JPS59120806A - Apparatus for measuring image area - Google Patents

Apparatus for measuring image area

Info

Publication number
JPS59120806A
JPS59120806A JP57234303A JP23430382A JPS59120806A JP S59120806 A JPS59120806 A JP S59120806A JP 57234303 A JP57234303 A JP 57234303A JP 23430382 A JP23430382 A JP 23430382A JP S59120806 A JPS59120806 A JP S59120806A
Authority
JP
Japan
Prior art keywords
light
image
measured
scanning mirror
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57234303A
Other languages
Japanese (ja)
Other versions
JPH0259923B2 (en
Inventor
Kosaku Togashi
富樫 幸作
Hideo Fujie
藤江 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd, Toshiba Machine Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP57234303A priority Critical patent/JPS59120806A/en
Publication of JPS59120806A publication Critical patent/JPS59120806A/en
Publication of JPH0259923B2 publication Critical patent/JPH0259923B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/28Measuring arrangements characterised by the use of optical techniques for measuring areas
    • G01B11/285Measuring arrangements characterised by the use of optical techniques for measuring areas using photoelectric detection means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inking, Control Or Cleaning Of Printing Machines (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To accurately measure even the area of an image covered with a transparent substance, by a method wherein a light detecting element permitting the permeation of only light having a polarization surface which crosses linearly polarized light incident to an image to be measured at right angles is provided between the image to be measured and a photoelectric conversion part and only the light parallel to the permeation axis of the light detecting element among reflected lights is received by the photoelectric conversion part. CONSTITUTION:The laser beam from linear polarization type laser 41 is converted to light having circular polarization while passed through a 1/4 wavelength plate 42 and the converted light is further converted to linearly polarized light again by a polarization element 43 to be reflected by a scanning mirror 25A and the reflected light is allowed to irradiate a printing plate 30 to scan the printing plate 30 in the X- and Y-directions thereof by a scanner 25B and the revolution of the scanning mirror 25A by a stepping motor 22. In this case, the polarization element 43 and the scanning mirror 25A are integrally revolved and the relative angle of the polarization surface of linearly polarized light after passing the polarization element 43 and the incident surface on the scanning mirror 25A is always constant at the arbitrary angular position of the revolution of the scanning mirror 25A to a Y-direction and the deflection surface and the incident surface of the irradiated light are always kept constant.

Description

【発明の詳細な説明】 本発明は、反射率の異なる2種類の領域を有する画像(
以下2値画像という)について、各領域が占める面積お
よびその比率等を求める画像面積測定装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an image (
The present invention relates to an image area measuring device for determining the area occupied by each region and its ratio with respect to a binary image (hereinafter referred to as a binary image).

従来、2値画像の面積を求める装置としては、例えばオ
フセット印刷機の印刷版からインクが付着する部分(画
線部)の面積とインクが付着しない部分(非画線部)の
面積との比率を求める、いわゆる絵柄面積率測定装置が
知られている。この絵柄面積率測定装置は、第1図およ
び第2図に示す如く、1列状に配置された複数の光電変
換素子1の両側に蛍光灯等の一対の線状光源2、3を並
設し、これらを印刷版4の上面に沿って平行移動させる
か、或いは印刷版4を平行移動させる。一方、光電変換
素子1で受光した印刷版4からの反射光を電気信号に変
換し、この電気信号に基づいて印刷版4の画線部と非画
線部との比率を求めるようにしたものである。
Conventionally, devices for calculating the area of a binary image have been used, for example, to measure the ratio of the area of the area to which ink adheres (image area) to the area of the area to which ink does not adhere (non-image area) from a printing plate of an offset printing machine. A so-called picture area ratio measurement device is known. As shown in FIGS. 1 and 2, this picture area ratio measuring device includes a pair of linear light sources 2 and 3, such as fluorescent lamps, arranged in parallel on both sides of a plurality of photoelectric conversion elements 1 arranged in a row. Then, these are moved in parallel along the upper surface of the printing plate 4, or the printing plate 4 is moved in parallel. On the other hand, the reflected light from the printing plate 4 received by the photoelectric conversion element 1 is converted into an electrical signal, and the ratio between the printed area and the non-printed area of the printing plate 4 is determined based on this electrical signal. It is.

一般に、オフセット印刷による印刷版は、通常0.5m
×0.5mから1.2m×1.4m程度の大きさである
。このような大きな面積を有する被測定面の画像面積を
正確に測定するためには、全面均一な照明および受光特
性が要求される。しかしながら、上述した装置の場合、
蛍光灯を線状光源として利用していることから、発光量
を長時間安定に、かつ均一に保つことが困難な上、複数
の光電変換素子の感度を同一レベルに保つことが困難な
ことから、均一な受光特性が期待できない問題がある。
In general, printing plates made by offset printing are usually 0.5 m
The size ranges from 0.5 m x 1.2 m x 1.4 m. In order to accurately measure the image area of such a large surface to be measured, uniform illumination and light receiving characteristics are required over the entire surface. However, in the case of the above-mentioned device,
Because fluorescent lamps are used as linear light sources, it is difficult to keep the amount of light emitted stable and uniform for long periods of time, and it is also difficult to maintain the sensitivity of multiple photoelectric conversion elements at the same level. , there is a problem that uniform light receiving characteristics cannot be expected.

しかも、測定に際しては、光学系全体を印刷版に沿って
平行移動させなければならないので、高速な測定が望め
ない欠点がある。
Moreover, since the entire optical system must be moved in parallel along the printing plate during measurement, there is a drawback that high-speed measurement cannot be expected.

そこで、これらの問題を解決する方法としては、光ビー
ムを2値画像に対して2次元的に走査し、2値画像の画
像面積を求める方式が考えられる。
Therefore, a possible method for solving these problems is to scan a binary image two-dimensionally with a light beam to obtain the image area of the binary image.

この方式は、第3図に示す如く、被測定面11の中央に
立てた法線上の任意の1点に、光偏向器制御装置12に
よって制御される2個の光偏向器13、14と1個の光
電変換器15とを近接配置し、レーザ駆動装置16によ
って駆動されるレーザ17からのレーザー光を一方の光
偏向器13によって前記被測定面11のX方向へ、他方
の光偏向器14によって被測定面11のY方向へそれぞ
れ走査させる一方、被測定面11からの反射光を光電変
換器15により受光し、電気信号に変換した後、演算部
18においてその電気信号に基づいて被測定面11の画
像面積を算出し、その結果を出力部19を介して磁気カ
ード20等へ出力させるように構成したものである。と
ころが、この方式には、次のような課題がある。
In this method, as shown in FIG. The photoelectric converters 15 are arranged in close proximity to each other, and the laser beam from the laser 17 driven by the laser driving device 16 is directed to the X direction of the surface to be measured 11 by one optical deflector 13 and the other optical deflector While scanning the surface to be measured 11 in the Y direction, the photoelectric converter 15 receives reflected light from the surface to be measured 11 and converts it into an electrical signal. The image area of the surface 11 is calculated and the result is outputted to a magnetic card 20 or the like via an output section 19. However, this method has the following problems.

例えば、レーザー光をX方向へ走査した際、光電変換器
15によって受光される受光量Iがレーザー光の光スポ
ットのX方向の位置によりどのように変化するかをみて
みる。いま、第4図に示す如く、光電変換器15の受光
面15Aを被測定面11に対して平行とし、かつ受光面
15Aの中心点から被測定面11へ下した垂線が被測定
面11と交わる点をX方向の原点0とし、原点0からx
位置に光スポットがある場合を考える。ここで、被測定
面11から受光面15Aまでの高さをz、受光面15A
から光スポットの位置までの距離をr、受光面15Aが
光スポットの位置に対して張る立体角をα、受光面15
Aが光スポットの方向に対してなす角をθとしたとき、
受光量Iは立体角αに比例すると考えてよい。
For example, let's look at how the amount of light received by the photoelectric converter 15 changes depending on the position of the laser light spot in the X direction when laser light is scanned in the X direction. Now, as shown in FIG. 4, the light receiving surface 15A of the photoelectric converter 15 is parallel to the surface to be measured 11, and the perpendicular line drawn from the center point of the light receiving surface 15A to the surface to be measured 11 is the surface to be measured 11. The intersection point is the origin 0 in the X direction, and from the origin 0 x
Consider the case where there is a light spot at a certain position. Here, the height from the surface to be measured 11 to the light receiving surface 15A is z, and the height from the light receiving surface 15A is
The distance from to the position of the light spot is r, the solid angle that the light receiving surface 15A makes with respect to the position of the light spot is α,
When the angle that A makes with respect to the direction of the light spot is θ,
It may be considered that the amount of received light I is proportional to the solid angle α.

いま、受光面15Aが単位幅で長さが2lの面積である
とすると、立体角αは、近似的に(α<1として) α≒2l/r・cosθ・・・・・・・・・(1)で表
わせる。この(1)式において、cosθ=z/r、r
2=z2+x2であるから、受光量■は、となる。これ
をxを変数として図示すると第5図のようになり、例え
ばxがzと同程度の場合、中央部(x=0)での受光量
に対して略半分に低下してしまうことになる。
Now, assuming that the light-receiving surface 15A has a unit width and a length of 2l, the solid angle α is approximately (assuming α<1) α≒2l/r・cosθ... It can be expressed as (1). In this equation (1), cosθ=z/r, r
Since 2=z2+x2, the amount of light received is as follows. If this is illustrated using x as a variable, it will look like Figure 5. For example, if x is about the same as z, the amount of light received at the center (x = 0) will be reduced to approximately half. .

そこで、本発明者等は、これらの課題を含めて従来装置
の問題を解決できる装置を開発した。このものは、第6
図に示す如く、被測定面11をY方向へ一定の曲率で彎
曲させ、その曲率の中心軸線上の一方にレーザー21を
、他方にステッピングモータ22をそれぞれ配置し、こ
のステッピングモータ22によって前記中心軸を中心と
して回動される取付枠23に、光偏向器制御装置24に
よって作動される光偏向器25および光電子増倍管26
をそれぞれ取付け、更に光電子増倍管26の受光面26
Aと被測定面11との間に遮光板27を設ける一方、光
電子増倍管26によって受光、変換された電気信号をA
/D変換器28を介してマイクロコンピュータ29へ与
えるように構成したものである。
Therefore, the present inventors have developed a device that can solve the problems of conventional devices including these problems. This one is the 6th
As shown in the figure, the surface to be measured 11 is curved with a constant curvature in the Y direction, a laser 21 is placed on one side of the central axis of the curvature, and a stepping motor 22 is placed on the other side. An optical deflector 25 and a photomultiplier tube 26 operated by an optical deflector control device 24 are mounted on a mounting frame 23 that is rotated about an axis.
, and then the light-receiving surface 26 of the photomultiplier tube 26.
A light shielding plate 27 is provided between A and the surface to be measured 11, and the electric signal received and converted by the photomultiplier tube 26 is transmitted to A.
The signal is configured to be supplied to the microcomputer 29 via the /D converter 28.

ここで、光偏向器25の走査ミラー25Aを前記中心軸
線と被測定面11の中央に立てた法線との交点に位置さ
せるとともに、光電子増倍管26を走査ミラー25Aに
近接配置すると、ステッピングモータ22の作動によっ
てレーザー21からのレーザー光が被測定面11のY方
向へ走査された際、その被測定面11のY方向の任意の
位置から光電子増倍管26の受光面26Aまでの距離が
略一定となるため、受光量をY方向の任意の位置で一定
とすることができる。一方、遮光板27を、第7図に示
すように、光電子増倍管26の受光面26Aの中心点か
ら被測定面11へ下した垂線に位置させると、光スポッ
トの位置が原点oにあるとき遮光量が最大で、原点oか
ら離れるに従って遮光量が減少していくことが判る。そ
こで、いま被測定面11から受光面26Aまでの高さを
300mm、受光面26Aの長さ2lを22mm、遮光
板26の幅wを3mmとした条件下において、被測定面
11から遮光板27までの高さz1を変化させると、受
光量は、第8図の如くz1=260mmのとき破線、z
1=280mmのとき実線のようになるため、z1を変
化させれば受光量の分布をX方向の走査において等価的
に均一にすることができる。ちなみに、遮光板27のか
わりに、原点oから周辺に行くに従って透過率が増加す
るような濃度分布を有する光学フィルタを使用しても、
同様な結果が得られる。また、受光量に関する補正テー
ブルを設け、計算部においてこの補正テーブルに基づい
て演算を行うようにしても、同様な結果が得られる。一
方、同様な均一受光補正をY方向に関して行うことがで
きることは勿論であるが、実際には2次元分布を正確に
均一化することは困難であるので、Y方向に関しては前
述の方法が望ましい。
Here, if the scanning mirror 25A of the optical deflector 25 is located at the intersection of the central axis and the normal line set at the center of the surface to be measured 11, and the photomultiplier tube 26 is placed close to the scanning mirror 25A, the stepping When the laser beam from the laser 21 is scanned in the Y direction of the surface to be measured 11 by the operation of the motor 22, the distance from any position in the Y direction of the surface to be measured 11 to the light receiving surface 26A of the photomultiplier tube 26 is substantially constant, so the amount of received light can be made constant at any position in the Y direction. On the other hand, if the light shielding plate 27 is positioned on a perpendicular line drawn from the center point of the light-receiving surface 26A of the photomultiplier tube 26 to the surface to be measured 11, as shown in FIG. 7, the position of the light spot will be at the origin o. It can be seen that the amount of light shielding is at a maximum when the distance from the origin o is reached, and the amount of light shielding decreases as the distance from the origin o increases. Therefore, under the conditions that the height from the surface to be measured 11 to the light receiving surface 26A is 300 mm, the length 2l of the light receiving surface 26A is 22 mm, and the width w of the light shielding plate 26 is 3 mm, By changing the height z1 to
When 1=280 mm, it becomes like a solid line, so by changing z1, the distribution of the amount of received light can be made equivalently uniform in scanning in the X direction. Incidentally, even if an optical filter having a concentration distribution in which the transmittance increases from the origin o to the periphery is used instead of the light shielding plate 27,
Similar results are obtained. Further, similar results can be obtained even if a correction table regarding the amount of received light is provided and the calculation section performs calculations based on this correction table. On the other hand, although it is of course possible to perform similar uniform light reception correction in the Y direction, it is actually difficult to accurately equalize the two-dimensional distribution, so the method described above is preferable in the Y direction.

このようにして、第6図に示す装置は、従来例の問題を
解決したのであるが、また別の課題が考えられる。通常
、この種の2値画像にあっては、画像面の汚損を防止を
目的としてその表面を透明な膜で被覆することがしばし
ば行なわれる。例えば、オフセット印刷機用の印刷版の
場合、空気との接触による酸化或いは手あか等により非
画線部の親水性が損なわれるのを防ぐために、現像処理
による画線部形成後に刷版表面を透明なゴム膜で被覆す
ること(ガム引きと呼ばれている)が行なわれている。
In this way, the device shown in FIG. 6 has solved the problems of the conventional example, but there may be another problem. Normally, in this type of binary image, the surface of the image is often coated with a transparent film in order to prevent staining of the image surface. For example, in the case of printing plates for offset printing presses, the surface of the printing plate is made transparent after the image areas are formed by development treatment in order to prevent the hydrophilicity of non-image areas from being impaired due to oxidation due to contact with air or hand marks. Covering with a rubber film (called gumming) is carried out.

このように表面を透明な膜で保護された被測定面を第6
図に示す装置で測定すると、レーザビームがX方向の中
央に位置したとき、光電子増倍管26へ入射する反射光
の大部分が透明保護膜表面からの正反射光となるため、
被測定物の画像面積に対応した情報が得られない不都合
が生じる。
The surface to be measured, whose surface was protected by a transparent film, was placed in the sixth
When measured with the device shown in the figure, when the laser beam is located at the center in the X direction, most of the reflected light that enters the photomultiplier tube 26 becomes specularly reflected light from the surface of the transparent protective film.
This results in the inconvenience that information corresponding to the image area of the object to be measured cannot be obtained.

これを防止するためには、被測定面の全ての反射点につ
いて45度程度の反射角が確保できるように、例えば走
査ミラー25Aと光電子増倍管26との間隔を走査ミラ
ー25Aから被測定面までの距離と同程度の大きさにす
ればよい。ところが、オフセット印刷機用の印刷版の大
きさは最大1200mm×1360mmであるから、こ
のような大きな被測定面の画像面積を全面にわたって精
度よく測定するには走査ミラー25Aから被測定面まで
の距離を1200mm程度にする必要があるので、構造
上無理が生じ実用的な方法ではない。
In order to prevent this, for example, the distance between the scanning mirror 25A and the photomultiplier tube 26 must be adjusted from the scanning mirror 25A to the surface to be measured so that a reflection angle of about 45 degrees can be secured for all reflection points on the surface to be measured. The size should be about the same as the distance to. However, since the maximum size of printing plates for offset printing machines is 1200 mm x 1360 mm, in order to accurately measure the image area of such a large surface to be measured over the entire surface, the distance from the scanning mirror 25A to the surface to be measured must be It is necessary to set the length to about 1200 mm, which causes structural difficulties and is not a practical method.

ここにおいて、本発明の目的は、表面が透明な物質で被
覆されている画像の場合でも、コンパクトな構造でもっ
て、かつ正確に画像面積を測定できる画像面積測定装置
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an image area measuring device that has a compact structure and can accurately measure the image area even in the case of an image whose surface is coated with a transparent substance.

一般に、透明な物体に直線偏光を入射させるとその反射
光は直線偏光であり、吸収物体に直線偏光を入射させる
とその反射光は楕円偏光となることが知られている。本
発明の測定原理は、この偏光特性に着目したもので、表
面が透明膜で被覆された被測定面像に直線偏光を入射さ
せ、その直線偏光の偏光面と直交する偏光面をもつ光の
みを受光することにより、透明膜表面からの正反射光を
除いた測定を行なわせようとするものである。
It is generally known that when linearly polarized light is incident on a transparent object, the reflected light is linearly polarized light, and when linearly polarized light is incident on an absorbing object, the reflected light becomes elliptically polarized light. The measurement principle of the present invention focuses on this polarization property. Linearly polarized light is incident on an image of the surface to be measured whose surface is covered with a transparent film, and only light with a polarization plane perpendicular to the polarization plane of the linearly polarized light is used. By receiving the light, it is possible to perform measurements excluding specularly reflected light from the surface of the transparent film.

更に詳しくいえば、光源部から直線偏光を出射させ、そ
の光を光走査部によって被測定画像へ走査させる。する
と、被測定画像の表面が透明膜で被覆されている場合、
透明膜からの反射光は直線偏光、被測定画像からの反射
光は楕円偏光となる。
More specifically, linearly polarized light is emitted from the light source section, and the light is scanned onto the image to be measured by the optical scanning section. Then, if the surface of the image to be measured is covered with a transparent film,
The light reflected from the transparent film becomes linearly polarized light, and the light reflected from the image to be measured becomes elliptically polarized light.

一方、受光側において、被測定画像と光電変換部との間
に、被測定画像へ入射された直線偏光と直交する偏光面
をもつ光のみを透過させる検光子を設け、これにより透
明膜からの反射光を除去し、被測定画像からの反射光の
うち検光子の透過軸と平行な光のみを光電変換部で受光
することにより、上記目的を達成しようとするものであ
る。
On the other hand, on the light-receiving side, an analyzer is installed between the image to be measured and the photoelectric conversion unit, which transmits only light with a plane of polarization perpendicular to the linearly polarized light incident on the image to be measured. The above objective is achieved by removing reflected light and allowing the photoelectric conversion unit to receive only the light parallel to the transmission axis of the analyzer out of the reflected light from the image to be measured.

以下、本発明の実施例を説明する。Examples of the present invention will be described below.

第9図は本発明の実施例の全体を示している。FIG. 9 shows the entire embodiment of the present invention.

ここで、同実施例を説明するに当って、前記第6図の構
成要素と同一のものについては、同一符号を付し、その
説明を省略もしくは簡略化する。
Here, in describing the same embodiment, the same components as those shown in FIG. 6 are given the same reference numerals, and the explanation thereof will be omitted or simplified.

本実施例は、直線偏光を出射する光源部31と、この光
源部31からの直線偏光を円弧状に彎曲された印刷版3
0上へ走査させる光走査部32と、印刷版30からの反
射光を受光しそれを受光量に応じた電気信号に変換する
光電変換部33と、この光電変換部33の受光面側に配
置された検光子34と、前記光電変換部33からの信号
を基に前記印刷版30の画像面積を算出する演算部35
とから構成されている。
This embodiment includes a light source section 31 that emits linearly polarized light, and a printing plate 3 that is curved in an arc shape to emit the linearly polarized light from this light source section 31.
0, a photoelectric conversion unit 33 that receives reflected light from the printing plate 30 and converts it into an electrical signal according to the amount of received light, and is arranged on the light-receiving surface side of the photoelectric conversion unit 33. an arithmetic unit 35 that calculates the image area of the printing plate 30 based on the analyzed analyzer 34 and the signal from the photoelectric conversion unit 33;
It is composed of.

前記光源部31は、直線偏光形He−Neレーザー41
と、この直線偏光形He−Neレーザー41からの直線
偏光を円偏光特性を有する光に変換する1/4波長板4
2と、この1/4波長板42によって変換された円偏光
特性を有する光を再び直線偏光に変換し前記走査ミラー
25Aへ入射させる偏光子43とから構成されている。
The light source section 31 includes a linearly polarized He-Ne laser 41.
and a quarter-wave plate 4 that converts the linearly polarized light from the linearly polarized He-Ne laser 41 into light having circularly polarized characteristics.
2, and a polarizer 43 that converts the circularly polarized light converted by the quarter-wave plate 42 into linearly polarized light again and makes it incident on the scanning mirror 25A.

前記レーザー41および1/4波長板42は、前記ステ
ッピングモータ22の回動軸と同軸線上に沿って互いに
光軸を共有するように配置されている。また、前記偏光
子43は、その透過光が印刷版30へ入射する際、入射
面(入射光と反射光とを含む平面)と平行な偏光面をも
つ直線偏光となるように、取付枠23に走査ミラー25
Aと一体的に回動可能に取付けられている。
The laser 41 and the quarter-wave plate 42 are arranged coaxially with the rotation axis of the stepping motor 22 so as to share an optical axis. Furthermore, the polarizer 43 is arranged on the mounting frame 23 so that when the transmitted light enters the printing plate 30, it becomes linearly polarized light with a plane of polarization parallel to the plane of incidence (the plane containing the incident light and the reflected light). scan mirror 25
It is attached so that it can rotate integrally with A.

また、前記光走査部32は、前記第6図と同一の構成要
素によって構成されている。つまり、ステッピングモー
タ22と、取付枠23と、走査ミラー25Aおよび走査
器25Bからなる光偏向器25とから構成されている。
Further, the optical scanning section 32 is composed of the same components as those shown in FIG. 6. That is, it is composed of a stepping motor 22, a mounting frame 23, and an optical deflector 25 consisting of a scanning mirror 25A and a scanner 25B.

これらの構成要素は、前記レーザ41および1/4波長
板42とともに、第10図に示す機枠51に取付けられ
ている。機枠51には、前記印刷版30を円弧状に彎曲
させた状態で固定する印刷版取付台52の上方に光学系
設置部53が形成され、その光学系設置部53において
、前記印刷版30の円弧の中心点Pに前記走査ミラー2
5Aが、その中心点Pに近接して前記光電変換部33が
取付けられている。また、他の構成要素については、適
当に配置されている。
These components, together with the laser 41 and the quarter-wave plate 42, are attached to a machine frame 51 shown in FIG. 10. An optical system installation part 53 is formed in the machine frame 51 above a printing plate mounting base 52 that fixes the printing plate 30 in a curved arc shape. The scanning mirror 2 is placed at the center point P of the arc of
5A, the photoelectric conversion section 33 is attached close to its center point P. In addition, other components are appropriately arranged.

これにより、前記光源部31から走査ミラー25Aへ入
射された光は、走査器25Bの作動により走査ミラー2
5Aが光軸と直交する軸を中心として回動されるのに伴
い印刷版30のX方向へ、ステッピングモータ22の作
動により走査ミラー25Aが光軸を中心として回動され
るのに伴い印刷版30のY方向へ走査される。
Thereby, the light incident on the scanning mirror 25A from the light source section 31 is transmitted to the scanning mirror 25A by the operation of the scanner 25B.
As the scanning mirror 25A is rotated around the optical axis by the operation of the stepping motor 22, the printing plate 30 is rotated in the X direction as the scanning mirror 25A is rotated around the optical axis by the operation of the stepping motor 22. 30 in the Y direction.

また、前記光電変換部33は、前記取付枠23にホルダ
61を介して取付けられた光電子増倍管26と、印刷版
30のX方向への走査において光電子増倍管26で受光
される受光量を均一化するための遮光板27とから構成
されている。前記ホルダ61には、第11図および第1
2図に示す如く、光電子増倍管26の受光面と対応する
位置に受光孔62が形成されているとともに、その受光
孔62の開口面側に位置された遮光板27がホルダ61
との間隔gを調節できるように固定ねじ63によって取
付けられている。
The photoelectric conversion unit 33 also includes a photomultiplier tube 26 attached to the mounting frame 23 via a holder 61, and an amount of light received by the photomultiplier tube 26 during scanning of the printing plate 30 in the X direction. A light shielding plate 27 is used to make the light uniform. The holder 61 includes the images shown in FIG.
As shown in FIG. 2, a light receiving hole 62 is formed at a position corresponding to the light receiving surface of the photomultiplier tube 26, and a light shielding plate 27 located on the opening surface side of the light receiving hole 62 is connected to the holder 61.
It is attached with a fixing screw 63 so that the distance g between the two parts can be adjusted.

また、前記検光子34は、第11図および第12図に示
す如く、その透過軸が前記偏光子43の透過軸と直交す
るように調整されて前記ホルダ61の受光孔62の開口
面に取付けられている。
Further, as shown in FIGS. 11 and 12, the analyzer 34 is adjusted so that its transmission axis is perpendicular to the transmission axis of the polarizer 43, and is attached to the opening surface of the light receiving hole 62 of the holder 61. It is being

従って、印刷版30からの反射光は、遮光板27により
均一補正効果を受けた後、検光子34へ入射される。す
ると、この検光子34により印刷版30へ入射する光の
偏光面と直交する偏光面を有する反射光のみが透過され
、光電子増倍管26で光電変換される。
Therefore, the reflected light from the printing plate 30 is subjected to the uniformity correction effect by the light shielding plate 27, and then enters the analyzer 34. Then, only the reflected light having a polarization plane perpendicular to the polarization plane of the light incident on the printing plate 30 is transmitted by the analyzer 34, and is photoelectrically converted by the photomultiplier tube 26.

また、前記演算部35は、前記光電子増倍管26によっ
て光電変換された信号をデジタル信号に変換するA/D
変換器28と、予め定められたプログラムに従って前記
ステッピングモータ22および走査器25Bを作動させ
るとともに、前記A/D変換器28から与えられる情報
に基づいて印刷版30の画像面積を算出するマイクロコ
ンピュータ29とから構成されている。マイクロコンピ
ュータ29は、走査器25Bの作動を介して光源部31
からの光を印刷版30のX方向へ走査させ、そのX方向
への走査において光電変換部33から与えられるデータ
を予め定められたタイミングで順次取込み、それを予め
決められた記憶エリアへ順次測憶させる。ここで、1つ
のX走査線上の走査が終了した後、ステッピングモータ
22を所定角度回動させ、再びX方向へ走査させ、その
X方向への走査において、光電変換部33から与えられ
るデータを予め定められたタイミングで順次取込み、そ
れを指定される記憶エリアへ順次加算処理する。この繰
返しにより、印刷版30の全面を走査させる。これによ
り、記憶エリアには、X方向に沿った所定単位毎に、Y
方向における累積値が記憶される。
The calculation unit 35 also includes an A/D converter that converts the signal photoelectrically converted by the photomultiplier tube 26 into a digital signal.
a microcomputer 29 that operates the converter 28, the stepping motor 22 and the scanner 25B according to a predetermined program, and calculates the image area of the printing plate 30 based on information provided from the A/D converter 28; It is composed of. The microcomputer 29 controls the light source section 31 through the operation of the scanner 25B.
The light from the printing plate 30 is scanned in the X direction, and during the scanning in the X direction, data given from the photoelectric conversion unit 33 is sequentially captured at predetermined timing, and the data is sequentially stored in a predetermined storage area. Make me remember. Here, after the scanning on one X scanning line is completed, the stepping motor 22 is rotated by a predetermined angle to scan in the X direction again, and in the scanning in the X direction, the data given from the photoelectric conversion unit 33 is It sequentially captures data at predetermined timings and sequentially adds them to the designated storage area. By repeating this process, the entire surface of the printing plate 30 is scanned. As a result, in the storage area, Y
The cumulative value in the direction is stored.

ちなみに、これらの記憶エリアに記憶されたX方向の所
定単位毎のデータは、オフセット印刷機において、各イ
ンキゾーン毎のインキ量を設定するためのデータとして
利用される。
Incidentally, the data for each predetermined unit in the X direction stored in these storage areas is used as data for setting the amount of ink for each ink zone in an offset printing press.

次に、本実施例の作用を説明する。直線偏光形レーザ4
1から放射されたレーザ光は、1/4波長板42を通過
することにより円偏光特性をもつ光に変換される。1/
4波長板42を通過した光は、偏光子43により再び直
線偏光に変えられた後、走査ミラー25Aにより反射さ
れて印刷版30上へ照射され、走査器25Bおよびステ
ッピングモータ22による走査ミラー25Aの回動に従
って、印刷版30のX方向およびY方向へ走査される。
Next, the operation of this embodiment will be explained. Linearly polarized laser 4
The laser light emitted from the laser beam 1 is converted into light having circular polarization characteristics by passing through the quarter-wave plate 42 . 1/
The light that has passed through the four-wavelength plate 42 is again converted into linearly polarized light by the polarizer 43, and then reflected by the scanning mirror 25A and irradiated onto the printing plate 30. As the printing plate 30 rotates, it is scanned in the X and Y directions.

この際、偏光子43と走査ミラー25Aとは一体となっ
て回動されるので、偏光子43を通った後の直線偏光の
偏光面と走査ミラー25A上の入射面(入射光と反射光
とを含む平面)との相対角度は、走査ミラー25AのY
方向への回動の任意の角度位置において常に一定である
。従って、印刷版30のY方向の任意の位置において、
照射光の偏光面と入射面とが常に一定に保たれる。
At this time, since the polarizer 43 and the scanning mirror 25A are rotated together, the polarization plane of the linearly polarized light after passing through the polarizer 43 and the incident plane on the scanning mirror 25A (incident light and reflected light) The relative angle with the Y plane of the scanning mirror 25A is
It is always constant at any angular position of rotation in the direction. Therefore, at any position in the Y direction of the printing plate 30,
The plane of polarization and the plane of incidence of the irradiated light are always kept constant.

いま、第13図に示す如く、表面が透明膜30Aで覆わ
れた印刷版30に走査ミラー25Aからの反射光が入射
されると、その入射光は、透明膜30Aの表面において
反射光と屈折光とに分れる。
Now, as shown in FIG. 13, when the reflected light from the scanning mirror 25A is incident on the printing plate 30 whose surface is covered with the transparent film 30A, the incident light is reflected and refracted on the surface of the transparent film 30A. Divides into light.

この反射光は、入射光と同じ偏光面をもつ直線偏光で、
測定に際してノイズ成分となる。一方、屈折光は、印刷
版30の表面で反射され、透明膜30Aを通って表面へ
出射される。この光は、楕円偏光で、印刷版30の画像
面積と対応した信号成分となる。
This reflected light is linearly polarized light with the same polarization plane as the incident light.
It becomes a noise component during measurement. On the other hand, the refracted light is reflected on the surface of the printing plate 30 and is emitted to the surface through the transparent film 30A. This light is elliptically polarized and has a signal component corresponding to the image area of the printing plate 30.

この両成分を有する反射光は、まず遮光板27により均
一受光補正効果を受けた後、検光子34に達する。検光
子34の透過軸は偏光子43の透過軸つまり印刷版30
への入射光の偏光面と直交するように調整されているの
で、透明膜11Aの表面からの正反射光は吸収され、印
刷版30の表面からの反射光のうち検光子34の透過軸
と平行な偏光面をもつ光のみが検光子34を透過される
The reflected light having both components is first subjected to a uniform light reception correction effect by the light shielding plate 27, and then reaches the analyzer 34. The transmission axis of the analyzer 34 is the transmission axis of the polarizer 43, that is, the printing plate 30.
Since the plane of polarization is adjusted to be perpendicular to the polarization plane of the incident light, the specularly reflected light from the surface of the transparent film 11A is absorbed, and the transmission axis of the analyzer 34 and the light reflected from the surface of the printing plate 30 are adjusted to be perpendicular to the polarization plane of the incident light. Only light with parallel polarization planes is transmitted through the analyzer 34.

検光子34を透過した光は、光電子増倍管26で光電変
換された後、演算部35に取込まれ、前述した手順に従
って印刷版30の画像面積が算出される。
The light transmitted through the analyzer 34 is photoelectrically converted by the photomultiplier tube 26 and then taken into the calculation section 35, where the image area of the printing plate 30 is calculated according to the procedure described above.

従って、本実施例では、直線偏光を走査ミラー25Aの
回動により印刷版30のXおよびY方向へ走査させる一
方、受光側において、光電子増倍管26と印刷版30と
の間に、印刷版30への入射光と直交する偏光面をもつ
光のみを透過させる検光子34を設けたので、表面が透
明膜30Aで覆れている印刷版30の測定に当って、透
明膜30Aの表面からの正反射光が除去され、印刷版3
0の表面からの反射光のうち検光子34の透過軸と平行
な光のみが光電子増倍管26に受光されるため、透明膜
30Aの表面からの反射光に影響されることなく、画像
面積を正確に測定することができる。しかも、構造的に
は、走査光を直線偏光とし、受光側に検光子34を設け
るだけでよいので、コンパクトにすることかできる。特
に、本実施例においては、直線偏光形レーザ41から放
射された直線偏光を1/4波長板42により円偏光特性
を有する光に変換し、この光を走査ミラー25Aと一体
的に回動する偏光子43によりその透過光が印刷版30
へ入射する際入射面と平行な偏光面をもつ直線偏光に変
換するようにしたので、その透過光を走査ミラー25A
によって印刷版30のXおよびY方向へ走査させる際、
その走査の任意の点において入射光の偏光面を入射面に
対して平行に保つことができ、従って受光側において印
刷版30の表面からの反射光のみを確実に受光させるこ
とができる。
Therefore, in this embodiment, while the linearly polarized light is scanned in the X and Y directions of the printing plate 30 by rotating the scanning mirror 25A, the printing plate 30 is placed between the photomultiplier tube 26 and the printing plate 30 on the light receiving side. Since the analyzer 34 is provided to transmit only light having a plane of polarization perpendicular to the light incident on the transparent film 30, when measuring the printing plate 30 whose surface is covered with the transparent film 30A, the light from the surface of the transparent film 30A can be measured. The specularly reflected light of printing plate 3 is removed.
Of the light reflected from the surface of the transparent film 30A, only the light parallel to the transmission axis of the analyzer 34 is received by the photomultiplier tube 26, so the image area is not affected by the light reflected from the surface of the transparent film 30A. can be measured accurately. Furthermore, in terms of structure, it is only necessary to use linearly polarized scanning light and to provide the analyzer 34 on the light receiving side, so it can be made compact. In particular, in this embodiment, the linearly polarized light emitted from the linearly polarized laser 41 is converted into light having circularly polarized characteristics by the quarter-wave plate 42, and this light is rotated integrally with the scanning mirror 25A. The transmitted light is transmitted to the printing plate 30 by the polarizer 43.
When it enters the scanning mirror 25A, the transmitted light is converted into linearly polarized light with a plane of polarization parallel to the plane of incidence.
When scanning the printing plate 30 in the X and Y directions by
The plane of polarization of the incident light can be kept parallel to the plane of incidence at any point during the scan, and therefore only the light reflected from the surface of the printing plate 30 can be reliably received on the light receiving side.

ところで、透明膜での反射光と屈折光の強度は、入射角
によって変わるが、このほかに入射光の偏光面と入射面
との間の角度にも関係する。入射光が入射面内に平行な
偏光面をもつとき、屈折光の強度は最大、反射光の強度
は最小となる。一方、入射光が入射面と直交する偏光面
をもつとき、屈折光の強度は最小、反射光の強度は最大
となる。
Incidentally, the intensity of reflected light and refracted light on a transparent film varies depending on the angle of incidence, but is also related to the angle between the polarization plane of the incident light and the plane of incidence. When incident light has a plane of polarization parallel to the plane of incidence, the intensity of refracted light is maximum and the intensity of reflected light is minimum. On the other hand, when the incident light has a plane of polarization perpendicular to the plane of incidence, the intensity of the refracted light is minimum and the intensity of reflected light is maximum.

従って、測定精度を上げる意味からは、印刷版30への
入射光の偏光面が入射面と平行になるように、偏光子4
3を調整することが望ましい。
Therefore, in order to improve measurement accuracy, the polarizer 4 should be used so that the plane of polarization of the light incident on the printing plate 30 is parallel to the plane of incidence.
It is desirable to adjust 3.

なお、上述した実施例では光源として直線偏光形レーザ
41を用いた場合について説明したが、光源としては、
例えば無偏光形レーザおよび偏光フィルタの組合せ、或
いは通常の白熱電球、コリメータレンズおよび偏光フィ
ルタの組合せでも同様な効果を得ることができる。また
、各実施例では、被測定物としてオフセット印刷機用の
印刷版を対象としたが、本発明は、これに限られるもの
ではない。
In the above-mentioned embodiment, the case where the linearly polarized laser 41 was used as the light source was explained, but as the light source,
For example, a similar effect can be obtained by a combination of a non-polarized laser and a polarizing filter, or a combination of an ordinary incandescent light bulb, a collimator lens, and a polarizing filter. Further, in each of the examples, a printing plate for an offset printing machine was used as the object to be measured, but the present invention is not limited to this.

以上の通り、本発明によれば、表面が透明膜で被覆され
ている画像の場合でも、コンパクトな構造で、かつ正確
に画像面積を測定可能な画像面積測定装置を提供するこ
とができる。
As described above, according to the present invention, it is possible to provide an image area measuring device that has a compact structure and can accurately measure the image area even in the case of an image whose surface is covered with a transparent film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来の絵柄面積率測定装置の測定
原理を説明するための図、第3図は画像面積測定装置の
基本原理を示す図、第4図は同上装置における被測定面
と受光面との関係を説明するための図、第5図は同上装
置における受光特性を示す図、第6図は第3図の装置を
改良した画像面積測定装置を説明するための図、第7図
は同上装置における遮光板の位置関係を示す図、第8図
は同上装置における受光特性を示す図、第9図は本発明
の画像面積測定装置の一実施例を示す図、第10図は同
上装置における印刷版と光学系との配置関係を示す図、
第11図および第12図は光電変換部を示す図、第13
図は偏光特性を説明するための図である。 22・・・ステッピングモータ、25A・・・走査ミラ
ー、25B・・・走査器、26・・・光電子増倍管、2
7・・・遮光板、30・・・被測定画像、32・・・光
走査部、33・・・光電変換部、34・・・検光子、3
5・・・演算部、41・・・直線偏光形He−Neレー
ザー、42・・・1/4波長板、43・・・偏光子。 代理人 弁理士 木 下 實 三(ほか1名)第1図 □ 第6図 第7図 1゜ 第8図
Figures 1 and 2 are diagrams for explaining the measurement principle of the conventional picture area ratio measuring device, Figure 3 is a diagram showing the basic principle of the image area measuring device, and Figure 4 is the surface to be measured in the same device. FIG. 5 is a diagram showing the light-receiving characteristics of the same device as above; FIG. 6 is a diagram explaining an image area measuring device improved from the device shown in FIG. 3; 7 is a diagram showing the positional relationship of light shielding plates in the same device as above, FIG. 8 is a diagram showing light receiving characteristics in the same device, FIG. 9 is a diagram showing an embodiment of the image area measuring device of the present invention, and FIG. is a diagram showing the arrangement relationship between the printing plate and the optical system in the same device as above,
Figures 11 and 12 are diagrams showing the photoelectric conversion section, and Figure 13 is a diagram showing the photoelectric conversion section.
The figure is a diagram for explaining polarization characteristics. 22...Stepping motor, 25A...Scanning mirror, 25B...Scanner, 26...Photomultiplier tube, 2
7... Light shielding plate, 30... Image to be measured, 32... Optical scanning section, 33... Photoelectric conversion section, 34... Analyzer, 3
5... Arithmetic unit, 41... Linearly polarized He-Ne laser, 42... 1/4 wavelength plate, 43... Polarizer. Agent Patent attorney Minoru Kinoshita (and 1 other person) Figure 1□ Figure 6 Figure 7 1゜Figure 8

Claims (9)

【特許請求の範囲】[Claims] (1)反射率の異なる2つの領域を有する被測定画像と
、光源と、この光源からの光を前記被測定画像上へ走着
させる光走査部と、前記被測定画像からの反射光を受光
し、それを受光光量に応じた電気信号に変換する光電変
換部と、この光電変換部で光電変換された電気信号を処
理して前記被測定画像の2つの領域のうち少なくとも一
方の面積を算出する演算部とを備え、前記光源と前記光
走査部との間に、前記光源からの光を円偏光持性をもつ
光に変換する第1の偏光手段と、前記光走査部の走査に
同期して変位され前記第1の偏光手段からの光を直線偏
光に変換する第2の偏光手段とをそれぞれ設けるととも
に、前記光電変換部の受光面側に前記被測定画像へ入射
された直線偏光の偏光面と直交する偏光面をもつ光のみ
を透過させる検光子を設けたことを特徴とする画像面積
測定装置。
(1) An image to be measured having two regions with different reflectances, a light source, a light scanning section that scans light from the light source onto the image to be measured, and a receiver that receives reflected light from the image to be measured. a photoelectric conversion unit that converts the received light into an electrical signal according to the amount of received light; and a photoelectric conversion unit that processes the photoelectrically converted electrical signal to calculate the area of at least one of the two regions of the image to be measured. a first polarizing means for converting light from the light source into circularly polarized light, and a first polarizing means synchronized with the scanning of the optical scanning section, between the light source and the optical scanning section; and a second polarizing means that is displaced to convert the light from the first polarizing means into linearly polarized light. An image area measuring device characterized by being provided with an analyzer that transmits only light having a polarization plane perpendicular to the polarization plane.
(2)特許請求の範囲第1項において、前記光走査部を
、前記光源からの光を前記被測定画像上へ照射させる走
査ミラーと、この走査ミラーを前記光源からの光の光軸
と直交する軸を中心として回動させ光源からの光を前記
被測定画像上のX方向へ向って走査させる主走査器と、
前記走査ミラーを前記光源からの光の光軸を中心として
回動させ光源からの光を前記被測定画像上のY方向へ向
って走査させる副走査器とから構成したことを特徴とす
る画像面積測定装置。
(2) In claim 1, the light scanning section includes a scanning mirror that irradiates light from the light source onto the image to be measured, and the scanning mirror is arranged orthogonal to the optical axis of the light from the light source. a main scanner that rotates around an axis to scan the light from the light source in the X direction on the image to be measured;
and a sub-scanner that rotates the scanning mirror around the optical axis of the light from the light source to scan the light from the light source in the Y direction on the image to be measured. measuring device.
(3)特許請求の範囲第2項において、前記被測定画像
を、前記走査ミラーを中心とする円弧状にかつ主走査器
および副走査器によって走査されるいずれか一方向へ向
って彎曲させたことを特徴とする画像面積測定装置。
(3) In claim 2, the image to be measured is curved in an arc shape centered on the scanning mirror and toward one of the directions scanned by a main scanner and a sub-scanner. An image area measuring device characterized by:
(4)特許請求の範囲第3項において、前記光電変換部
を、光電子増倍管と、この光電子増倍管と被測定画像と
の間に設けられ被測定画像の彎曲方向と直交する方向へ
の走査において被測定画像から光電子増倍管への光の入
射角が小さい程被測定画像からの反射光を減衰させる遮
光板とから構成したことを特徴とする画像面積測定装置
(4) In claim 3, the photoelectric conversion section is provided between a photomultiplier tube and an image to be measured, and is arranged in a direction perpendicular to a curvature direction of the image to be measured. An image area measuring device comprising: a light shielding plate that attenuates reflected light from the image to be measured as the angle of incidence of light from the image to be measured to the photomultiplier tube decreases during scanning.
(5)特許請求の範囲第1項ないし第4項のいずれかに
おいて、前記光源を直線偏光形レーザーとしたことを特
徴とする画像面積測定装置。
(5) An image area measuring device according to any one of claims 1 to 4, characterized in that the light source is a linearly polarized laser.
(6)特許請求の範囲第1項ないし第4項のいずれかに
おいて、前記光源を、無偏光形レーザーと、偏光フィル
タとから構成したことを特徴とする画像面積測定装置。
(6) An image area measuring device according to any one of claims 1 to 4, characterized in that the light source includes a non-polarized laser and a polarizing filter.
(7)特許請求の範囲第1項ないし第6項のいずれかに
おいて、前記第1の偏光手段を1/4波長板としたこと
を特徴とする画像面積測定装置。
(7) An image area measuring device according to any one of claims 1 to 6, characterized in that the first polarizing means is a quarter wavelength plate.
(8)特許請求の範囲第1項ないし第7項のいずれかに
おいて、前記第2の偏光手段を偏光子としたことを特徴
とする画像面積測定装置。
(8) An image area measuring device according to any one of claims 1 to 7, characterized in that the second polarizing means is a polarizer.
(9)特許請求の範囲第1項ないし第8項のいずれかに
おいて、前記被測定画像を、オフセット印刷版としたこ
とを特徴とする画像面積測定装置。
(9) An image area measuring device according to any one of claims 1 to 8, characterized in that the image to be measured is an offset printing plate.
JP57234303A 1982-12-27 1982-12-27 Apparatus for measuring image area Granted JPS59120806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57234303A JPS59120806A (en) 1982-12-27 1982-12-27 Apparatus for measuring image area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57234303A JPS59120806A (en) 1982-12-27 1982-12-27 Apparatus for measuring image area

Publications (2)

Publication Number Publication Date
JPS59120806A true JPS59120806A (en) 1984-07-12
JPH0259923B2 JPH0259923B2 (en) 1990-12-13

Family

ID=16968879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57234303A Granted JPS59120806A (en) 1982-12-27 1982-12-27 Apparatus for measuring image area

Country Status (1)

Country Link
JP (1) JPS59120806A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103090791A (en) * 2013-01-08 2013-05-08 中联重科股份有限公司 Measuring system, method and device for bulk materials and material piling and taking control system
WO2015122513A1 (en) * 2014-02-17 2015-08-20 富士フイルム株式会社 Reference mark detection method for planographic printing plate, processing method for planographic printing plate, and a printing method
WO2022028016A1 (en) * 2020-08-05 2022-02-10 中冶长天国际工程有限责任公司 Material pile stocktaking system and method for raw material yard

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341487A (en) * 1986-08-06 1988-02-22 Takasago Corp Ruthenium-phosphin complex

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6341487A (en) * 1986-08-06 1988-02-22 Takasago Corp Ruthenium-phosphin complex

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103090791A (en) * 2013-01-08 2013-05-08 中联重科股份有限公司 Measuring system, method and device for bulk materials and material piling and taking control system
CN103090791B (en) * 2013-01-08 2015-06-10 中联重科股份有限公司 Measuring system, method and device for bulk materials and material piling and taking control system
WO2015122513A1 (en) * 2014-02-17 2015-08-20 富士フイルム株式会社 Reference mark detection method for planographic printing plate, processing method for planographic printing plate, and a printing method
WO2022028016A1 (en) * 2020-08-05 2022-02-10 中冶长天国际工程有限责任公司 Material pile stocktaking system and method for raw material yard

Also Published As

Publication number Publication date
JPH0259923B2 (en) 1990-12-13

Similar Documents

Publication Publication Date Title
US5436464A (en) Foreign particle inspecting method and apparatus with correction for pellicle transmittance
KR970072024A (en) Projection exposure equipment
JPH0727857B2 (en) Projection optics
US6222903B1 (en) Laminography system having a view selector with prism
JPS59120806A (en) Apparatus for measuring image area
KR970062822A (en) Exposure device
JPH0915151A (en) Diffusion characteristic measuring device
CN115698628B (en) Measurement system and method for measuring diagonal diffraction-based overlay target
KR0170783B1 (en) Scanning device for optically scanning a surface along the line
JP2776823B2 (en) Optical detector
JPH11135411A (en) Scanning aligner
JPH0823484B2 (en) Device for orienting, inspecting and / or measuring two-dimensional objects
JPH07234108A (en) Measuring apparatus
JPH11132940A (en) Apparatus and method for measurement of birefringence
JPH0968462A (en) Device for measuring reflection coefficient
JP3203853B2 (en) Inspection device for mounted printed circuit boards
JPH11183151A (en) Transparent sheet inspecting equipment
JP2950226B2 (en) Height measuring device
JP3575576B2 (en) Surface condition inspection apparatus and inspection method
JPH0642930A (en) Method and apparatus for measuring height of lead
JP3399468B2 (en) Inspection device for mounted printed circuit boards
KR200144702Y1 (en) Lens focus compensator for semiconductor manufacturing equipment
JPH08111361A (en) Surface position detector
RU1770850C (en) Method of determining spectral directional - hemispheric refraction coefficients of specimens
JPH11167146A (en) Method and device for aligning optical axis of line sensor camera and line sensor camera provided with it