JPS59120975A - Phased array radar device - Google Patents

Phased array radar device

Info

Publication number
JPS59120975A
JPS59120975A JP57229756A JP22975682A JPS59120975A JP S59120975 A JPS59120975 A JP S59120975A JP 57229756 A JP57229756 A JP 57229756A JP 22975682 A JP22975682 A JP 22975682A JP S59120975 A JPS59120975 A JP S59120975A
Authority
JP
Japan
Prior art keywords
difference
phase
signal
sum signal
sum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57229756A
Other languages
Japanese (ja)
Inventor
Haruo Akagi
赤木 治生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57229756A priority Critical patent/JPS59120975A/en
Publication of JPS59120975A publication Critical patent/JPS59120975A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4017Means for monitoring or calibrating of parts of a radar system of HF systems

Abstract

PURPOSE:To improve the precision of angle measurement, by adding a phase difference based on the difference of transmission line length between a sum signal channel and a difference signal channel to an error signal of a phase balancing circuit as an offset quantity from a pilot pulse charging terminal. CONSTITUTION:A phase balancing circuit 170 consists of a phase difference detector 131, an IF phase shifter 132, and an offset adder 133. The phase balancing circuit 170 outputs the phase difference between a sum signal and a difference signal as an error signal E from the phase difference detector 131. A voltage value corresponding to the phase difference based on the difference of length between transmission lines 6 and 7 is added to the error signal E by the offset adder 133, and this signal E is transmitted to the IF phase shifter 132, and the difference signal has the phase shifted in consideration of the phase difference based on the difference of length between transmission lines, and thus, phase balancing between the sum signal channel and the difference signal channel after a synthesizer 5 and succeeding circuits is kept.

Description

【発明の詳細な説明】 この発明は、フェーズド・アレイ・レーダー装置の測角
精度の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improving the angle measurement accuracy of a phased array radar device.

従来この種の装置として第1図に示すものがあった。図
において、(1)と(2)はアレイ・アンテナ、(3)
と(4)はRF移相器、(5)は合成器、(6)は和チ
ャンネルの伝送線路、(7)は差チャンネルの伝送線路
、(8)は軍刀分配器、(9)と00)は方向性結合器
、(IJ)はノクイロット パルス発生器、(100)
は受信機であり、該受信機(100)は、混合器(11
0)、 (120)、位相平衡回路(130)、振幅検
出器(140)、(150)、位相差符号検出器(16
0)により構成される。又、上記位相平衡回路(130
)は−位相差検出器(13i)とIF移相器(132)
とにより構成される。
A conventional device of this type is shown in FIG. In the figure, (1) and (2) are array antennas, (3)
and (4) are RF phase shifters, (5) are combiners, (6) are sum channel transmission lines, (7) are difference channel transmission lines, (8) are gunto dividers, (9) and 00 ) is a directional coupler, (IJ) is a Noquilot pulse generator, (100)
is a receiver, and the receiver (100) includes a mixer (11
0), (120), phase balance circuit (130), amplitude detector (140), (150), phase difference code detector (16
0). In addition, the phase balance circuit (130
) is - phase difference detector (13i) and IF phase shifter (132)
It is composed of

第2図と第3図は第1図の装置の動作説明図であり、こ
れらを用いて動作と説明する。第1図は説明の便宜上ア
レイ・アンテナが2個の場合について示しである。到来
した電波(図示せず)はアレイ・アンテナ(11、(2
1でそれぞれ受信され、RF移相器[31、+41で所
要の移相量をそれぞれ与えて合成器(5)で合成し、和
信号と差信号とを出力する。
2 and 3 are explanatory diagrams of the operation of the apparatus shown in FIG. 1, and the operation will be explained using these figures. For convenience of explanation, FIG. 1 shows a case where there are two array antennas. The arriving radio waves (not shown) are sent to array antennas (11, (2)
1, the RF phase shifters [31 and +41 give required phase shift amounts, respectively, and the synthesizer (5) synthesizes the signals to output a sum signal and a difference signal.

ここで、合成器(5)の出力における和信号と差信号の
振幅特性(和パターンと差パターン)は、第2図(a)
の実線−破線のように、位相差特性は第2図(b)′の
ようになること、及びこれらの特性が所望の方向(第2
図では仰角方向としである)にビーム・ノーズが形成さ
れるような特性となるようにkF移相器(31、+41
がそれぞれ設定されることは周知の事柄である。このよ
うにして得られた和信号と差信号は伝送線路(61、(
7+により方向性結合器(9)。
Here, the amplitude characteristics (sum pattern and difference pattern) of the sum signal and difference signal at the output of the synthesizer (5) are shown in Fig. 2(a).
As shown by the solid line-dashed line, the phase difference characteristics will be as shown in Figure 2(b)', and these characteristics will be in the desired direction (second direction).
The kF phase shifter (31, +41
It is a well-known fact that each of these is set. The sum signal and difference signal obtained in this way are transmitted through the transmission line (61, (
Directional coupler (9) by 7+.

001にそれぞれ導ひかれる。方向性結合器+91 、
 (101では、上記和信号、差信号に、パイロットパ
ルス発生器01)から発生され電力分配器(8)で分配
されたパイロット・パルスPがそれぞれ結合され、これ
らは受信機(100)へ出力される。
001 respectively. Directional coupler +91,
(In 101, the pilot pulse P generated from the pilot pulse generator 01) and distributed by the power divider (8) is combined with the sum signal and the difference signal, respectively, and these are output to the receiver (100). Ru.

ここで、上記パイロット・パルスPは第3図(a)に示
すようにRFパルスであり、和信号チャンネルと差信号
チャンネルとに同レベル、同位相で注入されるように考
慮されており、又、注入する時間帯は一般的にレーダー
休止時間帯【である。
Here, the pilot pulse P is an RF pulse as shown in FIG. 3(a), and is designed to be injected at the same level and phase into the sum signal channel and the difference signal channel, and , the time of injection is generally during radar downtime.

次に受信機flop)では、上記方向性結合器(9)。Next, in the receiver flop), the directional coupler (9).

tlolからの信号を沖合器(1,10)、 (120
)によりそれぞれ局部発振信号(図示せず)と混合して
IF倍信号周波数変換し、位相平衡回路(130’)で
和信号と差信号との位相平衡を保つようにパイロット・
7NllルスPを用いて自動制御する。
The signal from tlol is sent to offshore equipment (1,10), (120
) are mixed with local oscillation signals (not shown) to perform IF times signal frequency conversion, and a phase balance circuit (130') mixes the pilot signal with a local oscillation signal (not shown) to maintain phase balance between the sum signal and the difference signal.
Automatically controlled using 7NllusP.

第3図を用いて位相平衡回路(130)の動作を更に詳
しく説明する。レーダー休止時間帯(に同レベル、同位
相で注入された第3図(a)に示すパイロット・パルス
Pを用いて、位相差検出器(131)はパイロット・パ
ルスの和信号チャンネルと差信号チャンネル間位相差を
第3図1(b)に示すように検出し、更に、レーダー装
置に備わっているサンプル・パルス(図示せず)により
第3図(C)に示すような誤差信号Eを第4図(a)に
示す特性で出力する。
The operation of the phase balance circuit (130) will be explained in more detail with reference to FIG. Using the pilot pulses P shown in FIG. 3(a) injected at the same level and the same phase during the radar rest period, the phase difference detector (131) detects the sum signal channel and difference signal channel of the pilot pulses. The phase difference is detected as shown in FIG. 3(b), and an error signal E as shown in FIG. 3(c) is detected using a sample pulse (not shown) provided in the radar device. 4 Output with the characteristics shown in Figure (a).

この第3図(C1の誤差信号電圧Eは次のパイロットパ
ルスが到来するまでホールドされる。そしてIF移相器
(132)は、位相差検出器(131)出力の誤差信号
電圧りに対して第4図(b)に示す特性で移相量が変化
するものであり、和信号と差信号との位相差に相当する
移相量を差信号に与えることによって和信号との位相平
衡が保たれる。なおこの例ではフィード・フォワード方
式を示したが、フィード・バック方式でも達成される。
This error signal voltage E of FIG. 3 (C1) is held until the next pilot pulse arrives.Then, the IF phase shifter (132) The amount of phase shift changes with the characteristics shown in Figure 4(b), and the phase balance with the sum signal is maintained by giving the difference signal a phase shift amount corresponding to the phase difference between the sum signal and the difference signal. Note that although a feed forward method is shown in this example, a feed back method can also be used.

このようにして位相平衡された和信号と差信号は振幅検
出器(14Q”l 、 (150)でそれぞれ振幅検出
されて、和振幅3+と差振幅a−とが出力される。一方
、位相差符号検出器(160)は、上記位相平衡回路(
130)の出力から和信号と差信号との位相差θを検出
し、位相差符号すを出力する。受信機(100)出力の
和振幅a十−差振幅a−および位相差符号すは後段の角
度検出回路(図示せず)に導ひかれて、第2図(C)に
示すように和振幅3+と差振幅3−の比aiと位相差符
号すにより角度を検出することができる。ここで、位相
差符号すは一第2図(C)に示−す通り振幅比の絶対値
のみであると、角度がAとBの2通りとなるが、このA
とBのいずれであるかを、判定する条件として用いてい
ることから、何らかの理由で和信号と差信号の位相平衡
が崩れた場合は、測角誤差につながることは自明の理で
ある。
The sum signal and the difference signal whose phases are balanced in this way are each detected in amplitude by an amplitude detector (14Q"l, (150), and the sum amplitude 3+ and the difference amplitude a- are outputted. On the other hand, the phase difference The sign detector (160) includes the phase balance circuit (
The phase difference θ between the sum signal and the difference signal is detected from the output of step 130), and a phase difference code is output. The sum amplitude a+−difference amplitude a− and the phase difference sign of the output of the receiver (100) are led to a subsequent angle detection circuit (not shown), and the sum amplitude 3+ is obtained as shown in FIG. 2(C). The angle can be detected by the ratio ai of the difference amplitude 3- and the phase difference code. Here, if the phase difference code is only the absolute value of the amplitude ratio as shown in FIG. 2(C), there will be two angles, A and B.
or B is used as a condition for determination, it is obvious that if the phase balance between the sum signal and the difference signal is disrupted for some reason, this will lead to an angle measurement error.

従来のフェーズド・アレイ・レーダー装置は以上のよう
に構成されているので、和信号チャンネルと差信号チャ
ンネルの伝送線路f61 、 +7)の長さが異なる場
合は、位相平衡回路(130)による位相平衡補償の系
統外にあることから位相平衡が崩れる。
Since the conventional phased array radar device is configured as described above, if the lengths of the transmission lines f61, +7) of the sum signal channel and the difference signal channel are different, the phase balance circuit (130) is used to balance the phase. Since it is outside the compensation system, the phase balance will be disrupted.

又、周波数アジリティ等により送信周波数を変化するよ
うな場合は、伝送線路の長さの差に対する位相差祉か変
化し、位相平衡か崩れることがら測角精度か劣下すると
いう欠点があった。
Furthermore, when the transmission frequency is changed due to frequency agility or the like, there is a drawback that the phase difference due to the difference in length of the transmission line changes, and the phase balance is destroyed, resulting in a decrease in angle measurement accuracy.

この発明は、このような欠点を解消するためになされた
もので、パイロット・パルス注入端より前の和信号チャ
ンネルと差信号チャンネルとの伝送線路の長さか異なる
ことに基づく位相差をオフセット量として位相平衡回路
に加えられるように構成することにより、和信号チャン
ネルと差信号チャンネルとの位相平衡が維持でき、測角
精度を111持することかできるフェーズド・アレイ・
レーダー装置を提供することを目的としている。
This invention was made to eliminate such drawbacks, and uses the phase difference based on the difference in length of the transmission line between the sum signal channel and the difference signal channel before the pilot pulse injection end as an offset amount. By configuring it to be added to the phase balance circuit, the phase balance between the sum signal channel and the difference signal channel can be maintained, and the angle measurement accuracy can be maintained at 111.
The purpose is to provide radar equipment.

以下、この発明の一実施例を図について説明する。第5
図(1) 、 (b)はこの発明の一実施例によるフェ
ーズド・アレイ・レーダー装置及び該装置の位相平衡回
路の一構成例を示し、図において、(170)は位相平
衡回路であり、該位相平衡回路(170)は、位相差検
出器(131)とIF移相器(132)とオフセット加
算器(133)により構成されている。第1図の従来の
ものとの相違は位相平衡回路のみである。
An embodiment of the present invention will be described below with reference to the drawings. Fifth
Figures (1) and (b) show a configuration example of a phased array radar device and a phase balance circuit of the device according to an embodiment of the present invention. In the figure, (170) is a phase balance circuit; The phase balance circuit (170) is composed of a phase difference detector (131), an IF phase shifter (132), and an offset adder (133). The only difference from the conventional one shown in FIG. 1 is the phase balance circuit.

次に動作について説明する。Next, the operation will be explained.

位相平衡回路(170)め動作は、位相差検出器(13
1)で和信号と差信号の位相差を誤差信号Eとして出力
するところまでは第1図の動作と同じである。この誤差
信号Eは、オフセット加算器(133)で伝送線路f6
) 、 (71の長さの相違による位相差分に相当する
電圧値が加算されてIF移相器(132)へ送出される
。そしてこのIF移相器(132)では、差信号に対し
て伝送線路の長さの相違による位相差分を含む移相を行
なうことから、合成器(5)以降の和信号チャンネルと
差信号チャンネルとの位相平衡を維持することができる
The operation of the phase balance circuit (170) is performed by the phase difference detector (13).
The operation is the same as that shown in FIG. 1 up to step 1) where the phase difference between the sum signal and the difference signal is output as the error signal E. This error signal E is applied to the transmission line f6 by an offset adder (133).
), (Voltage values corresponding to the phase difference due to the difference in length of 71 are added and sent to the IF phase shifter (132).The IF phase shifter (132) then transmits the difference signal. Since the phase is shifted including the phase difference due to the difference in line length, it is possible to maintain phase balance between the sum signal channel and the difference signal channel after the combiner (5).

ここで、オフセット加算の動作について、より詳細に説
明する。位相差検出器<131)の誤差検出感度が第4
図(a)に示すようにA(V/度)であり、IF移相器
< 132)の移相感度が第4図(b)に示すよと差信
号の位相差θ、が+3’0 (度)で、伝送線路の長さ
の相違による位相差θ2が0(度)であったと仮定した
場合、位相差検出器(131)出力の誤差電圧VEは VE=A (”/7ffi)Xθ+ (i)=30・A
(V)となり、オフセット加算器(133)では、位相
差θ2が0(度)であるから0(v)を加えて■E−3
0・A(V)でIF移相器(132)を制御する。この
時の移相量ψ1は となり、和信号チャンネルと差信号チャンネルとの位相
平衡が実現される。
Here, the operation of offset addition will be explained in more detail. The error detection sensitivity of the phase difference detector <131) is the fourth
As shown in Figure 4(a), the phase difference θ of the difference signal is +3'0, and the phase shift sensitivity of the IF phase shifter < 132) is A (V/degree) as shown in Figure 4(b). (degrees), and assuming that the phase difference θ2 due to the difference in length of the transmission line is 0 (degrees), the error voltage VE of the output of the phase difference detector (131) is VE=A (''/7ffi)Xθ+ (i)=30・A
(V), and in the offset adder (133), since the phase difference θ2 is 0 (degrees), 0 (v) is added and ■E-3
Control the IF phase shifter (132) with 0.A (V). The phase shift amount ψ1 at this time is as follows, and phase balance between the sum signal channel and the difference signal channel is realized.

次に、位相差θ+ = 30 (度)で、位相差θ2=
−5,0(度)の場合は、オフセット加算器(133)
では、位相差θ2ニー50(度)に相当する電圧■E′
Qを位相差検出器(131)と同じ感度で、即ち VE狼−A(V/度)×θ2(度)=−50・A (V
)として誤差電圧VEに加算する−ことから、IF移相
器(132)への制御電圧VE’は VE’ =VE + Vgm=−20・A(V)となり
、IF移相器(132)の移相量ψ、′はψ、r−1−
(度/V)XVE’(V)−20(度)となり、合成器
(5)以降の和信号チャンネルと差信号チャンネルの位
相平衡が保たれる。
Next, the phase difference θ+ = 30 (degrees), and the phase difference θ2=
-5,0 (degrees), offset adder (133)
Then, the voltage ■E' corresponding to the phase difference θ2 knee 50 (degrees)
Q with the same sensitivity as the phase difference detector (131), that is, VE-A (V/degree) x θ2 (degree) = -50・A (V
) is added to the error voltage VE. Therefore, the control voltage VE' to the IF phase shifter (132) is VE' = VE + Vgm = -20 A (V), and the control voltage VE' of the IF phase shifter (132) is The phase shift amount ψ,′ is ψ, r−1−
(degrees/V)

又、周波数アジリティ等で周波数が変化する場合におい
ては、それぞれの周波数における位相差θ2に相当する
オフセット電圧VEa+〜VEηnを予め用意しておき
、第6図に示すように、レーダー装置に備わっている周
波数切換制御信号fにより切換えて加算すれば良い。
In addition, when the frequency changes due to frequency agility etc., offset voltages VEa+ to VEηn corresponding to the phase difference θ2 at each frequency are prepared in advance, and as shown in FIG. It suffices to switch and add using the frequency switching control signal f.

なお、上記実施例では、伝送線路(6+ 、 +71の
長さの相違に基づく位相差の補償について示したが、パ
イロット・パルスを注入する系統の同様な位相差の補償
も、同様にオフセット加算値に含めれば良いことになる
Note that in the above embodiment, compensation for the phase difference based on the difference in length of the transmission line (6+, +71) was shown, but compensation for a similar phase difference in the system in which the pilot pulse is injected can also be compensated for by using the offset addition value. It would be a good idea to include it in

以上のように、この発明によれは、パイロット・パルス
注入端より以前の和信号チャンネルと差信号チャンネル
きの伝送線路長の差等に基つく位相差を、位相平衡回路
の誤差信号にオフセット量として加えられるように構成
したことから、測角精度の良いものか得られる効果があ
る。
As described above, according to the present invention, the phase difference based on the difference in transmission line length between the sum signal channel and the difference signal channel before the pilot pulse injection end is added to the error signal of the phase balance circuit by an offset amount. Since it is configured so that it can be added as

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のフェーズド アレイ・レータ−装置を示
すブロック図、第2図fa) 、 (b) 、 (C)
はそれぞれ上記装置の合成器の出力における振幅特性、
位相差特性、及びビームノーズの特性を示す図、第3図
(a) 、 (b) 、 (C)はそれぞれ上記装置の
パイロット・パルス、位相差の検出出力、及び誤差信号
を示す波形図、第4図(a) 、 (b)はそれぞれ上
記装置の位相差検出器の特性及びIF移相器の特性を示
す図、第5図(a) 、 (b)はそれぞれ本発明の一
実施例によるフェーズド・アレイ・レーダー装置を示す
ブロック図及びその位相平衡回路の一構成例を示すブロ
ック図、第6図は本発明の他の実施例によるフェーズド
・アレイ・レーダー装置に適用されるオフセット加算器
の一構成例を示すブロック図である。 +11 、 +21・・・アレイ・アンテナ、+61 
、 +71・・・伝送線路、Oll・パイロット・パル
ス発生器、(100)・・・受信m−(170)・・位
相平衡回路、3+ 和信号振幅、a−・・・差信号振幅
、b・・位相差符号、E・・・誤差信号。 なお、図中同一符号は同−又は相当部分を示す。 代  理  人     葛  野  信  −第5図 (b) 第6図 佳114卸イ百う↑
Fig. 1 is a block diagram showing a conventional phased array generator device, Fig. 2 fa), (b), (C)
are the amplitude characteristics at the output of the synthesizer of the above device, respectively,
Figures 3(a), 3(b), and 3(c) are waveform diagrams showing the pilot pulse, phase difference detection output, and error signal of the above device, respectively; FIGS. 4(a) and (b) are diagrams showing the characteristics of the phase difference detector and the IF phase shifter of the above device, respectively, and FIGS. 5(a) and (b) are each an example of the present invention. A block diagram showing a phased array radar device according to the present invention and a block diagram showing an example of the configuration of its phase balance circuit, and FIG. 6 shows an offset adder applied to a phased array radar device according to another embodiment of the present invention. FIG. 2 is a block diagram showing an example of the configuration. +11, +21...Array antenna, +61
, +71... Transmission line, Oll/pilot pulse generator, (100)... Reception m-(170)... Phase balance circuit, 3+ Sum signal amplitude, a-... Difference signal amplitude, b... - Phase difference code, E... error signal. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Makoto Kuzuno - Figure 5 (b) Figure 6 114 Wholesale ↑

Claims (1)

【特許請求の範囲】[Claims] (1)  複数個のアレイ・アンテナと、和信号チャン
ネルおよび差信号チャンネルの各受信機入力端よりレー
ダー休止時間帯に同レベル、同位相のパイロット・パル
スを注入するパイロット・パルス発生器と、このパイロ
ット・パルスを用いて受信信号の和信号と差信号の自動
位相平衡を行なう位相平衡回路を有し上記受信信号の和
信号振幅、差信号振幅、および和信号と差信号の位相差
符号を検出する受信機とを備え、該受信機の知力を用い
てモノ・パルス測角を行なうフェーズド・アレイ・レー
ダー装置であって、上記位相平衡回路か、和信号と差信
号の誤差信号にパイロット・パルス注入端より以前の和
信号チャンネルと差信号チャンネルの線路長の差に基つ
く位相差をオフセット量として加えるオフセット加算器
を有することを特徴とするフェーズド・アレイ・レーダ
ー装置。
(1) A plurality of array antennas, a pilot pulse generator that injects pilot pulses of the same level and phase during the radar idle period from each receiver input terminal of the sum signal channel and the difference signal channel; It has a phase balancing circuit that performs automatic phase balancing of the sum signal and the difference signal of the received signals using a pilot pulse, and detects the sum signal amplitude, the difference signal amplitude, and the phase difference code of the sum signal and the difference signal of the received signals. A phased array radar device comprising a receiver and performing mono-pulse angle measurement using the intelligence of the receiver, wherein the phase balance circuit or the pilot pulse is added to the error signal of the sum signal and the difference signal. A phased array radar device comprising an offset adder that adds, as an offset amount, a phase difference based on a difference in line length between a sum signal channel and a difference signal channel before the injection end.
JP57229756A 1982-12-28 1982-12-28 Phased array radar device Pending JPS59120975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57229756A JPS59120975A (en) 1982-12-28 1982-12-28 Phased array radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57229756A JPS59120975A (en) 1982-12-28 1982-12-28 Phased array radar device

Publications (1)

Publication Number Publication Date
JPS59120975A true JPS59120975A (en) 1984-07-12

Family

ID=16897184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57229756A Pending JPS59120975A (en) 1982-12-28 1982-12-28 Phased array radar device

Country Status (1)

Country Link
JP (1) JPS59120975A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141234U (en) * 1986-02-27 1987-09-05
JPH05232215A (en) * 1992-02-05 1993-09-07 Nec Corp Secondary monitoring radar apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728113A (en) * 1980-04-21 1982-02-15 Ici Ltd Vinyl chloride microsuspension polymerization

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5728113A (en) * 1980-04-21 1982-02-15 Ici Ltd Vinyl chloride microsuspension polymerization

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62141234U (en) * 1986-02-27 1987-09-05
JPH0450546Y2 (en) * 1986-02-27 1992-11-27
JPH05232215A (en) * 1992-02-05 1993-09-07 Nec Corp Secondary monitoring radar apparatus

Similar Documents

Publication Publication Date Title
EP2139070A2 (en) Adaptive array antenna transceiver apparatus
EP0747714A2 (en) Noise measurement test system
US4146893A (en) System for compensating for cross polarization coupling
US4005425A (en) Dual quadrature polarization radar system
WO2000078063A2 (en) Apparatus for testing mobile phones
US4156873A (en) Transponder for a moving vehicle tracking system
EP0023811A1 (en) Doppler radar system
US3864683A (en) Arrangement for an automatic resetting system for microwave antennas
US3480958A (en) Electronic scanning antenna
JPS59120975A (en) Phased array radar device
US5394153A (en) Compressive receiver having a plurality of RF inputs
US3142061A (en) Microwave polarization resolver
US4521893A (en) Clock distribution circuit for active aperture antenna array
JPH0419588A (en) Millimeter wave radar transmitter receiver
US3750173A (en) Frequency translating repeater (boomerang) using single-sideband techniques
JP2551301B2 (en) Phased array antenna monitoring equipment
US3633203A (en) Antenna lobing system
US3181160A (en) Monopulse radio-detection receivers
WO2024061090A1 (en) Amplitude and phase alignment of phased array elements
CN113156379B (en) Data acquisition processing unit and device
SU1571757A1 (en) Device for shaping in-phase signals in spatially distributed points
JPS63142702A (en) Antenna measuring method
GB2360635A (en) Retroreceive antenna
RU660467C (en) Sector radio beacon
RU3175U1 (en) ANTENNA DEVICE