No. 1 is a conductive base paper for photographic recording, which has titanium dioxide as a photosensitive main agent and has a volume resistivity of 10110α or less. The conductive base paper of the present invention has good conductivity in the volume direction of the base paper and excellent solvent resistance. This material has good compatibility with the photosensitizer in the electrofax system using titanium dioxide as the main photosensitive agent, and is the most suitable for reproducing images with no image unevenness and good continuous gradation. Furthermore, in the second invention, the conductivity in the volume direction of the base paper is even better, and it is easier to ground the back surface. Therefore, a special device is added or a non-photosensitive layer is provided for grounding the surface. Special processing such as can be omitted. Further, it is possible to prevent the base paper from curling, and the drawing operation can be further stabilized. The conductive base paper of the present invention having the above-mentioned features is particularly desirable when producing color images by an electrofax method using titanium dioxide as a photosensitive main agent, as shown in Examples below.

本発明において導電性コート層の表面抵抗は10110
以ド(20℃相対湿度60チ)であることが望ましく、
特に1010Ω以Fであることが望ましい。表面抵抗値
が前記範囲より大きい場合は基紙の体積方向の導電性が
阻害され所望の効果が得難い。また基紙の体積固有t(
抗は1011Ωm以下(20℃、相対湿度60%)であ
るのが望ましく、特に10IθΩの以下であることが望
ましい。体債固有抵抗が前記の範囲より大きい場合は裏
面アースを完全に行うことに障害を生じ画質の再現がで
きないことがある。また本発明において導電性コート層
は感光剤塗布の際の発泡等が生じないように特に耐溶剤
性の優秀な素材を用いることが必要である。すなわち導
電性コート層構成するには次の2通りの方法が採用でき
る。
In the present invention, the surface resistance of the conductive coating layer is 10110
It is desirable that the temperature is below (20℃ relative humidity 60℃),
In particular, it is desirable that the resistance be 1010Ω or more. If the surface resistance value is larger than the above range, the conductivity in the volume direction of the base paper will be inhibited, making it difficult to obtain the desired effect. Also, the volume specific t(
The resistance is preferably 1011 Ωm or less (20° C., relative humidity 60%), particularly preferably 10 IθΩ or less. If the body resistivity is larger than the above-mentioned range, it may be difficult to completely ground the back surface, and the image quality may not be reproduced. Further, in the present invention, it is necessary to use a material with particularly excellent solvent resistance for the conductive coating layer so as to prevent foaming during application of the photosensitive agent. That is, the following two methods can be employed to construct the conductive coat layer.

(り導電性付与物質と水溶性高分子バインダーを主成分
とする。
(The main components are a conductivity-imparting substance and a water-soluble polymer binder.)

(2)導電性付与物質と硬化性樹脂バインダーを主成分
とする。
(2) The main components are a conductivity-imparting substance and a curable resin binder.

(りの方法は、耐溶剤性を付与するために水溶性高分子
を主体として用いることを特徴とするものであり、例え
ば、メチルセルロース、ヒドロキシエチルセルロース、
カルボキシメチルセルロース等のセルロース誘導体、エ
ステル化澱粉、酸化澱粉、カチオン澱粉等の澱粉誘導体
、アルギン酸ソーダ、カゼイン、ゼラチン、ニカワ、ア
ラビアゴム、マンナンなどの天然の動、植物樹脂、(メ
タ)アクリル酸塩、マレイン酸塩などの重合体および共
重合体、ポリビニルアルコール、部分ケン化ポリ酢酸ビ
ニル、ポリアクリルアミド、ポリビニルメチルエーテル
、ポリビニルピロリドン、ポリエチレンイミン、ポリエ
チレンオキサイド、アミン樹脂、水溶性ポリエチレンな
どの合成高分子などが用いられる。これらは単独寸たは
複数組合せて用いることが可能である。また必要に応じ
てアクリル酸エステル、メタクリル酸エステル、アクリ
ロニトリル、スチレン、酢酸ビニル、塩化ビニル、塩化
ビニリチン、エチレン、プロピレン、ブタジェン、イソ
プレン、グロロブレン等の重合エマルジ冒ン父は共重合
エマルジョンなどを耐溶剤性が城 1少しない範囲で添
加したり、アミノ樹脂、グリオキザル、エポキシ化ポリ
アミド、ポリアミン、ジルコニウム錯塩、ジアルデヒド
澱粉などの架橋剤を添加することも可能である。さらに
平滑度向上や塗工性改良等に必要ならばクレー、カオリ
ン、ベントナイト、タルク、モンモリロナイト、ケイ酸
、ケイ酸アルミニウム、ケイ酸マグネシウム、アルミナ
、酸化亜鉛、酸化チタン、炭酸カルシウム、炭酸マグネ
シウム、金属石ケン類、酸化マグネシウム、水酸化マグ
ネシウム、水酸化カルシウム、硫酸バリウム、ゼオライ
ト、珪藻土、サチンホワイトなどの無機顔料および尿素
−ホルマリン樹脂、ポリスチレン粉末、デンプン粉末な
どの有機顔料を加えることも、耐溶剤性が低下しない範
囲内で可能である。
(This method is characterized by mainly using water-soluble polymers to impart solvent resistance. For example, methyl cellulose, hydroxyethyl cellulose,
Cellulose derivatives such as carboxymethylcellulose, starch derivatives such as esterified starch, oxidized starch, and cationic starch, natural animal and vegetable resins such as sodium alginate, casein, gelatin, glue, gum arabic, and mannan, (meth)acrylates, Synthetic polymers such as polymers and copolymers such as maleate, polyvinyl alcohol, partially saponified polyvinyl acetate, polyacrylamide, polyvinyl methyl ether, polyvinylpyrrolidone, polyethyleneimine, polyethylene oxide, amine resins, and water-soluble polyethylene, etc. is used. These can be used singly or in combination. If necessary, polymer emulsions such as acrylic esters, methacrylic esters, acrylonitrile, styrene, vinyl acetate, vinyl chloride, vinylitine chloride, ethylene, propylene, butadiene, isoprene, glolobrene, etc. It is also possible to add a cross-linking agent such as amino resin, glyoxal, epoxidized polyamide, polyamine, zirconium complex salt, dialdehyde starch, etc. Furthermore, if necessary to improve smoothness or coatability, clay, kaolin, bentonite, talc, montmorillonite, silicic acid, aluminum silicate, magnesium silicate, alumina, zinc oxide, titanium oxide, calcium carbonate, magnesium carbonate, metal, etc. Inorganic pigments such as soap, magnesium oxide, magnesium hydroxide, calcium hydroxide, barium sulfate, zeolite, diatomaceous earth, satin white, etc., and organic pigments such as urea-formalin resin, polystyrene powder, starch powder, etc. can be added to the solvent resistant solvent. This is possible within a range that does not reduce performance.

一方、(2)の方法は、硬化性樹脂を用いて耐溶剤性を
付与することを特徴とするものであり、例えば、アルキ
ッド樹脂、反応性アクリル樹脂、フェノール樹脂、ユリ
ア・メラミン樹脂、不飽和ポリエステル樹脂、ポリウレ
タン樹脂、ボリアミド樹脂、架橋性ビニルモノマーなど
が用いられる。これ笠は各々の硬化メカニズムに適する
ように触媒を加えたシ、加熱、紫外線照射、電子線照射
などの処理を栴す必要がある。また必要に応じて、クレ
ーなどの顔料を添加しても良い。
On the other hand, method (2) is characterized by imparting solvent resistance using a curable resin, such as alkyd resin, reactive acrylic resin, phenolic resin, urea/melamine resin, unsaturated resin, etc. Polyester resins, polyurethane resins, polyamide resins, crosslinkable vinyl monomers, etc. are used. These hats need to be subjected to treatments such as adding a catalyst, heating, UV irradiation, and electron beam irradiation to suit each curing mechanism. Furthermore, if necessary, a pigment such as clay may be added.

次に、(す、(2)に共通して用いられる導電性付与物
質であるが、 ■無機塩類・・塩酸塩、硝酸塩、硫酸塩、炭酸塩、リン
酸塩等 ■有[渦吸湿物質・・グリセリン、エチレングリコール
、ツルピトール、シアノ化Δψ粉等■高分子電解質 カチオン性・・・主鎖又Vi、91J鎖に第4級アンモ
ニ塩基、スルホニウム塩基、ある いはホスホニウム塩基を有する 高分子化合物。
Next, the conductivity-imparting substances commonly used in (2) are: ■Inorganic salts: hydrochlorides, nitrates, sulfates, carbonates, phosphates, etc.・Glycerin, ethylene glycol, tulpitol, cyanated Δψ powder, etc. ■Polymer electrolyte cationic property: A polymer compound having a quaternary ammonium base, a sulfonium base, or a phosphonium base in the main chain or in the Vi or 91J chain.

例、ポリビニルベンジルトリメ チルアンモニウムクロライド 序0 アニオン性・・側鎖にカルボン酸塩基、スルホン酸塩基
、ホスホン酸塩基を有 する高分子化合物。
Example, polyvinylbenzyltrimethylammonium chloride Order 0 Anionic: A polymer compound having a carboxylic acid group, a sulfonic acid group, or a phosphonate group in its side chain.

例、ポリスチレンスルホン酸ソ ーダ、ポリアクリル酸ソーダ 等。For example, polystyrene sulfonic acid Sodium polyacrylate etc.

両 性・・カチオン性官能基およびアニオン性官能基を
共有する高分子化合物。
Amphoteric: A polymer compound that shares a cationic and anionic functional group.

■金属微粉末−Au、 Ag、 Cu、 A4 Ni、
 Fe、 Sn、 Znなど (リカーボンブラック・・・粉体、カーボンFI1.維
■導重性金属酸化物、金属・・ロゲン化物例、イ、  
In、CdなどをZnOなどの金属酸化物表面にドープ
したもの。
■Metal fine powder - Au, Ag, Cu, A4 Ni,
Fe, Sn, Zn, etc. (recarbon black...powder, carbon FI1.
The surface of a metal oxide such as ZnO is doped with In, Cd, etc.

o、  ZnOなどをCOt、 S Ot、 NHaガ
ス中で熱処理したもの。
o, ZnO, etc., heat treated in COt, SOt, NHa gas.

ハ、  5n01.5b02などの固溶体二、  T(
Otの還元体 ホ、  TIO,を5n02.5b02で処理したもの へ、田つ化銅、ヨウ化銀など などが単独または複数組合せて、使用される。
C, solid solution such as 5n01.5b02, T(
To the reduced form of Ot, TIO, treated with 5n02.5b02, copper tatsude, silver iodide, etc. are used singly or in combination.

ただし、■、■、■の導電性付与物質は、水分を引き込
んで導電性を付与するため釦、金属蒸着膜を病食し易い
という欠点を有しており、使用用−を多くする事tま出
来ない。この情は用いる導電性付与物質によりそれぞれ
異なるが、通常は導電性ブレコー) INの固形分の3
0%以下である。
However, the conductivity-imparting substances listed in ■, ■, and ■ have the disadvantage that they tend to eat away at buttons and metal-deposited films because they draw in moisture and impart conductivity. Can not. This situation differs depending on the conductivity-imparting substance used, but usually the solid content of IN is 3.
It is 0% or less.

一力、■、■、■の導電性付与物質は水分とVi+’!
、’;l係のない7、%電性メカニズムを有するために
腐食への悪影響はなく、特に■、■の導電性付与物質す
なわちカーボンブラックおよび導電性金属酸化物、導1
1を性金属ノ・ロゲン化物を用いるのが好ましい。なお
本発明において紙支持体裏面の導管It性コート層には
前記の導電性塗料組成物を紙支持体裏面忙塗工すること
によって形成することができるがさらに該層上に金属蒸
着層を設けてもよい。
Ichiriki, ■, ■, ■ conductivity imparting substance is water and Vi+'!
Because it has a 7.% conductive mechanism without a 7% conductivity, there is no negative effect on corrosion, and especially the conductivity-imparting substances of
It is preferable to use a metal chloride for 1. In the present invention, the conduit conductive coating layer on the back side of the paper support can be formed by coating the above-mentioned conductive coating composition on the back side of the paper support, but it is also possible to form a metal vapor deposition layer on the layer. It's okay.

紙支持体への導電性付与物質の含浸や導′qt性物質の
混抄は通常の加工手段によって行うことができる。導電
性コート層形成手段としては例エバ、メイヤバーコーテ
ィング、ロールコーティング、エアナイフコーティング
、グラビアコーチインク、フレードコーティング、スプ
レーコーティング、サイズプレス、含浸などが採用でき
る。さらに平滑性を必要とする場合t、t、スーパーキ
ャレンダー、マシンキャレンダー々どを施してもよい。
Impregnation of the paper support with the conductivity-imparting substance and mixing of the conductive substance can be carried out by conventional processing means. Examples of methods for forming the conductive coating layer include EVA coating, Meyer bar coating, roll coating, air knife coating, gravure coach ink, Flead coating, spray coating, size press, and impregnation. If further smoothness is required, t, t, super calender, machine calender, etc. may be applied.

支持体としての紙は特に限定するものではなく、9#通
紙、加工紙いずれの紙でもよく、また4電性付与物質を
あらかじめ混抄したり含浸し。
The paper used as the support is not particularly limited, and may be either 9# paper or processed paper, and may be pre-mixed or impregnated with a tetraelectricity imparting substance.

たものもすべて用いることが出来る。You can use anything you like.

次に金属蒸着の方法であるが、これも特に限定されず、
通常の真空蒸着やスパッタリングさらにイオンブレーテ
ィングに至るまでいずれの方法でも目的を達することが
可能である。
Next is the metal vapor deposition method, which is also not particularly limited.
It is possible to achieve the objective using any method ranging from ordinary vacuum evaporation and sputtering to ion blating.

蒸着される金属は、金、銀、銅、アルミニウム、拒鉛、
ラッケル、カドミウムなどいずれでも良いが、最も一般
的にはアルミニウムが用いもれる。
The metals to be evaporated include gold, silver, copper, aluminum, rejected lead,
Any material such as lacquer or cadmium may be used, but aluminum is most commonly used.

蒸着膜Jワは、11n常50mμ以上あれば充分であり
5,50m7z〜100 mμ程度がより好適である。
It is sufficient for the vapor deposited film J to have a thickness of 11n of 50 mμ or more, and a thickness of about 5,50m7z to 100 mμ is more suitable.

@記の本発明に係わる導電性基紙を用いて二酸化チタン
を主剤とする感光層を有する電子写−匹用ML録紙を作
成するには二酸化チタンを樹脂バインダーに分散させた
塗工液を、導電性基紙INK塗工することによって行う
ことができる。
In order to create ML recording paper for electrophotography having a photosensitive layer containing titanium dioxide as a main ingredient using the conductive base paper according to the present invention described in @, a coating liquid in which titanium dioxide is dispersed in a resin binder is used. This can be done by coating a conductive base paper INK.

前記の二酸化チタンとしては、種々の方法によって製造
されたものを使用し得るが、ルチル型結晶のものが一層
望ましい。なお@記二酸化チタンに例えば酸化+11’
u鉛などの他の光導電性物質を少量混用することもでき
る。また前記樹脂バインダーとしては電気絶縁性の大き
い種々のものを使用するのが望ましい。例えばアクリル
樹脂、アルキッド樹脂、ポリエステル樹脂、ポリウレタ
ン位ノ脂、アミノ樹脂、ビニル樹脂などの一種又は二種
以上を使用することができる。
As the titanium dioxide, titanium dioxide produced by various methods can be used, but titanium dioxide having rutile type crystals is more preferable. For example, oxidation +11' is added to the titanium dioxide mentioned in @.
Small amounts of other photoconductive materials such as u-lead can also be mixed in. Further, it is desirable to use various resin binders having high electrical insulation properties. For example, one or more of acrylic resins, alkyd resins, polyester resins, polyurethane resins, amino resins, vinyl resins, etc. can be used.

以下実施例により本発明をさらに具体的に説明するが、
本発明はもちろんこれに限定されるものではない。
The present invention will be explained in more detail with reference to Examples below.
Of course, the present invention is not limited to this.

実施例1゜ からなる導電性コート剤(25チ水溶液)を、上質紙(
Bj、4り/i)の片面にメイヤバーにて乾燥後5に背
となるように塗工し、120℃10分間乾燥し、次に、 からなるバックコート剤(20%水分散液)を裏面にメ
イギバーにて乾燥後103’/l♂となるように塗工し
、100℃10分間乾燥し、これにス): −$ =ξ
5′ター処理を施した。導m性コート層の表面抵抗14
20℃、60チ相対湿度で38X10100であった。
Example 1 A conductive coating agent (25% aqueous solution) was coated on high-quality paper (
Bj, 4ri/i) was dried with a Meyer bar, then coated so as to be the back side of 5, dried at 120°C for 10 minutes, and then coated with a back coating agent (20% aqueous dispersion) consisting of After drying with a Maygiver, it was coated to give a coating density of 103'/l♂, dried at 100°C for 10 minutes, and then coated with: -$ = ξ
5' tar treatment was applied. Surface resistance of conductive coating layer 14
It was 38×10100 at 20° C. and 60° relative humidity.

これをさらに100℃10分間乾燥して、真空蒸着装置
に入れ、10−’トールの真空度のもとてアルミニウム
蒸着を行なったところ、蒸着厚さ約60mμの光沢のあ
るアルミニウム蒸着導電性基紙が得られた。該導電性基
紙の体積抵抗値1j20℃、60チ相対湿度で、62×
1010Ωmであった。
This was further dried at 100°C for 10 minutes, placed in a vacuum evaporation device, and subjected to aluminum evaporation under a vacuum of 10-'Torr.A shiny aluminum-deposited conductive base paper with a evaporation thickness of about 60 mμ was obtained. was gotten. The volume resistivity value of the conductive base paper is 1j at 20℃, 60℃ relative humidity, 62×
It was 1010 Ωm.

次に四塩化チタンを加水分解して水和酸化チタンを沈澱
させ、この沈澱を濾過、洗浄、乾燥した後、粉砕1.て
二酸化チタン粉体を得、これを次の増感色素等と混合、
加熱し、溶剤を蒸発させて、それらを吸着させた二酸化
チタン粉末を得た。
Next, titanium tetrachloride is hydrolyzed to precipitate hydrated titanium oxide, and this precipitate is filtered, washed, and dried, and then pulverized. to obtain titanium dioxide powder, which is mixed with the following sensitizing dye, etc.
The solvent was evaporated by heating to obtain titanium dioxide powder on which the solvent was adsorbed.

得られた二酸化チタン粉末100部とアクリディックA
−405(大日本インキ化学工業■製アクリル樹脂)5
0部、トルエン80部をクイックミルで5分間撮とうし
て感光剤塗液を得た。
100 parts of the obtained titanium dioxide powder and Acridic A
-405 (acrylic resin manufactured by Dainippon Ink & Chemicals) 5
A photosensitizer coating solution was obtained by photographing 0 parts of toluene and 80 parts of toluene in a quick mill for 5 minutes.

得られた感光剤塗液を前記導電性基紙上に、乾燥後15
μ厚となるようにメイヤバー塗工し、100℃−10分
間乾燥し、電子写真記録紙を得た。これを20℃、60
%RHで暗所に2日間放置した後、各種試験を行なった
The obtained photosensitive agent coating liquid was applied onto the conductive base paper for 15 minutes after drying.
It was coated with Meyer bar to a thickness of μ and dried at 100° C. for 10 minutes to obtain electrophotographic recording paper. This was heated to 20°C and 60°C.
After being left in the dark at %RH for 2 days, various tests were conducted.

(電子写真特性) 得られた試料の電子写真特性を、用ロ電機製ペーパーア
ナライザーSP〜428型を用いて測定したつ帯電特性
はダイナミック方式のコロナ帯電(−6Kv) Kより
200Vの表面電位に達するまでの秒数で表わした。
(Electrophotographic properties) The electrophotographic properties of the obtained sample were measured using a paper analyzer SP~428 manufactured by Yoro Denki. It is expressed as the number of seconds it takes to reach the target.

(画像性) 得られた。試料に次の5工程を施して、カラー電子写真
画像を得た。
(Image quality) Obtained. The sample was subjected to the following five steps to obtain a color electrophotographic image.

(1)帯電−重色分解露光−イエロートナー(2)帯電
−緑色分解露光−マゼンタトナー(3)  帯電−赤色
分解露光−ンアントナーこれの画像性を5段階相対評価
法により目視評価(7た。評価項目は均一性(ムラ、欠
陥)および総合特性(鮮明度、Ft調再現性)の2項目
である。この結果、第1表に示した如く帯電特性は優れ
ており、さらにカラー電子写真も極めて均一で鮮明な画
像が得られ、銀塩写真に類似の緻密で優れた階調再現性
を示した。
(1) Charging - Heavy color separation exposure - Yellow toner (2) Charging - Green separation exposure - Magenta toner (3) Charging - Red separation exposure - Antoner The image quality of this was visually evaluated using a five-level relative evaluation method (7). There are two evaluation items: uniformity (unevenness, defects) and overall characteristics (sharpness, Ft tone reproducibility).As shown in Table 1, the charging characteristics are excellent, and color electrophotography is also excellent. Extremely uniform and clear images were obtained, exhibiting precise and excellent gradation reproducibility similar to silver halide photography.

以下導電性コートのみを変え、原紙、バックコート、ス
ーパーキャレンダー、アルミニウム蒸着は実施例1と同
様にして、実施例2〜7の導電性基紙を作成した。
Thereafter, conductive base papers of Examples 2 to 7 were prepared in the same manner as in Example 1 except that only the conductive coat was changed, and the base paper, back coat, super calender, and aluminum vapor deposition were the same as in Example 1.

実施例2 からなる導′f4(性コート剤(18%水溶液)を乾燥
後12 P/n?となるよう圧原紙の片面に塗工、12
0℃−10分間乾燥し導電性基紙としだ。
Example 2 After drying, a conductive coating agent (18% aqueous solution) consisting of the following was applied to one side of the pressing paper to give a coating density of 12 P/n.
It was dried for 10 minutes at 0°C to form a conductive base paper.

実施例3 をアトライター分散し、導電性コート剤(30チ水分散
液)を作成し、原紙片面圧乾燥後10y/lt?となる
ようにエアナイフ塗工し、100℃−5分間乾燥を行な
って導電性基紙とした。
Example 3 was dispersed in an attritor to prepare a conductive coating agent (30% aqueous dispersion), and after drying under pressure on one side of the base paper, 10y/lt? The conductive base paper was coated with an air knife and dried at 100° C. for 5 minutes.

実施例4 をホモミキサー分散し、導電性コート剤(35チ水分散
液)を作成し原紙片面に乾燥後131/nlとなるよう
に、ブレードコーティングを行ない、110℃−10分
間乾燥を行なって導電性基紙とした。
Example 4 was dispersed in a homomixer to prepare a conductive coating agent (35% aqueous dispersion), which was blade coated on one side of the base paper to a coating density of 131/nl after drying, and dried at 110°C for 10 minutes. It was made into a conductive base paper.

実施例5′ をホモミキサー分散し、導電性コート剤(35チ水分散
液)を作成し、原紙の片面托乾燥後16 F/?7/と
なるように、メイヤバー塗工を行ない、150℃−20
分間乾燥し導電性基紙とした。
Example 5' was dispersed in a homomixer to prepare a conductive coating agent (35% aqueous dispersion), and after drying one side of the base paper, it was heated to 16 F/? 7/, perform Meyer bar coating and heat at 150℃-20
It was dried for a minute to form a conductive base paper.

実施例6 をアトライター分散し、導電性コート剤(30%トルエ
ン分散液)を作成し、原紙の片面に乾燥後8 y/lt
?となるようにグラビア塗工し、150℃−20分間乾
燥し導電性基紙とした。
Example 6 was dispersed in the attritor to create a conductive coating agent (30% toluene dispersion), and after drying it was coated on one side of base paper at 8 y/lt.
? It was gravure coated so as to have the following properties and dried at 150°C for 20 minutes to obtain a conductive base paper.

実施例7 をサンドグラインダー分散(触媒は後添加)し、導電性
コート剤(50%、メチルエチルケトン分散液)を作成
1〜、原紙の片面に乾燥後101眉となるよう圧メイヤ
バー塗工し、130℃−15分間乾燥し導電性基紙とし
た。
Example 7 was dispersed in a sand grinder (the catalyst was added later) to prepare a conductive coating agent (50% methyl ethyl ketone dispersion). It was dried for 15 minutes at -15°C to obtain a conductive base paper.

以上、実施例2〜7で得られた導電性コート層の表面抵
抗値およびアルミニウム蒸着導電性基紙の体積抵抗値を
第1表に示したが、導電性コート層の表面抵抗値けいず
れも1011Ω以下であり、導電性基紙の体積抵抗値1
j10?〜1011Ω・σの範囲内であった。
Table 1 shows the surface resistance values of the conductive coat layers obtained in Examples 2 to 7 and the volume resistivity values of the aluminum-deposited conductive base papers. 1011Ω or less, and the volume resistivity of the conductive base paper is 1
j10? It was within the range of ~1011Ω·σ.

次に得られた導電性基紙に実施例1と同様に二酸化チタ
ン系感光剤を塗工し、電子写真記録紙を得各種試験を行
なったところ、第1表に示した如く、帯電特性は全く問
題なく、さらにカラー電子写真画像も極めて均一で鮮明
な画像が得られ、銀塩写真類似の緻密で優れた階調再現
性を示した。
Next, the obtained conductive base paper was coated with a titanium dioxide-based photosensitive agent in the same manner as in Example 1, and an electrophotographic recording paper was obtained and various tests were conducted. As shown in Table 1, the charging characteristics were There were no problems at all, and color electrophotographic images were also extremely uniform and clear, showing fine and excellent gradation reproducibility similar to silver halide photography.

比較例1〜7 実施例1〜7に、於て、導電性コート剤から導電性付与
物質を除いたものをプレコート剤として用いる事以外は
、全く同様に1〜で比較例1〜7のアルミニウム蒸着導
電性基紙を作成し、実施例1と同様の二酸化チタン系感
光剤を塗工し、電子写真記録紙を得、各種試験を行なっ
た。
Comparative Examples 1 to 7 The aluminum of Comparative Examples 1 to 7 was prepared in exactly the same manner as in Examples 1 to 7, except that the conductive coating agent from which the conductivity imparting substance was removed was used as the precoating agent. A vapor-deposited conductive base paper was prepared and coated with the same titanium dioxide-based photosensitizer as in Example 1 to obtain an electrophotographic recording paper, and various tests were conducted.

その結果、第1表に示した如く、プレコート層の表面抵
抗はいずれも1011Ω以上の高抵抗を示し、その上に
アルミニウム蒸着を施し、また裏面に低抵抗層(バック
コート)を設けた導電性基紙の体積抵抗値は、高抵抗の
コート層に阻害され1011〜10J4Ωといった高抵
抗のものしかイクられなかった。従ってこれを用いた電
子写真記録紙の帯電特性は、基紙に帯電が生じ、電子写
真に於ては画像が全く得られなかった。
As a result, as shown in Table 1, the surface resistance of the precoat layer was all 1011Ω or more, and the conductive layer was coated with aluminum vapor deposition and a low resistance layer (back coat) was provided on the back surface. The volume resistance value of the base paper was inhibited by the high resistance coating layer, and only a high resistance value of 1011 to 10J4Ω could be achieved. Therefore, regarding the charging characteristics of the electrophotographic recording paper using this, the base paper was charged, and no image was obtained in electrophotography.

比較例8 実施例2において導電性コートとバックコートのみを施
1.スーパーキャレンダ〜処理した基紙の体積抵抗値は
4.7 X 10100・備であった。これに金属蒸着
を楕さずに導電性コート上に直接実施例1と同様の二酸
化チタン系感光剤を塗工し、電子写真記録紙を得、各種
試験を行なった。
Comparative Example 8 In Example 2, only the conductive coat and back coat were applied. The volume resistivity of the super calender-treated base paper was 4.7 x 10100. A titanium dioxide-based photosensitive agent similar to that in Example 1 was directly coated onto the conductive coat without metal vapor deposition to obtain electrophotographic recording paper, and various tests were conducted.

その結果第1表に示した如く、帯電特性は4.5秒と大
巾に低下しており、帯電の立上りが非常に遅く、又カラ
ー電子写真画像は全面に細かなd^淡ムラが生じ非常に
不均一かつ不鮮明なものであった。
As a result, as shown in Table 1, the charging characteristics were drastically reduced to 4.5 seconds, the rise of charging was very slow, and the color electrophotographic image had fine d^light unevenness over the entire surface. It was very uneven and unclear.

第  1  表Table 1

Claims (1)

【特許請求の範囲】 1)紙支持体上に導電性コート層とその上に金属蒸着層
とを有することを特徴とする二酸化チタンを感光主剤と
する電子写真記録用導電性基紙。 2)導電性コート層の表面抵抗が、1011Ω以Fであ
る特許請求の@rtnp41項記載の導電性基紙。 3)導電性コート層の主成分が、(イ)導電性付与物質
、(ロ)水溶性高分子バインダー又は硬化性イタ1脂で
ある特許請求の範囲第1項記載の導電性基紙。 4)・4屯性付与物質か、カーボンブラック、導屯性金
)1粍酸化物および導電性金属ハロゲン化物から選ばれ
るものからなる特許請求の範囲第3項記載の導電性基紙
。 5)紙支持体上Ki’flt性コート層とその上例金属
蒸着層とを有し、かつ紙支持体が金属蒸着層を設ける面
と反対の面に導電性コート層を有するものであって、体
積固有抵抗が10”Ω(7)以下のものであることを特
徴とする二酸化チタンを感光主剤とする亀子写真記録用
i4 ’+li性基紙。 6)導電性コート層の表面抵抗が 1011Ω以下であ
る特許請求の範囲@5項記載の導電性基紙。
[Scope of Claims] 1) A conductive base paper for electrophotographic recording containing titanium dioxide as a photosensitive main ingredient, characterized by having a conductive coating layer on a paper support and a metal vapor deposited layer thereon. 2) The conductive base paper according to claim @rtnp41, wherein the conductive coating layer has a surface resistance of 10 11 Ω or less F. 3) The conductive base paper according to claim 1, wherein the main components of the conductive coating layer are (a) a conductivity-imparting substance, (b) a water-soluble polymer binder, or a curable Ita-1 fat. 4) The electrically conductive base paper according to claim 3, comprising a material selected from the group consisting of a material imparting toughness, carbon black, a conductive gold oxide, and a conductive metal halide. 5) It has a Ki'flt coating layer on a paper support and a metal vapor deposition layer thereon, and the paper support has a conductive coating layer on the surface opposite to the surface on which the metal vapor deposition layer is provided. , Kameko photographic recording i4'+li base paper containing titanium dioxide as a photosensitive main ingredient, characterized in that the volume resistivity is 10''Ω (7) or less. 6) The surface resistance of the conductive coating layer is 1011Ω. The conductive base paper according to claim 5 below.
JP23307182A 1982-12-28 1982-12-28 Electrophotographic recording electrically conductive paper base Pending JPS59121342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23307182A JPS59121342A (en) 1982-12-28 1982-12-28 Electrophotographic recording electrically conductive paper base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23307182A JPS59121342A (en) 1982-12-28 1982-12-28 Electrophotographic recording electrically conductive paper base

Publications (1)

Publication Number Publication Date
JPS59121342A true JPS59121342A (en) 1984-07-13

Family

ID=16949343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23307182A Pending JPS59121342A (en) 1982-12-28 1982-12-28 Electrophotographic recording electrically conductive paper base

Country Status (1)

Country Link
JP (1) JPS59121342A (en)

Similar Documents

Publication Publication Date Title
JPS5942864B2 (en) Method for preparing a projection manuscript and electrostatic photographic transfer film used therein
JPS6162040A (en) Electrophotografic sensitive body
US3116147A (en) Coated paper sheet adapted for electrophotographic reproduction
US3956562A (en) Electrostatic recording material
US4508804A (en) Support for electrographic plate-making material and a lithographic printing plate employing same
NO160958B (en) OMVANDLERINNRETNING.
GB2031757A (en) Electrostatic recording element
US3264137A (en) Electrostatic conductive paper and process of manufacture thereof
US4241134A (en) Electrostatically imageable drafting film
JPS59121342A (en) Electrophotographic recording electrically conductive paper base
US4555461A (en) Process for preparing a lithographic printing plate
US3672988A (en) Method of manufacturing bases for electrostatic recording material or electrophotographic material
JPS5814319B2 (en) Planographic or offset printing plates and their manufacturing method
US5480752A (en) Electrophotographic lithograph printing plate material
JPS6064355A (en) Electrophotographic recording material having improved photosensitivity
WO1993000615A1 (en) Original plate for lithography of electrophotographic type
JPS59121343A (en) Electrophotographic electrically conductive paper base
US5482810A (en) Process for the production of an electrophotographic lithographic printing plate precursor
JPS5936263A (en) Lithographic printing plate for electrophotographic plate making
US4271250A (en) Fibrous electrophotographic sheet with a cellulose nitrate coating
JPH0154693B2 (en)
JPH09211880A (en) Electrphotographic image accepting medium
JPH04251261A (en) Electrophotographic sensitive material and production thereof
DE2538995C3 (en) Process for the production of images and recording material therefor
JPS6318736B2 (en)