JPS591211B2 - Monosilane continuous generation method and device - Google Patents

Monosilane continuous generation method and device

Info

Publication number
JPS591211B2
JPS591211B2 JP7278980A JP7278980A JPS591211B2 JP S591211 B2 JPS591211 B2 JP S591211B2 JP 7278980 A JP7278980 A JP 7278980A JP 7278980 A JP7278980 A JP 7278980A JP S591211 B2 JPS591211 B2 JP S591211B2
Authority
JP
Japan
Prior art keywords
molten salt
monosilane
chamber
lithium
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7278980A
Other languages
Japanese (ja)
Other versions
JPS56169120A (en
Inventor
吉文 八「つるぎ」
是行 遠藤
夏樹 大
秀次 今中
健三 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Komatsu Ltd
Original Assignee
Komatsu Ltd
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd, Komatsu Electronic Metals Co Ltd filed Critical Komatsu Ltd
Priority to JP7278980A priority Critical patent/JPS591211B2/en
Publication of JPS56169120A publication Critical patent/JPS56169120A/en
Publication of JPS591211B2 publication Critical patent/JPS591211B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 本発明はモノシランの改良された装造法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to an improved method for preparing monosilane.

モノシランガスは優れた半導体級シリコンの製造原料と
して、またICデバイスや、アモルファス太陽電池のシ
リコン析出原料ガスとして賞月され、需要の増大が見込
まれている。
Monosilane gas is prized as an excellent raw material for producing semiconductor-grade silicon and as a raw material gas for silicon deposition in IC devices and amorphous solar cells, and demand is expected to increase.

従つて、安全で且つ安価なモノシランの製造方法の開発
が望まれている。モノシランには種々の製造方法がある
が、安価なモノシランを得るには副生物を生成しないリ
サイクルシステムが好ましく、このタイプの方法として
、特公昭39−3660号に開示されているごとく、水
素化リチウムと四塩化珪素の反応によりモノシランを発
生させる方法があげられる。
Therefore, it is desired to develop a method for producing monosilane that is safe and inexpensive. There are various manufacturing methods for monosilane, but in order to obtain inexpensive monosilane, a recycling system that does not produce by-products is preferable, and as a method of this type, lithium hydride is used as disclosed in Japanese Patent Publication No. 39-3660. One example is a method in which monosilane is generated by a reaction between silicon and silicon tetrachloride.

即ち、第1の工程として、塩化リチウムを含む溶融塩を
電解して塩素と金属リチウムを得、第2の工程として金
属リチウムを水素化して水素化リチウムとし溶融塩に溶
解させ、第3の工程として溶融塩に溶解した水素化リチ
ウムに四塩化珪素を反応させ、モノシランと塩化リチウ
ムを得る方法で、第1の工程で得られる塩素は原料粗シ
リコンを塩化して四塩化珪素とし、第3工程に還流させ
、第3工程で発生する塩化リチウムは第1工程に於ける
塩化リチウムの消耗を補充することにより、製品となる
シリコンおよび水素以外はリサイクル使用しモノシラン
を得る方法であり、これを実施する手段として、電解室
、水素化室、モノシラン発生室をそれぞれ独立して設け
、電解室と水素化室とはリチウム移送管および溶融塩移
送管により、水素化室とモノシラン発生室およびモノシ
ラン発生室と電解室はそれぞれ溶融塩移送管により結合
することによつて、反応生成物を逐次次工程に移送する
とともに、溶融塩を還流させ連続的にモノシランを得る
ことが開示されている。然し乍ら、この方法においては
、腐蝕性の強い物質を取り扱うので、装置の腐蝕による
故障が発生しやすく、また移送量や流れ制御、各室の液
面の適正位置の保持が難しく、溶融塩の組成の局部変化
による溶点の変化も起り易いなど困難な点が多い。
That is, in the first step, molten salt containing lithium chloride is electrolyzed to obtain chlorine and metallic lithium, in the second step, metallic lithium is hydrogenated to form lithium hydride and dissolved in the molten salt, and in the third step In this method, silicon tetrachloride is reacted with lithium hydride dissolved in molten salt to obtain monosilane and lithium chloride.The chlorine obtained in the first step is converted into silicon tetrachloride by chlorinating raw material crude silicon, and in the third step The lithium chloride generated in the third step is used to replenish the consumption of lithium chloride in the first step, and all other components except silicon and hydrogen are recycled to obtain monosilane. As a means to do this, an electrolysis chamber, a hydrogenation chamber, and a monosilane generation chamber are provided independently, and the electrolysis chamber and hydrogenation chamber are connected to each other by a lithium transfer pipe and a molten salt transfer pipe. It is disclosed that the reaction products are sequentially transferred to the steps and the molten salt is refluxed to continuously obtain monosilane by connecting the electrolytic chamber and the electrolytic chamber through a molten salt transfer pipe. However, since this method handles highly corrosive substances, failures due to equipment corrosion are likely to occur, and it is difficult to control the transfer amount and flow, and to maintain the proper position of the liquid level in each chamber, making it difficult to maintain the composition of the molten salt. There are many difficulties, such as the fact that changes in the melting point are likely to occur due to local changes in the melting point.

このことは、特開昭53−40000号に於ても各反応
の最適状態に比べ通常の上記運転状態は著しく悪ぐつか
まえどころがない’’と述べており、その結果、水素化
リチウムと四塩化珪素との反応を止むなくバッチ化した
方法を提示している。前記の欠点を解決するために、本
発明は塩化リチウムと塩化カリウムよりなる溶融塩を収
容する密閉された溶融塩槽内に塩化リチウムの電解部、
溶融金属リチウムの捕集移送部、水素化部、モノシラン
発生部を連結して設けることにより、電解によつて生成
した金属リチウムを水素化室に導き水素化し、溶融塩に
溶解させてモノシラン発生室に送り、吹き込まれた四塩
化珪素と反応させてモノシランを連続的に発生させる方
法およびその装置を提起するものである。
This is also explained in JP-A-53-40000, where it is stated that the above-mentioned normal operating conditions are significantly worse than the optimal conditions for each reaction, and as a result, lithium hydride and A method is presented in which the reaction with silicon chloride is unavoidably batched. In order to solve the above-mentioned drawbacks, the present invention provides a lithium chloride electrolytic section in a sealed molten salt tank containing a molten salt consisting of lithium chloride and potassium chloride,
By connecting and providing a collection and transfer section for molten metallic lithium, a hydrogenation section, and a monosilane generation section, metallic lithium produced by electrolysis is guided to the hydrogenation chamber, hydrogenated, and dissolved in molten salt to form the monosilane generation chamber. The present invention proposes a method and an apparatus for continuously generating monosilane by reacting it with silicon tetrachloride that is sent to the reactor and blown into it.

本発明の方法によれば、(1)水素化室以外の各反応室
およびその連結部を適温に保持し、(2)溶融塩の濃度
をほゞ均一に保ち、(3)複雑な形状を持つ各部の安全
性を高め、(4)各部の液面位置の制御を容易にし、そ
の結果、長期間連続して効率よくモノシランを発生させ
ることが可能になつた。以下、図面によつて本発明の詳
細を説明する。
According to the method of the present invention, (1) each reaction chamber other than the hydrogenation chamber and its connection parts are maintained at an appropriate temperature, (2) the concentration of molten salt is kept approximately uniform, and (3) complex shapes can be formed. (4) It has become easier to control the liquid level position of each part, and as a result, it has become possible to continuously and efficiently generate monosilane over a long period of time. The details of the present invention will be explained below with reference to the drawings.

第1図は、本発明のモノシラン発生法を実施するため製
作されたモノシラン連続発生装置の一実施例について断
面構造を示したものである。塩化リチウムと塩化カリウ
ムのほゞ共晶組成からなる溶融塩1を収容したニッケル
製溶融塩槽2は蓋7によつて密閉され、加熱冷却装置3
により常に溶融塩濃度を500℃以下好ましくは880
℃〜400℃に保持している。安全のため鉄製外槽4に
収めて加熱冷却装置3を内蔵する密閉二重構造となし、
ガスの導入・排出口5、6を設けて不活性ガスを導入す
るのが好ましく、該二重構造は不測の破損による事故を
防止出来る。蓋7には陰極′13、陽極11、陽陰室1
7、金属リチウム捕集移送装置18、水素化室19、吸
入管29、モノシラン発生室30など溶融塩槽2内に配
置されるすべての装置が直接または間接的に固定され、
それぞれ適切な深さまで溶融塩中に浸漬されている。9
塩化リチウムの電解部、溶融金属リチウムの捕集移送部
、水素化部、モノシラン発生部のすべてが溶融塩槽の蓋
に取り付けられ、且つ溶融塩に浸漬されている特許請求
の範囲第7項記載の装置。
FIG. 1 shows a cross-sectional structure of an embodiment of a continuous monosilane generation device manufactured to carry out the monosilane generation method of the present invention. A nickel molten salt tank 2 containing a molten salt 1 having a substantially eutectic composition of lithium chloride and potassium chloride is sealed with a lid 7, and a heating/cooling device 3
Always keep the molten salt concentration below 500°C, preferably 880°C.
The temperature is maintained between ℃ and 400℃. For safety, it has a sealed double structure with a built-in heating and cooling device 3 housed in an iron outer tank 4.
It is preferable to provide gas inlet/outlet ports 5 and 6 to introduce inert gas, and the double structure can prevent accidents due to unexpected breakage. The lid 7 has a cathode '13, an anode 11, and a positive and negative chamber 1.
7. All devices arranged in the molten salt tank 2, such as the metal lithium collection and transfer device 18, the hydrogenation chamber 19, the suction pipe 29, and the monosilane generation chamber 30, are fixed directly or indirectly;
Each is immersed in molten salt to the appropriate depth. 9
Claim 7, wherein the lithium chloride electrolysis section, the molten metal lithium collection and transfer section, the hydrogenation section, and the monosilane generation section are all attached to the lid of the molten salt tank and immersed in the molten salt. equipment.

10溶融塩槽のほゾ中央部に陰極を設け、該陰極の両側
に対向する陽極、水素化室、モノシラン発生室を配置し
た特許請求の範囲第7項記載のモノシラン連続発生装置
10. The continuous monosilane generation device according to claim 7, wherein a cathode is provided at the center of the tenon of the molten salt tank, and an anode, a hydrogenation chamber, and a monosilane generation chamber are arranged opposite to the cathode on both sides.

発明の群細な説明 本発明はモノシランの改良された装造法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to an improved method for preparing monosilane.

モノシランガスは優れた半導体級シリコンの製造原料と
して、またICデバイスや、アモルフアス太陽電池のシ
リコン析出原料ガスとして賞用され、需要の増大が見込
まれている。
Monosilane gas is used as an excellent raw material for producing semiconductor-grade silicon, and as a raw material gas for silicon deposition in IC devices and amorphous solar cells, and demand is expected to increase.

従つて、安全で且つ安価なモノシランの製造方法の開発
が望まれている。モノシランには種々の製造方法がある
が、安価なモノシランを得るには副生物を生成しないリ
サイクルシステムが好ましく、このタイプの方法として
、特公昭39−3660号に開示されているごとく、水
素化リチウムと四塩化珪素の反応によりモノシランを発
生させる方法があげられる。
Therefore, it is desired to develop a method for producing monosilane that is safe and inexpensive. There are various manufacturing methods for monosilane, but in order to obtain inexpensive monosilane, a recycling system that does not produce by-products is preferable, and as a method of this type, lithium hydride is used as disclosed in Japanese Patent Publication No. 39-3660. One example is a method in which monosilane is generated by a reaction between silicon and silicon tetrachloride.

即ち、第1の工程として、塩化リチウムを含む溶融塩を
電解して塩素と金属リチウムを得、第2の工程として金
属リチウムを水素化して水素化リチウムとし溶融塩に溶
解させ、第3の工程として溶融塩に溶解した水素化リチ
ウムに四塩化珪素を反応させ、モノシランと塩イ旧ノチ
ウムを得る方法で、第1の工程で得られる塩素は原料粗
シリコンを塩化して四塩化珪素とし、第3工程に還流さ
せ、第3工程で発生する塩化リチウムは第1工程に於け
る塩化リチウムの消耗を補充することにより、製品とな
るシリコンおよび水素以外はリサイクル使用しモノシラ
ンを得る方法であり、これを実施する手段として、電解
室、水素化室、モノシラン発生室をそれぞれ独立して設
け、電解室と水素化室とはリチウム移送管および溶融塩
移送管により、水素化室とモノシラン発生室およびモノ
シラン発生室と電解室はそれぞれ溶融塩移送管により結
合することによつて、反応生成物を逐次次工程に移送す
るとともに、溶融塩を還流させ連続的にモノシランを得
ることが開示されている。然し乍ら、この方法において
は、腐蝕性の強い′物質を取り扱うので、装置の腐蝕に
よる故障が発生しやすく、また移送量や流れ制御、各室
の液面の適正位置の保持が難しく、溶融塩の組成の局部
変化による溶点の変化も起り易いなど困難な点が多い。
That is, in the first step, molten salt containing lithium chloride is electrolyzed to obtain chlorine and metallic lithium, in the second step, metallic lithium is hydrogenated to form lithium hydride and dissolved in the molten salt, and in the third step In this method, silicon tetrachloride is reacted with lithium hydride dissolved in a molten salt to obtain monosilane and chloride.The chlorine obtained in the first step is converted into silicon tetrachloride by chlorinating raw material crude silicon. This is a method to obtain monosilane by refluxing the lithium chloride in the 3rd step and replenishing the lithium chloride generated in the 3rd step to replenish the lithium chloride consumed in the 1st step. As a means of carrying out this process, an electrolysis chamber, a hydrogenation chamber, and a monosilane generation chamber are provided independently. It is disclosed that the generation chamber and the electrolytic chamber are connected to each other by a molten salt transfer pipe, so that the reaction products are sequentially transferred to the steps, and the molten salt is refluxed to continuously obtain monosilane. However, in this method, since highly corrosive substances are handled, failures due to equipment corrosion are likely to occur, and it is difficult to control the transfer amount and flow, and to maintain the proper position of the liquid level in each chamber, making it difficult to maintain the proper position of the liquid level in each chamber. There are many difficulties, such as the possibility of changes in the melting point due to local changes in the composition.

このことは、特開昭53−40000号に於ても各反応
の最適状態に比べ通常の上記運転状態は著しく悪く1つ
かまえどころがない゛と述べており、その結果、水素化
リチウムと四塩化珪素との反応を止むなくバツチ化した
方法を提示している。前記の欠点を解決するために、本
発明は塩化リチウムと塩化カリウムよりなる溶融塩を収
容する密閉された溶融塩槽内に塩化リチウムの電解部、
溶融金属リチウムの捕集移送部、水素化部、モノシラン
発生部を連結して設けることにより、電解によつて生成
した金属リチウムを水素化室に導き水素化し、溶融塩に
溶解させてモノシラン発生室に送り、吹き込まれた四塩
化珪素と反応させてモノシランを連続的に発生させる方
法およびその装置を提起するものである。
This is also reflected in JP-A No. 53-40000, which states that the normal operating conditions mentioned above are extremely poor compared to the optimal conditions for each reaction, and it is difficult to find one.As a result, lithium hydride and tetrachloride A method is presented in which the reaction with silicon is forced into batches. In order to solve the above-mentioned drawbacks, the present invention provides a lithium chloride electrolytic section in a sealed molten salt tank containing a molten salt consisting of lithium chloride and potassium chloride,
By connecting and providing a collection and transfer section for molten metallic lithium, a hydrogenation section, and a monosilane generation section, metallic lithium produced by electrolysis is guided to the hydrogenation chamber, hydrogenated, and dissolved in molten salt to form the monosilane generation chamber. The present invention proposes a method and an apparatus for continuously generating monosilane by reacting it with silicon tetrachloride that is sent to the reactor and blown into it.

本発明の方法によれば、(1)水素化室以外の各反応室
およびその連結部を適泥に保持し、(2)溶融塩の濃度
をほ〈均一に保ち、(3)複雑な形状を持つ各部の安全
性を高め、(4)各部の液面位置の制御を容易にし、そ
の結果、長期間連続して効率よくモノシランを発生させ
ることが可能になつた。以下、図面によつて本発明の詳
細を説明する。
According to the method of the present invention, (1) each reaction chamber other than the hydrogenation chamber and its connection parts are kept at an appropriate level of sludge, (2) the concentration of molten salt is kept almost uniform, and (3) complex shapes (4) It has become easier to control the liquid level position in each part, and as a result, it has become possible to continuously and efficiently generate monosilane over a long period of time. The details of the present invention will be explained below with reference to the drawings.

第1図は、本発明のモノシラン発生法を実施するため製
作されたモノシラン連続発生装置の一実施例について断
面構造を示したものである。塩化リチウムと塩化カリウ
ムのほゾ共晶組成からなる溶融塩1を収容したニツケル
製溶融塩槽2は蓋7によつて密閉され、加熱冷却装置3
により常に溶融塩温度を500℃以下好ましくは880
℃〜400℃に保持している。安全のため鉄製外槽4に
収めて加熱冷却装置3を内蔵する密閉二重構造となし、
ガスの導入・排出口5,6を設けて不活性ガスを導入す
るのが好ましく、該二重構造は不測の破損による事故を
防止出来る。蓋7には陰極13、陽極11、陽陰室17
、金属リチウム捕集移送装置18、水素化室19、吸入
管29、モノシラン発生室30など溶融塩槽2内に配置
されるすべての装置が直接または間接的に固定され、そ
れぞれ適切な深さまで溶融塩中に浸漬されている。蓋に
取付けられた前記各装置は必ずしも蓋に取付ける必要は
ないが容易に溶融塩から抜出すことが出来るので修理や
操業の開始・停止時の処理などに極めて便利である。ま
た蓋7に取付けられた陽極室17、水素化室19、吸入
管29。モノシラン発生室30などと密閉された溶融塩
槽とで形成された空間には蓋7に設けた導入口9より不
活性ガスを導入し一定陽圧に保ちつ\排出口10より排
出させる。かくすることにより、前記各室の腐蝕などに
よる破損のための漏洩が生じても直接外部に出ることな
く、漏洩ガスの蓄積混合による爆発も防止出来安全が保
持される。また、排出ガス中の混入ガスを測定すること
により、含水量や操業の異常、装置の破損による漏洩を
察知して操業を安全に制御することが可能となる。この
様に溶融塩槽内に前記各室を配置した構造をとることに
よつて例えば前記特公昭36−3990号に示された如
き各反応室を独立させ逐次軸送管で結合する方法に比べ
水素化室を除く各室の温度を均一化し制御し易くすると
共に、前記各室の液面変動に関して他への影響を緩やか
にすることが出来る。塩化リチウムを電解するためのカ
ーボン製陽極11およびニツケル製陰極13はそれぞれ
導電性保持棒12および14に結合され絶縁性取付具1
5により蓋7に取付けられ、電解用直流電源装置(図示
せず)に結線されている。陰極保持棒14は内部を水冷
し、溶融塩中に浸漬された部分を該溶融塩の凝固物16
で被覆させることによつて絶縁してある。陰極両極間に
塩化リチウムの電解に必要な電圧を印加すると、陽極で
は塩素が発生し、常時溶融塩中に没する部分を金網で構
成した陽極室17の上部の液面上空間に捕集され粗シリ
コンの塩化装置(図示せず)に導かれる。
FIG. 1 shows a cross-sectional structure of an embodiment of a continuous monosilane generation device manufactured to carry out the monosilane generation method of the present invention. A nickel-made molten salt tank 2 containing a molten salt 1 having a tenon-eutectic composition of lithium chloride and potassium chloride is sealed with a lid 7, and a heating/cooling device 3
Always keep the molten salt temperature below 500°C, preferably 880°C.
The temperature is maintained between ℃ and 400℃. For safety, it has a sealed double structure with a built-in heating and cooling device 3 housed in an iron outer tank 4.
It is preferable to introduce inert gas by providing gas inlet/outlet ports 5 and 6, and the double structure can prevent accidents due to unexpected breakage. The lid 7 has a cathode 13, an anode 11, and a positive and negative chamber 17.
All the devices arranged in the molten salt tank 2, such as the metal lithium collection and transfer device 18, the hydrogenation chamber 19, the suction pipe 29, and the monosilane generation chamber 30, are fixed directly or indirectly, and each device is melted to an appropriate depth. Soaked in salt. The above-mentioned devices attached to the lid do not necessarily need to be attached to the lid, but they can be easily extracted from the molten salt, making them extremely convenient for repairs and processing at the start and stop of operations. Also attached to the lid 7 are an anode chamber 17, a hydrogenation chamber 19, and a suction pipe 29. Inert gas is introduced into the space formed by the monosilane generating chamber 30 and the sealed molten salt tank through an inlet 9 provided in the lid 7, and is discharged through the exhaust port 10 while maintaining a constant positive pressure. By doing so, even if leakage occurs due to damage due to corrosion or the like in each of the chambers, it will not directly escape to the outside, and explosions due to accumulation and mixing of leaked gases can also be prevented, thereby maintaining safety. Furthermore, by measuring mixed gases in exhaust gas, it is possible to detect water content, operational abnormalities, and leaks due to equipment damage, and to safely control operations. By adopting a structure in which each of the chambers is arranged in a molten salt tank in this way, compared to the method of making each reaction chamber independent and sequentially connecting them with a shaft feed pipe as shown in the above-mentioned Japanese Patent Publication No. 36-3990, for example. The temperature of each chamber except the hydrogenation chamber can be made uniform and easily controlled, and the influence of fluctuations in the liquid level in each chamber on other chambers can be reduced. A carbon anode 11 and a nickel cathode 13 for electrolyzing lithium chloride are connected to conductive holding rods 12 and 14, respectively, and are attached to an insulating fixture 1.
5 to the lid 7, and is connected to a DC power source for electrolysis (not shown). The inside of the cathode holding rod 14 is water-cooled, and the part immersed in the molten salt is a solidified product 16 of the molten salt.
It is insulated by covering it with When a voltage necessary for electrolysis of lithium chloride is applied between the cathode and the anode, chlorine is generated at the anode, and is collected in the space above the liquid level in the anode chamber 17, which consists of a wire mesh in the part that is constantly submerged in the molten salt. The crude silicon is introduced into a chlorination apparatus (not shown).

一方陰極では溶融金属リチウムが析出し、析出量が増加
すると陰極面に沿つて上縁に集り陰極の尖端部から粒状
になつて分離し浮上する。浮上したリチウム粒は陰極上
の捕集移送器18によつて捕集され浮力によつて水素化
室19に移送され、該水素化室の中で捕集移送器18の
末端から出て該末端部内径の少くとも5倍の内径を有し
該末端の直上部に下向に設けられた受皿20に入る。受
皿にリチウムが溜ると該末端部はリチウムによつて閉じ
られるが、水素化室の圧力が該室外(溶融塩槽)より高
い場合、捕集移送器′18の末端部にもリチウムが溜り
、リチウムの浮力がこの圧力差と平衡するので、水素化
室から捕集移送装置を経て溶融塩が陰極側へ逆流するの
を防止する。
On the other hand, molten metal lithium precipitates at the cathode, and as the amount of precipitate increases, it gathers at the upper edge along the cathode surface, separates from the tip of the cathode in the form of particles, and floats up. The floating lithium particles are collected by the trapping transfer device 18 on the cathode and transferred to the hydrogenation chamber 19 by buoyancy, and exit from the end of the trapping transfer device 18 in the hydrogenation chamber to the terminal. It enters a saucer 20, which has an inner diameter at least five times the inner diameter of the distal end and is provided downwardly just above the distal end. When lithium accumulates in the receiving tray, the terminal end is closed by lithium, but if the pressure inside the hydrogenation chamber is higher than that outside the chamber (molten salt tank), lithium also accumulates at the terminal end of the collecting and transferring device '18. The buoyancy of the lithium balances this pressure difference and prevents the molten salt from flowing back from the hydrogenation chamber to the cathode side through the collection and transfer device.

水素化室19はリチウムの水素化反応を促進するため、
水素化室の外周に不活性ガスを導入したヒータ室21を
設け、溶融塩上部を500〜550℃に保持する。
The hydrogenation chamber 19 promotes the hydrogenation reaction of lithium.
A heater chamber 21 into which an inert gas is introduced is provided around the outer periphery of the hydrogenation chamber, and the upper part of the molten salt is maintained at 500 to 550°C.

水素は吹込管23より液間下に吹込み、攪拌作用により
水素化および水素化リチウムの溶融塩への溶解を促進す
る。かくして水素化室に移送されたリチウムは水素化リ
チウムとなり溶融塩に溶解し下方に拡散する。水素化室
の下方には側管が設けられ、側管27により吸入管29
と、また側管28によりモノシラン発生室30と連結さ
れている。吸入管29は溶融塩を吸い込み水素化室に送
り込むと同時に水素化室に於て水素化リチウムを溶解し
た溶融塩をモノシラン発生室に送り込むための装置で、
下方が溶融塩槽2に開放された管状体と側管27より深
く挿入されたガスの吹込管35とからなり、溶融塩を水
素化室へ送り込む作用力は吹込管35より不活性ガスを
吹込むことによつて与えられ、ガス流量によつて制御さ
れる。
Hydrogen is blown into the space below the liquid through the blowing pipe 23, and the stirring action promotes hydrogenation and dissolution of lithium hydride into the molten salt. The lithium thus transferred to the hydrogenation chamber becomes lithium hydride, dissolves in the molten salt, and diffuses downward. A side pipe is provided below the hydrogenation chamber, and a suction pipe 29 is connected to the side pipe 27.
It is also connected to a monosilane generation chamber 30 by a side pipe 28. The suction pipe 29 is a device for sucking the molten salt and sending it into the hydrogenation chamber, and at the same time sending the molten salt in which lithium hydride is dissolved in the hydrogenation chamber to the monosilane generation chamber.
It consists of a tubular body whose lower part is open to the molten salt tank 2 and a gas blowing pipe 35 inserted deeper than the side pipe 27. controlled by the gas flow rate.

モノシラン発生室30はほゾ対称形状をもつ二つの反応
管31,32を下方で結合したU字型の装置で、該反応
管にはそれぞれ四塩化珪素の吹込管36,37を底近く
まで挿入して取付けてある。
The monosilane generation chamber 30 is a U-shaped device in which two reaction tubes 31 and 32 having a symmetrical shape are connected at the bottom, and silicon tetrachloride blowing tubes 36 and 37 are respectively inserted into the reaction tubes close to the bottom. It has been installed.

反応管31は水素化室の側管28と結合され反応管32
の側管34は溶融塩槽2内に開放されている。二つの反
応管31,32は対称形であるためそれぞれの吹込管3
6,37より吹込む四塩化珪素の流量を等しくすれば、
吹込みにより生じた溶融塩を移送する作用力は抵抗する
。従つて溶融塩の移送は、吸入管への不活性ガスの吹込
みのみで行われるため、該不活性ガスの流量によつて四
塩化珪素の吹込量に影響されることなく溶融塩の流速を
容易に制御することが出来る。また水素化室内の圧力を
溶融塩槽2より高く保つことが出来る。従つてまた陽極
効果による電解電流の低下を防止するため水素化リチウ
ムを溶融塩槽内に少量づつ添加する方法を単に水素化室
の下方に小さな孔を設けるだけで実施することが可能と
なつた。モノシラン発生室に吹込んだ四塩化珪素と溶融
塩中の水素化リチウムとの反応によりモノシランと塩化
リチウムが生成する。モノシランは過剰の四塩化珪素と
共に反応管の液面上に捕集され冷却器(図示せず)で四
塩化珪素を分離された後、精製装置(図示せず)に送ら
れる。また分離された四塩化珪素はリサイクル作用され
る。一方モノシラン発生室内で生成した塩化リチウムは
該モノシラン発生室内を移送される溶融塩の塩化リチウ
ム濃度を高める。溶融塩の泥度は生成するモノシラン分
解損失を少くし、収率を高めるため極力低くすることが
好ましい。
The reaction tube 31 is connected to the side tube 28 of the hydrogenation chamber, and the reaction tube 32 is connected to the side tube 28 of the hydrogenation chamber.
The side pipe 34 is open into the molten salt tank 2. Since the two reaction tubes 31 and 32 are symmetrical, each blowing tube 3
If the flow rates of silicon tetrachloride blown from 6 and 37 are made equal,
The forces that transport the molten salt produced by the blowing are resisted. Therefore, the molten salt is transferred only by blowing inert gas into the suction pipe, so the flow rate of the molten salt can be controlled by the flow rate of the inert gas without being affected by the amount of silicon tetrachloride blown into the suction pipe. Can be easily controlled. Further, the pressure inside the hydrogenation chamber can be maintained higher than that in the molten salt tank 2. Therefore, in order to prevent the electrolytic current from decreasing due to the anode effect, it became possible to add lithium hydride little by little into the molten salt tank by simply providing a small hole at the bottom of the hydrogenation chamber. . Monosilane and lithium chloride are generated by the reaction between silicon tetrachloride blown into the monosilane generation chamber and lithium hydride in the molten salt. Monosilane is collected on the liquid surface of the reaction tube together with excess silicon tetrachloride, and after the silicon tetrachloride is separated in a cooler (not shown), it is sent to a purification device (not shown). Separated silicon tetrachloride is also recycled. On the other hand, the lithium chloride generated in the monosilane generation chamber increases the lithium chloride concentration of the molten salt transferred into the monosilane generation chamber. It is preferable that the mudness of the molten salt be as low as possible in order to reduce the decomposition loss of the monosilane produced and to increase the yield.

塩化リチウムと塩化カリウムは共晶を作り共晶組成で最
低融点(352゜C)を示すが共晶点からのずれにより
融点は約8゜C/MOl%上昇する。従つて低泥で安定
した操業を行うには、組成の極部的変化を極力少くして
凝固が起らないよう工夫する必要がある。そのため吸入
管の入口とモノシラン発生室からの出口即ち側管34と
はなるべく塩化リチウムの濃度が低下する電解電極に近
づけて配置することが望ましいし、かくすることにより
モノシラン発生管での塩化リチウムの過度の濃度上昇と
電極近傍での過度の濃度低下を防止出来る。更にまた第
1図の装置では蓋7に陽極室、吸入管、水素化室、各反
応室が取付けられていて、取付部のシール材や絶縁材な
どを保護するため冷却が行われている。
Lithium chloride and potassium chloride form a eutectic, and the eutectic composition shows the lowest melting point (352°C), but the deviation from the eutectic point increases the melting point by about 8°C/MOl%. Therefore, in order to perform stable operation with low mud, it is necessary to minimize local changes in composition to prevent solidification. Therefore, it is desirable to arrange the inlet of the suction pipe and the outlet from the monosilane generating chamber, that is, the side pipe 34, as close to the electrolytic electrode where the concentration of lithium chloride is reduced. It is possible to prevent excessive concentration increases and excessive concentration decreases near the electrodes. Furthermore, in the apparatus shown in FIG. 1, the anode chamber, the suction pipe, the hydrogenation chamber, and each reaction chamber are attached to the lid 7, and cooling is performed to protect the sealing material, insulating material, etc. of the attachment parts.

従つて加熱されている水素化室を除く陽極室、吸入管、
各反応室の壁温は溶融塩槽2の液面より上では急激に低
くなつているので、これら各室および吸入管内の液面が
外側の溶融塩槽2の液面より高くなると溶融塩の凝固や
ミストの付着により閉塞事故が頻発したが、逆に溶融塩
槽の液面より低くなるよう圧力を調整し操業することに
よつて解決出来た。以上詳細に説明したように本発明の
方法によれば(1)水素化室以外の陽極室、吸入管、各
反応室およびその連結部を適温に均熱して保持し、(2
)溶融塩の濃度をほ〈一定に保ち、(3)複雑な形状を
もつ各部の安全性を高め、(4)各部の溶融塩液面およ
びガス吹込量の調整を容易にし、(5)不測の破損が生
じても早期に発見出来ると同時に安全を維持出来るよう
にした。
Therefore, the anode chamber, suction pipe, excluding the heated hydrogenation chamber,
The wall temperature of each reaction chamber drops rapidly above the liquid level in the molten salt tank 2, so if the liquid level in each of these chambers and the suction pipe becomes higher than the liquid level in the molten salt tank 2 outside, the molten salt Blockage accidents frequently occurred due to solidification and adhesion of mist, but this was resolved by adjusting the pressure so that it was lower than the liquid level in the molten salt tank. As explained in detail above, according to the method of the present invention, (1) the anode chamber other than the hydrogenation chamber, the suction pipe, each reaction chamber, and their connecting parts are uniformly heated and maintained at an appropriate temperature;
) Keep the concentration of molten salt almost constant, (3) Improve the safety of each part with a complex shape, (4) Make it easy to adjust the molten salt liquid level and gas injection amount in each part, and (5) Prevent unexpected Even if damage occurs, it can be detected early and safety can be maintained at the same time.

その結果、長期間効率よくモノシランを連続発生させる
ことが可能になつた。
As a result, it has become possible to continuously generate monosilane efficiently over a long period of time.

実施例 1 溶融塩に浸漬している部分の装置は陽極以外全て純ニツ
ケルを使用した。
Example 1 Pure nickel was used for all parts of the device that were immersed in molten salt except for the anode.

使用した塩化リチウムと塩化カリウムの溶融塩は塩化カ
リウムの60モル%近傍を選んだ。4001容積の溶融
塩槽に溶融塩を約450kg入瓢330゜C〜40『C
の温度に保持した。
The molten salt of lithium chloride and potassium chloride used was selected to be around 60 mol% of potassium chloride. Approximately 450 kg of molten salt is placed in a 4001 volume molten salt tank at 330°C to 40'C.
The temperature was maintained at .

反応に先立ち溶融塩の脱水を不活性ガスの吹き込みおよ
び低電圧の電解により実施した、陽極は無定形炭素質を
多量に含有するグラフアイトを使用した。各反応室の淵
度は水素化室以外溶融塩槽の温度と同一であり水素化室
は500℃とした。陰陽極に5.5ボルトの平滑直流を
接続し150時間塩化リチウムの電解、溶融金属リチウ
ムの水素化、四塩化珪素の生成、モノシランの発生等の
反応を実施した。電解の電流値はほ〈1000アンヘア
ーであつた。得られたモノシランの生成量は平均して毎
分2.51であつた。電解中陽極効果と思われる電流値
の大巾な低下が観察された。実施例 2実施例1と同様
の実験に於て、電流値の低下時密閉された溶融塩槽内に
数グラムの水素化リチウムを投入し電解電圧を1ボルト
に下げて電気分解を行つた。
Prior to the reaction, the molten salt was dehydrated by blowing inert gas and low voltage electrolysis. The anode used was graphite containing a large amount of amorphous carbon. The temperature of each reaction chamber was the same as that of the molten salt tank except for the hydrogenation chamber, and the hydrogenation chamber was set at 500°C. A smooth direct current of 5.5 volts was connected to the cathode and anode, and reactions such as electrolysis of lithium chloride, hydrogenation of molten metal lithium, generation of silicon tetrachloride, and generation of monosilane were carried out for 150 hours. The electrolytic current value was approximately 1,000 Anghers. The average production rate of monosilane was 2.51 per minute. During electrolysis, a large decrease in current value was observed, which was thought to be due to the anode effect. Example 2 In an experiment similar to Example 1, several grams of lithium hydride was introduced into a sealed molten salt tank when the current value decreased, and electrolysis was carried out by lowering the electrolytic voltage to 1 volt.

数分後、電流が低下したことを確認してから再び5.5
ボルトに電圧を上げた所、電流値は当初の1000アン
ヘアーに回復しモノシランの生成量もほぼ毎分2.51
が得られた。実施例 3 実施例1と同様の実験に於て陽極効果を防ぐため水素化
室の下部に内径3龍のパイプを接続し、溶融塩を移動さ
せるガスの吹き込み量を調節することにより、水素化リ
チウムを溶解した溶融塩の小量を該パイプから溶融塩槽
に連続的に放出させた。
After a few minutes, check that the current has dropped and then turn it back on to 5.5.
When the voltage was increased to volts, the current value returned to its original value of 1000 amps, and the amount of monosilane produced was also approximately 2.51 per minute.
was gotten. Example 3 In an experiment similar to Example 1, a pipe with an inner diameter of 3 mm was connected to the bottom of the hydrogenation chamber to prevent the anode effect, and hydrogenation was carried out by adjusting the amount of gas blown to move the molten salt. A small amount of molten salt containing dissolved lithium was continuously discharged from the pipe into the molten salt bath.

その放出量は全水素化リチウムの1パーセント以下にな
る様調節し陽極における塩化水素の大量生成を防いだ。
実施例1とほぼ同一の時間モノシランの生成を持続した
が陽極効果は観察されなかつた。又モノシランの生成量
は毎分2.51が保証された。実施例 4 前記実施例において電解部近傍の純ニツケル装置の一部
に電蝕が観察された。
The amount released was controlled to be less than 1% of the total lithium hydride to prevent large amounts of hydrogen chloride from being generated at the anode.
Production of monosilane was continued for approximately the same time as in Example 1, but no anode effect was observed. Furthermore, the production amount of monosilane was guaranteed to be 2.51 per minute. Example 4 In the above example, electrolytic corrosion was observed in a part of the pure nickel device near the electrolytic part.

特に陰極に接近した部分の電蝕の程度が大きい傾向にあ
り、電解電圧を高くした場合も電蝕の程度が進む傾向に
あつた。電蝕を防止するため純ニツケル装置部と陰極部
とを約100オームの抵抗器を介して電気的に接続し純
ニツケル装置の電蝕を試験した。陰陽極間に1000ア
ンヘアーの電流が流れた時該約100オームの抵抗器部
の電流値は0.1アンヘアーを示した。長時間モノシラ
ン発生を行なつた後、電蝕の有無を検査した結果、ほと
んど電蝕されていない事を確認した。実施例 5 実施例1と同様の実験に於て溶融塩槽に導入した不活性
ガスの1部を自動ガス採取装置により分取しガスクロマ
トグラフに導入したところ正常な運転時には約100p
pmの塩素が検出された。
Particularly, the degree of electrolytic corrosion tended to be large in areas close to the cathode, and the degree of electrolytic corrosion also tended to increase when the electrolytic voltage was increased. In order to prevent electrolytic corrosion, the pure nickel device was electrically connected to the cathode through a resistor of about 100 ohms, and the pure nickel device was tested for electrolytic corrosion. When a current of 1000 amps flowed between the cathode and anode, the current value of the approximately 100 ohm resistor section was 0.1 amps. After generating monosilane for a long time, we inspected the product for the presence of electrolytic corrosion and found that there was almost no electrolytic corrosion. Example 5 In an experiment similar to Example 1, a portion of the inert gas introduced into the molten salt tank was fractionated using an automatic gas sampling device and introduced into a gas chromatograph. During normal operation, approximately 100p was collected.
PM chlorine was detected.

シラン発生部に吹き込む四塩化ケイ素の流量バランスが
大巾にくずれた場合該ガスクロマトグラフに四塩化ケイ
素が検出され、流量バランスを正常に戻すと検出されな
くなつた。ガスクロマトグラフと併行して該不活性ガス
の露点を連続的に測定したところ通常時は−80℃以下
であつた。冷却水ジヤケツトのピンホールから微量の水
が漏洩した場合該露点が急激に上昇したため運転を停止
し安全を確保した。実施例 6 実施例1と同様の実験に於て、溶融塩構内に配置された
ガスの吹込みあるいは発生の行なわれる装置内の液面を
外側の溶融塩液面とすべて同一にした場合、水素化室を
除く上記装置内の液面近傍の壁面に溶融塩が固化した。
When the flow rate balance of silicon tetrachloride blown into the silane generating section was significantly disrupted, silicon tetrachloride was detected on the gas chromatograph, but when the flow rate balance was restored to normal, it was no longer detected. When the dew point of the inert gas was continuously measured in conjunction with a gas chromatograph, it was normally -80°C or lower. When a small amount of water leaked from a pinhole in the cooling water jacket, the dew point rose rapidly, so operation was stopped to ensure safety. Example 6 In an experiment similar to Example 1, when the liquid level in the device where gas is blown or generated inside the molten salt plant was made to be the same as the molten salt liquid level outside, hydrogen The molten salt solidified on the walls near the liquid level in the above apparatus except for the oxidation chamber.

特にシラン発生室と吸入管の液面の固化が著しかつた。
水素化室を除く上記装置内の液面の外側の溶融塩液面よ
り5C7n下にすることによつて固化を防ぐことができ
た。さらにはシラン発生室および吸入管の液面近傍にお
ける直径を太くすることによつてシラン発生室および吸
入管の液面変動5CTn以内で液面の固化を防ぐことが
出来た。実施例 7 第1図に示した装置の改良型として溶融塩槽のほぼ中央
部に陰極を設け該陰極の両側に対向するl場極、水素化
室、モノシラン発生室、吸入管を配置したモノシラン連
続発生装置を作製した。
In particular, the solidification of the liquid level in the silane generation chamber and suction pipe was significant.
Solidification could be prevented by lowering the liquid level in the above apparatus, excluding the hydrogenation chamber, to 5C7n below the outside molten salt liquid level. Furthermore, by increasing the diameter of the silane generation chamber and suction pipe near the liquid level, it was possible to prevent the liquid level from solidifying within a range of 5 CTn of liquid level fluctuation in the silane generation chamber and suction pipe. Example 7 As an improved version of the apparatus shown in FIG. 1, a cathode was provided approximately in the center of the molten salt tank, and on both sides of the cathode were placed field electrodes, a hydrogenation chamber, a monosilane generation chamber, and a suction pipe. A continuous generator was constructed.

該装置を用いて電解電流値を除く他のすべての条件を実
施例1と同一にして実験したところ電解電流値2000
アンヘアーに対して得られたモノシランの生成量は平均
して毎分52であつた。
When an experiment was conducted using this device under all other conditions except for the electrolytic current value as in Example 1, the electrolytic current value was 2000.
The average production of monosilane obtained for Anhair was 52/min.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願発明に係る装置の縦断面図である。 1:溶融塩、2:溶融塩槽、3:加熱冷却装置、5:ガ
ス導入口、6:ガス排出口、7:蓋、11:陽極、13
:陰極、17:陽極室、18:金属リチウム捕集移送器
、19:水素化室、29:吸入管、30:モノシラン発
生室。
FIG. 1 is a longitudinal sectional view of the device according to the present invention. 1: Molten salt, 2: Molten salt tank, 3: Heating/cooling device, 5: Gas inlet, 6: Gas outlet, 7: Lid, 11: Anode, 13
: cathode, 17: anode chamber, 18: metal lithium collection and transfer device, 19: hydrogenation chamber, 29: suction pipe, 30: monosilane generation chamber.

Claims (1)

【特許請求の範囲】 1 塩化リチウムの電解により得られた金属リチウムを
水素化して水素化リチウムとし、該水素化リチウムに四
塩化珪素を反応させてモノシランを製造する方法におい
て、塩化リチウムと塩化カリウムの溶融塩が収容され、
電極およびそれぞれ溶融塩中で連通している吸入管、水
素化室、モノシラン発生室が設けられ、かつ溶融塩の液
面上に空間を有する密閉された溶融塩槽内で、電解によ
り金属リチウムを生成させ、該金属リチウムを捕集して
溶融塩槽の温度よりも高い所定温度に維持されている水
素化室に移送して水素化し、生成した水素化リチウムを
該水素化室において溶融塩に溶解させ、ついで水素化リ
チウムが溶解した溶融塩をモノシラン発生室に送り該モ
ノシラン発生室内で四塩化珪素と反応せしめることを特
徴とするモノシラン連続発生方法。 2 水素化リチウムを溶解した溶融塩の一部を水素化室
から直接溶融塩槽内に放出する特許請求の範囲第1項記
載の方法。 3 水素化リチウムを溶解した溶融塩を、吸入管および
モノシラン発生室の液面下にそれぞれ不活性ガスおよび
四塩化珪素ガスを吹き込むことにより、水素化室からモ
ノシラン発生室を経て溶融塩槽に還流させる特許請求の
範囲第1項記載の方法。 4 溶融塩槽およびその中に配置された金属リチウム捕
集器、水素化室、モノシラン発生室などの金属製装置を
、反応中連続して陰極と該金属製装置とを直流電圧回路
又は電気抵抗体を介して接続することにより陰極の電位
に対し正電位に保持する特許請求の範囲第1項記載の方
法。 5 溶融塩槽の液面上の密閉空間に不活性ガスを導入し
、排出される該不活性ガス中に含まれる反応ガス濃度を
測定して反応を制御する特許請求の範囲第1項記載の方
法。 6 溶融塩槽内に配置された加熱機構を持たず且つガス
の吹込みおよび又は発生の行なわれる装置内の液面を外
側の溶融塩液面より低位に保持する前記特許請求の範囲
第1項記載の方法。 7 塩化リチウムと塩化カリウムの溶融塩を収容した溶
融塩槽内に、塩化リチウムの電解部、溶融金属リチウム
の捕集移送部、水素化部、モノシラン発生部を連結して
設けたモノシラン連続発生装置。 8 塩化リチウム、塩化カリウムの溶融塩を収容する溶
融塩槽が加熱器および冷却器を内蔵した容器内に収めら
れ、その間に不活性ガスを導入、排出し得る密閉二重構
造とした特許請求の範囲第7項記載の装置。 9 塩化リチウムの電解部、溶融金属リチウムの捕集移
送部、水素化部、モノシラン発生部のすべてが溶融塩槽
の蓋に取り付けられ、且つ溶融塩に浸漬されている特許
請求の範囲第7項記載の装置。 10 溶融塩槽のほゞ中央部に陰極を設け、該陰極の両
側に対向する陽極、水素化室、モノシラン発生室を配置
した特許請求の範囲第7項記載のモノシラン連続発生装
置。
[Claims] 1. A method for producing monosilane by hydrogenating metallic lithium obtained by electrolysis of lithium chloride to produce lithium hydride, and reacting the lithium hydride with silicon tetrachloride, the method comprising: lithium chloride and potassium chloride; of molten salt is accommodated,
Metallic lithium is produced by electrolysis in a sealed molten salt tank that is equipped with an electrode, a suction pipe that communicates with the molten salt, a hydrogenation chamber, and a monosilane generation chamber, and has a space above the surface of the molten salt. The generated lithium metal is collected and transferred to a hydrogenation chamber maintained at a predetermined temperature higher than the temperature of the molten salt tank for hydrogenation, and the generated lithium hydride is converted into molten salt in the hydrogenation chamber. A method for continuously generating monosilane, which comprises dissolving lithium hydride, and then sending the molten salt in which lithium hydride is dissolved to a monosilane generating chamber to react with silicon tetrachloride in the monosilane generating chamber. 2. The method according to claim 1, wherein a part of the molten salt in which lithium hydride is dissolved is discharged directly from the hydrogenation chamber into the molten salt tank. 3 The molten salt in which lithium hydride is dissolved is refluxed from the hydrogenation chamber to the monosilane generation chamber and into the molten salt tank by blowing inert gas and silicon tetrachloride gas below the liquid level in the suction pipe and monosilane generation chamber, respectively. The method according to claim 1, wherein 4. During the reaction, the molten salt tank and metal devices such as the metal lithium collector, hydrogenation chamber, and monosilane generation chamber placed therein are continuously connected to the cathode and the metal devices by a DC voltage circuit or electric resistance. 2. The method according to claim 1, wherein the potential is maintained at a positive potential with respect to the potential of the cathode by connecting through the body. 5. The method according to claim 1, wherein an inert gas is introduced into the closed space above the liquid level of the molten salt tank, and the reaction is controlled by measuring the concentration of the reactant gas contained in the discharged inert gas. Method. 6. Claim 1, which does not have a heating mechanism disposed in the molten salt tank and maintains the liquid level in the device where gas is blown and/or generated at a lower level than the molten salt liquid level outside. Method described. 7 A continuous monosilane generation device in which a lithium chloride electrolysis section, a molten metal lithium collection and transfer section, a hydrogenation section, and a monosilane generation section are connected in a molten salt tank containing molten salts of lithium chloride and potassium chloride. . 8 A patent claim in which a molten salt tank containing molten salts of lithium chloride and potassium chloride is housed in a container with a built-in heater and cooler, and has a sealed double structure between which an inert gas can be introduced and discharged. The device according to scope item 7. 9. Claim 7, in which the lithium chloride electrolysis section, the molten metal lithium collection and transfer section, the hydrogenation section, and the monosilane generation section are all attached to the lid of the molten salt tank and immersed in the molten salt. The device described. 10. The continuous monosilane generation device according to claim 7, wherein a cathode is provided substantially in the center of the molten salt tank, and an anode, a hydrogenation chamber, and a monosilane generation chamber are arranged facing each other on both sides of the cathode.
JP7278980A 1980-06-02 1980-06-02 Monosilane continuous generation method and device Expired JPS591211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7278980A JPS591211B2 (en) 1980-06-02 1980-06-02 Monosilane continuous generation method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7278980A JPS591211B2 (en) 1980-06-02 1980-06-02 Monosilane continuous generation method and device

Publications (2)

Publication Number Publication Date
JPS56169120A JPS56169120A (en) 1981-12-25
JPS591211B2 true JPS591211B2 (en) 1984-01-11

Family

ID=13499501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7278980A Expired JPS591211B2 (en) 1980-06-02 1980-06-02 Monosilane continuous generation method and device

Country Status (1)

Country Link
JP (1) JPS591211B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2533906A1 (en) * 1982-09-30 1984-04-06 Rhone Poulenc Spec Chim PROCESS AND DEVICE FOR THE PREPARATION OF PURE SILANE BY REACTION OF CHLOROSILANES WITH LITHIUM HYDRIDE

Also Published As

Publication number Publication date
JPS56169120A (en) 1981-12-25

Similar Documents

Publication Publication Date Title
EP0162155B1 (en) Production of titanium metal sponge and apparatus therefor
US3361653A (en) Organic electrolytic reactions
US2193323A (en) Manufacture of hyposulphites
KR20020003867A (en) Device and method for producing molten salts and use thereof
US3453187A (en) Apparatus and process for reduction of hydrogen chloride
US3163590A (en) Hydrogenation of groups iii, iv and v elements
FR2494726A1 (en) IMPROVED PROCESS FOR THE PREPARATION OF TITANIUM BY ELECTROLYSIS
CN214458357U (en) Novel electrolytic tank for hydrogen fluoride electrolysis
JPH02296701A (en) Production of halogen
JPS591211B2 (en) Monosilane continuous generation method and device
US20080053837A1 (en) Electrolysis Device For The Production Of Alkali Metal
US3192138A (en) Process for the production of hydrides and/or halogenated hydrides of the elements boron and silicon
US2180668A (en) Process for the electrolytic prep
US3464900A (en) Production of aluminum and aluminum alloys from aluminum chloride
US1926837A (en) Electrolytic reduction of organic nitro compounds
JP2007217786A (en) Electrolyzer
JPS60149792A (en) Electrolytic manufacture of alkali metal chromate
JPH01152226A (en) Manufacture of metallic lithium
US3079324A (en) Apparatus for production of uranium
CN211848159U (en) Feeding device of nitrogen trifluoride electrolytic cell
US20090127125A1 (en) Method for the purification of a semiconductor material by application of an oxidation-reduction reaction
US3262871A (en) Preparation of phosphine
Argo et al. The electrolytic production of fluorine
JP2006274340A (en) METHOD FOR PRODUCING Ti OR Ti ALLOY
US3006824A (en) Production of metals by electrolysis