JPS59119312A - Hybrid optical integrated device - Google Patents

Hybrid optical integrated device

Info

Publication number
JPS59119312A
JPS59119312A JP23281682A JP23281682A JPS59119312A JP S59119312 A JPS59119312 A JP S59119312A JP 23281682 A JP23281682 A JP 23281682A JP 23281682 A JP23281682 A JP 23281682A JP S59119312 A JPS59119312 A JP S59119312A
Authority
JP
Japan
Prior art keywords
lens
optical
wavelength
spherical lens
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23281682A
Other languages
Japanese (ja)
Inventor
Takeshi Koseki
健 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23281682A priority Critical patent/JPS59119312A/en
Publication of JPS59119312A publication Critical patent/JPS59119312A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM

Abstract

PURPOSE:To reduce the size of a device, to facilitate the assembling operation of elements, and to improve reliability by using a spherical lens which is obtained by forming a reflecting or translucent film on a plane running in the center as an optical circuit element. CONSTITUTION:The reflecting film 3 of the spherical lens 2b of a hybrid optical integrated device for, for example, four-wavelength multiplexing reflects light with wavelength lambda1 selectively, the reflecting film 3 of a spherical lens 2c reflects light with wavelength lambda2, and the reflecting film 3 of a spherical lens 2d reflects light with wavelength lambda3. Then, the light with wavelength lambda1 from a semiconductor laser element 5 is outputted through the spherical lenses 2b and 2a and multiplexed light of wavelengths lambda2-lambda4 admitted to the spherical lens 2a from the outside is passed through the spherical lens 2b and demultiplexed by the spherical lenses 2c and 2d respectively to be photodetected by photodetectors 7a-7c respectively. Consequently, the size of the device is reduced and the productivity and reliability are improved.

Description

【発明の詳細な説明】 本発明は小型化し、且つ気密封止の答易な構造のハイブ
リッド光集積装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hybrid optical integrated device that is miniaturized and has a structure that is easily hermetically sealed.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

波長多M丁光伝送を行う為の分波器や合波器、更にはパ
ッシブな光分配を行う光ネットワークで用いられる光分
岐合流素子等の光回路素子は、光フ゛アイバを有効に利
用した情報伝送システムを経済性良く構成する上で非常
に重要である。
Optical circuit elements such as demultiplexers and multiplexers for wavelength multi-wavelength optical transmission, as well as optical branching and merging elements used in optical networks that perform passive optical distribution, are information processing devices that effectively utilize optical fibers. This is very important in configuring a transmission system economically.

しかして従来、この柚の光回路素子として、例えば集束
性ロッドレンズによるマイクロオプティックスや、光フ
ァイバをテーパ状に加熱加工、、−7、63=ヵ7.7
ー2,ヵ7第2ユ。7(フィバオプティックスによるも
のが知られている。
However, in the past, as an optical circuit element of this yuzu, for example, micro-optics using a focusing rod lens, heating processing of optical fiber into a tapered shape, -7,63=ka7.7
-2, 7th U. 7 (Fiberoptics is known.

然し乍らこれらの光回路素子は、従来の光学レンズ系や
グリズム等に比較して微小光学素子と称せられるものの
、集束性レンズ等にあっては5喘程度の寸法を有してい
る。つ捷り電子回路ICのVLS Iチップと略同等な
大きさである。
However, although these optical circuit elements are called micro optical elements compared to conventional optical lens systems, grisms, etc., they have dimensions of about 5 mm for converging lenses and the like. It is approximately the same size as a VLSI chip for switching electronic circuit ICs.

この為、このような微小光学素子を用いて分波合波・分
岐・合流等の機能を呈する光装置(光回路)を構成した
場合、その寸法が2〜3Crn程度と大きなものとなっ
た。これ故、その信頼性を高めるべく、光装置全体を気
密封止してハイブリッド光集積装置を実現することが非
常に困難であった。しかもこのようなハイブリッド光集
積装置の組立ては全く手工業的と云わさるを得す、生産
性に極めて乏しいと云う問題があった。
For this reason, when an optical device (optical circuit) exhibiting functions such as demultiplexing, multiplexing, branching, and merging using such a microscopic optical element is constructed, its size becomes as large as about 2 to 3 Crn. Therefore, it has been extremely difficult to realize a hybrid optical integrated device by hermetically sealing the entire optical device in order to improve its reliability. Moreover, the assembly of such a hybrid optical integrated device is said to be entirely manual labor, and has the problem of extremely low productivity.

その反面、近時光フアイバケーブルの改良と価格の低廉
化が図られ、従来の同軸ケーブルを用いた電気的システ
ムに代る光ネツトワークシステムの開発が積極的に推進
されている。このような傾向を考慮しても、小型で信頼
性の高いハイブリッド光集積装置の開発が大きくクロー
ズアップされてきている。
On the other hand, in recent years, optical fiber cables have been improved and their prices reduced, and the development of optical network systems to replace electrical systems using conventional coaxial cables is being actively promoted. Even taking these trends into consideration, the development of compact and highly reliable hybrid optical integrated devices has been attracting a great deal of attention.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情を考慮してなされたもので、そ
の目的とするところは、素子のアッセンブリ作業が簡単
である等の生産性の向上を図り得、しかも小型化を図シ
、且つその信頼性を十分高めることのできる実用性の高
いノ・イブリッド光集積装置を提供す込ことにある。
The present invention has been made in consideration of these circumstances, and its purpose is to improve productivity by simplifying the assembly work of elements, and also to reduce the size of the device. The object of the present invention is to provide a highly practical non-hybrid optical integrated device that can sufficiently improve reliability.

〔発明の概要〕[Summary of the invention]

本発明は、中心を通る平面に誘電体多層膜等からなる反
射膜あるいは半透過膜を設けた球レンズを光回路素子と
して用いて所望の光学機能を呈するハイブリッド光集積
装置を実現したものである。
The present invention realizes a hybrid optical integrated device that exhibits a desired optical function by using a spherical lens, which has a reflective film or semi-transparent film made of a dielectric multilayer film or the like on a plane passing through the center, as an optical circuit element. .

〔発明の効果〕〔Effect of the invention〕

従って本発明によれば、レンズ系を為す球レンズの中心
を通る面内に反射膜または半透過膜が内蔵された微小な
光回路素子を用いるので、所望とする機能を呈する光装
置を非常にコンパクトに組立てることができ、その気缶
封止を簡易に行うことが可能となる。しかも、そのアッ
センブリ作業も容易に行うことが可能となり、信頼性の
高い光装置を生産性良く安価に実現できる。更には球レ
ンズが形成する光学系の開口数を十分大きくすることが
でき、光フアイバケーブルとの光学的結合を容易ならし
める等の実用上絶大なる効果が奏せられる。
Therefore, according to the present invention, a minute optical circuit element with a built-in reflective film or semi-transparent film in a plane passing through the center of a spherical lens constituting a lens system is used, so that an optical device exhibiting a desired function can be made very easily. It can be assembled compactly and can be easily sealed. Moreover, the assembly work can be easily performed, and a highly reliable optical device can be realized with good productivity and at low cost. Furthermore, the numerical aperture of the optical system formed by the ball lens can be made sufficiently large, and great practical effects such as facilitating optical coupling with an optical fiber cable can be achieved.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照して本発明の一実施例につき説明する
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は実施例装置の概略構成図である。この装置は4
波長多重用ノ・イブリッド光集積装置であって、シリコ
ン基板1上に球レンズ2(2a。
FIG. 1 is a schematic configuration diagram of an embodiment device. This device has 4
This hybrid optical integrated device for wavelength multiplexing includes a ball lens 2 (2a) on a silicon substrate 1.

2b〜2h)を集積して構成される。球レンズ2は例え
ば第2図に示すように、その中心を通る平面内に誘電体
多層膜や金属膜等からなる反射膜或いは半透過膜3を形
成したものである。
2b to 2h) are integrated. For example, as shown in FIG. 2, the ball lens 2 has a reflective film or a semi-transparent film 3 made of a dielectric multilayer film, a metal film, etc. formed in a plane passing through its center.

尚、ここでは上記半透過膜3を含んで、光の分波、合波
、分流、合流作用を呈するこの梅の膜を広軌の意味で反
射膜3と定義して説明する。
In this case, the semi-transparent film 3 is defined as the reflective film 3 in a broad sense, and the film that exhibits the functions of splitting, combining, splitting, and converging light will be described.

しかして、球レンズ3の中心を通る平面、つまシ赤道面
に設けられた反射膜3は、同球レンズ2を通ってレンズ
作用を受ける光に対して、第2図(b) K示すように
例えば半透過・半反射作用を呈する。この半透過・半反
射は、例えば波長選択的に行われる。
Therefore, the reflective film 3 provided on the equatorial plane, which is a plane that passes through the center of the spherical lens 3, reflects the light that passes through the spherical lens 2 and receives the lens action, as shown in FIG. 2(b) K. For example, it exhibits semi-transmissive and semi-reflective effects. This semi-transmission/semi-reflection is performed, for example, wavelength selectively.

これらの球レンズ2のうち、メイン球レンズ系を為す球
レンズ2a 、2b 、2c 、 2dは、前記シリコ
ン基板1上にフォトリングラフィによって高精度に穿た
れ例えば四角形状の保持穴4m 、4b、4c 、4d
にマウントされ、接着固定される。上記球レンズ2a、
2b、2c+2dは、例えば直径500μm1反射膜3
の直径を250μmとしたもので、これを保持する保持
穴4a〜4dは310μm口、深さ約70 μmに設定
される。
Among these ball lenses 2, the ball lenses 2a, 2b, 2c, and 2d forming the main ball lens system are formed with, for example, rectangular holding holes 4m, 4b, which are drilled with high precision on the silicon substrate 1 by photolithography. 4c, 4d
mounted and fixed with adhesive. the ball lens 2a;
2b, 2c+2d are, for example, 500 μm in diameter 1 reflective film 3
The diameter is 250 μm, and the holding holes 4a to 4d for holding this are set to have openings of 310 μm and a depth of approximately 70 μm.

そして、球レンズ2aは、その反射膜が上方向からの入
出力光を球レンズ2b側に反射するべく位置決めされ、
また球レンズ2b + 2c r2dは、その反射膜3
をメイン球レンズ系を通る光をそれぞれ横方向に反射す
る向きに位置決めして設けられている。
The ball lens 2a is positioned so that its reflective film reflects input and output light from above toward the ball lens 2b,
Moreover, the ball lens 2b + 2c r2d has its reflective film 3
are positioned so as to horizontally reflect the light passing through the main spherical lens system.

球レンズ2bに設けられた反射膜3は、波長λlの光の
みを反射するもので、上記球レンズ>bの横方向には波
長λ1のレーザ光を出力する面放射型の半導体レーザ素
子5が設けられている。この半導体レーザ素子5は、基
板1に集積された駆動回路6の制御を受けて発振レーザ
光を変調するものであシ、とのレーザ光は、素子5上に
設けられた球レンズ2eの反射膜3を介して反射され、
前記球レンズ2bに導入される。岡、この球レンズ2e
は、例えは直径300μm程度の大きさであシ、他@球
レンズ2f、2g。
The reflective film 3 provided on the ball lens 2b reflects only the light of wavelength λl, and in the lateral direction of the ball lens>b is a surface-emitting semiconductor laser element 5 that outputs laser light of wavelength λ1. It is provided. This semiconductor laser element 5 modulates an oscillated laser beam under the control of a drive circuit 6 integrated on the substrate 1. The laser beam is reflected by a ball lens 2e provided on the element 5. reflected through the membrane 3,
It is introduced into the ball lens 2b. Oka, this ball lens 2e
For example, the size is about 300 μm in diameter, and the other @ spherical lenses 2f and 2g.

2hも同様に構成される。これによって、半導体レーザ
素子5からの波長λlのレーザ光は、球レンズ2bから
球レンズ2aを介して外部に送出される。
2h is similarly configured. As a result, the laser beam of wavelength λl from the semiconductor laser element 5 is sent out from the ball lens 2b via the ball lens 2a.

また球レンズ2c、2dの横方向にはそれぞれフォトデ
テクタ7a、7bが設けられ、球レンズ2dの端部側に
はフォトデテクタ7cが設けられている。これらの7オ
トデテクタ7a。
Further, photodetectors 7a and 7b are provided in the lateral direction of the ball lenses 2c and 2d, respectively, and a photodetector 7c is provided on the end side of the ball lens 2d. These 7 Oto detectors 7a.

7b、7cは、その上に設けられた球レンズ2f。7b and 7c are ball lenses 2f provided thereon.

2g、2hを介して前記球レンズ2c、2dにて分波さ
れた光、つ丑り波長λ2 、λ3 、λ4の各党をそれ
ぞれ受光するもので、その受光信号は前記基板1上に集
積された検出回路8 a +8b、8cにてそれぞれ検
出されるようになっている。つまり、球レンズ2bの反
射膜3は波長λ1の光を、球レンズ2Cの反射膜3は波
長λ2の光を、寸だ球レンズ2dの反射膜3は波長λ3
の光を、それぞれ波長選択的に反射するものとなってい
る。そして、半導体レーザ素子5からの波長λ】の光は
、球レンズ2bから球レンズ2aを介して出力され、ま
た球レンズ2aに外部より導入された波長λ2 、λ3
 、λ4の多重化された光は球レンズ2bを介したのち
、球レンズ2c 、2dにてそれぞれ分波されてフォト
デテクタ7a、7b、7cにて各々受光検出されるもの
となっている。
2g and 2h, the light branched by the ball lenses 2c and 2d, each of which has the same wavelengths λ2, λ3, and λ4, is received, and the received light signals are integrated on the substrate 1. They are detected by detection circuits 8a+8b and 8c, respectively. In other words, the reflective film 3 of the spherical lens 2b receives light with a wavelength λ1, the reflective film 3 of the spherical lens 2C receives light with a wavelength λ2, and the reflective film 3 of the spherical lens 2d receives light with a wavelength λ3.
It is designed to selectively reflect the light of each wavelength. The light of wavelength λ] from the semiconductor laser element 5 is outputted from the ball lens 2b via the ball lens 2a, and the light of wavelength λ2, λ3 introduced into the ball lens 2a from the outside.
, λ4 passes through a ball lens 2b, is demultiplexed by ball lenses 2c and 2d, and is received and detected by photodetectors 7a, 7b, and 7c, respectively.

このような機能を呈する本装置は、球レンズ2a、2b
、2c、2dの大きさ、その他の条件を考慮しても3.
5閣程度の寸法でハイブリッド集積化することができる
。しかもメイン球レンズ系を構成する球レンズ2a l
 2b l 2c +2d自体が、その赤道面に反射膜
3をそれぞれ備えて分波・合波作用を呈するので、その
光学系が非詔にシンプルとなり、少ない部品点数で複雑
な光回路機能を実現することができる。また球レンズ作
用によって、光学系の開0数を大きくすることができ、
光ファイバとの光結合を容易ならしめる。また本装置は
上述したように小型であるから、その気密制止が容易で
あシ、(g軸性を十分高めることができる上、電気回路
集積化技術を有効に利用して装置を製造するととができ
る等、実用上多大なる効果が奏せられる。
This device exhibiting such a function uses ball lenses 2a and 2b.
, 2c, 2d, and other conditions, 3.
Hybrid integration can be achieved with the size of five cabinets. Moreover, the spherical lens 2a l that constitutes the main spherical lens system
2b l 2c + 2d itself has a reflective film 3 on its equatorial plane and exhibits a demultiplexing/combining effect, so its optical system becomes extremely simple, realizing complex optical circuit functions with a small number of parts. be able to. In addition, the numerical aperture of the optical system can be increased due to the spherical lens action,
Facilitates optical coupling with optical fibers. In addition, since this device is small as mentioned above, it is easy to keep it airtight (the g-axis property can be sufficiently improved, and the device can be manufactured by effectively utilizing electric circuit integration technology). It has great practical effects, such as being able to.

ところで、上述した赤道面に反射膜3を設けてなる球レ
ンズ2は、例えば次のようにして製作される。第3図は
その例を示すもので、先ず2板のレンズ媒質体11.1
2を準備する。そして、一方のレンズ媒質体11の一面
に所望とする光回路素子機能を為す誘電体多層膜13を
形成する。そして、この誘電体多層膜13をリソグラフ
ィ技術を用いる等してパターニングし、所定寸法の反射
膜3fそれぞれ形成する。そして、レンズ媒質体t−1
の上記反射膜3形成面にこの反射膜、9を挟んで前記他
方のレンズ媒質体12を接合して、ブロック体14を形
成する。
By the way, the above-mentioned ball lens 2 having the reflective film 3 provided on the equatorial plane is manufactured, for example, as follows. FIG. 3 shows an example of this. First, two lens media 11.1
Prepare 2. Then, a dielectric multilayer film 13 that functions as a desired optical circuit element is formed on one surface of one lens medium 11. Then, this dielectric multilayer film 13 is patterned using a lithography technique or the like to form each reflective film 3f of a predetermined size. And lens medium t-1
The other lens medium 12 is bonded to the surface on which the reflective film 3 is formed, with the reflective film 9 in between, to form a block body 14.

このブロック体14を図中破線で示すラインに沿ってダ
イシングし、前記反射膜3を中心位置としたキー−ビッ
ク体、15を複数個得る。これらのキュービック体15
0寸法は、所望とする球レンズの径より僅かに大きくす
る。しかるのち、これらのキュービック体15を、回転
研磨ドラム内に入れて回転研磨し、球体として球レンズ
2を得る。同、この回転研磨ドラムは、ボールベアリン
グの製造等に用いられるものであシ、これによって超高
精度な寸法確度が得られる。故に、曲率半径の小さい、
しかも屈折率差の大きい集束光学系を為し得る球レンズ
2を形成することが可能となる。但し、この球レンズ2
の赤道面に反射膜3を位置させる為には、キー−ビック
体15の段階における各部の寸法を正しく定めておくこ
とが必要である。
This block body 14 is diced along the broken line in the figure to obtain a plurality of key-vic bodies 15 with the reflective film 3 at the center. These cubic bodies 15
The zero dimension is made slightly larger than the desired diameter of the ball lens. Thereafter, these cubic bodies 15 are put into a rotating polishing drum and rotary polished to obtain a spherical lens 2 as a sphere. Similarly, this rotating polishing drum is used for manufacturing ball bearings, etc., and as a result, extremely high dimensional accuracy can be obtained. Therefore, the small radius of curvature,
Furthermore, it becomes possible to form a ball lens 2 that can form a focusing optical system with a large difference in refractive index. However, this ball lens 2
In order to position the reflective film 3 on the equatorial plane of the plane, it is necessary to correctly determine the dimensions of each part of the Ki-Vic body 15.

伺、球レンズ2は、例えは半割りにしたレンズ媒質ロッ
ドの切断面に誘電体多層膜を形成したのち、これを再び
結合し、このロッドを切断して球レンズの土台となるチ
ップを得、このチップを球面加工して製作するようにし
ても良い。
To make the ball lens 2, for example, a dielectric multilayer film is formed on the cut surface of a lens medium rod that is cut in half, and then this is recombined, and this rod is cut to obtain a chip that becomes the base of the ball lens. , this chip may be manufactured by machining it into a spherical surface.

かくしてここに、赤道面に反射膜3を備えだ微小寸法゛
の球レンズ2を得、これを基板1上に簡易にアッセンブ
リしてハイブリッド光集積装置を実現することが可能と
なる。つまり、従来の直方体形状の光学部材に反射膜を
形成したものを超小型化することは非常に困難である。
In this way, it is possible to obtain a ball lens 2 of microscopic size with a reflective film 3 on the equatorial plane, and to easily assemble this on the substrate 1 to realize a hybrid optical integrated device. In other words, it is extremely difficult to miniaturize a conventional rectangular parallelepiped optical member on which a reflective film is formed.

しかも数100μmオーダの寸法でこれをアッセンブリ
する場合、上記直方体の面を角度出しの基準面として役
立せることか困難であシ、斜めの入射光軸に対して偏移
を与え易い。この点1本装置に係る球レンズにあっては
、その中心を含む平面に反射膜3が存在する為にビーム
偏移がなく、超小型化しても、その高精度な機能を呈す
る膜の条件を維持することができる。史には、光学レン
ズ系機能を肩したまま分波・合波等の機能?:!Aする
ので、装置構成部品の寸法を容易に統一化することがで
き、そのアッセンブリ工程を簡易化ならしめる等の効果
が生じる。
Moreover, when assembling these with dimensions on the order of several hundred micrometers, it is difficult to use the surface of the rectangular parallelepiped as a reference surface for angle adjustment, and it is likely to cause deviation with respect to the oblique incident optical axis. In this regard, in the ball lens according to this device, since the reflective film 3 exists on a plane including the center, there is no beam deviation, and even if it is miniaturized, the film conditions are such that it can maintain its high-precision function. can be maintained. In history, functions such as demultiplexing and multiplexing while shouldering optical lens system functions? :! A, the dimensions of the device component parts can be easily unified, and the assembly process can be simplified.

また、各球レンズ20角度出しは、光を的手段を利用し
て行うことができ、球レンズ2の回動だけによって高精
度な位置決めを行い得る。
Further, the angle of each ball lens 20 can be adjusted using a light beam, and highly accurate positioning can be performed only by rotating the ball lens 2.

更には実施例に示したように、球レンズ2をシリコン等
の基板ノ上に平面的に光学配置して、所望とする回路機
能を実現することができるので、士粟生産的に極めて優
れていると云える。
Furthermore, as shown in the embodiment, the ball lens 2 can be optically arranged in a plane on a substrate such as silicon to realize the desired circuit function, which is extremely efficient in terms of productivity. I can say that there is.

このように、本装置によれば、従来よシ嘱望されてきた
揮々の要求を非常に効果的に満たし、超小型の信頼性の
高いハイブリッド光集積装置を枦供することができる。
As described above, according to the present device, it is possible to very effectively satisfy the various demands that have been desired in the past, and to provide an ultra-small and highly reliable hybrid optical integrated device.

ところで、球レンズ2の半径をR1その屈折率をnとし
た場合、球レンズ2の焦点距離fは次のように示される
By the way, when the radius of the spherical lens 2 is R1 and its refractive index is n, the focal length f of the spherical lens 2 is expressed as follows.

f=□・R・・・(1) 2(n−1) そして、その主ガウス面は第4図に示すように球の中心
を通る。(dH=R) 一方、光ビーム導波路の個有スポットサイズをωo1コ
ンフォーカル・パラメータをbとした場合、次の関係が
成立する。
f=□・R...(1) 2(n-1) The main Gaussian surface passes through the center of the sphere as shown in FIG. (dH=R) On the other hand, when the unique spot size of the optical beam waveguide and the ωo1 confocal parameter are set to b, the following relationship holds true.

但し、λは光の波長である。そして、この場合における
光ビームの安全領域は 0(d(”4f         ・・・(3)である
ことが知られている。同、上記dは、2つの球レンズ間
の中心間距離である。そして、d=4fに設定してなる
レンズ系はコンセントリック(共心)系と称され、まだ
d=2fなる関係に設定されたレンズ系はコンフォーカ
ル(共焦点)系と称をれている。
However, λ is the wavelength of light. It is known that the safe area of the light beam in this case is 0(d("4f...(3)). Also, d is the center-to-center distance between the two spherical lenses. A lens system with d=4f is called a concentric system, and a lens system with d=2f is called a confocal system. .

しかして今、上記コンセントリック・レンズ系を球レン
ズ2を用いて実現・した場合、この系に導ひかれる光は
第5図に示すように、球レンズ内における近軸光線領域
において平行ビームとなる。これ故、前記した球レンズ
2の赤道面に設けた反射膜3にて上記光?分波・合波・
分流・合流する場合に非常に都合が良い。然し乍ら、そ
の開口数が、例えば屈折率n=1.447、波長λ−1
,3μmとした場合、NA−0,07、角度にして約±
4°と小さいと云う問題がある。しかも球レンズをd=
4fと大きく離して設ける必要がある上、球レンズの寸
法、−取付位置の誤差を考慮した場合、上記距離dを僅
かに修正することが必要となる。閘、d)4fとした場
合、球レンズの数が5個であってもビームの発散が生じ
るので、上記修正は通常(d=4 f−ε)として行わ
れる。従って、理想的にはこのようなコンセントリック
系を形成して前記ハイブリッド光集積装置を実現するこ
とができるが、以下に示すように実際的にはコンフォー
カル系を形成する方が好ましいと云える。
However, if the above concentric lens system is realized using the spherical lens 2, the light guided by this system will become a parallel beam in the paraxial ray region within the spherical lens, as shown in Figure 5. Become. Therefore, the above-mentioned light is reflected by the reflective film 3 provided on the equatorial plane of the above-mentioned ball lens 2. Demultiplexing/combining/
Very convenient when dividing or merging streams. However, the numerical aperture is, for example, refractive index n=1.447, wavelength λ-1
, 3μm, NA-0.07, angle approximately ±
There is a problem that the angle is small at 4°. Moreover, the spherical lens is d=
4f, and it is necessary to slightly modify the above-mentioned distance d when taking into consideration errors in the dimensions of the ball lens and the mounting position. If the lock is d) 4f, beam divergence will occur even if the number of ball lenses is five, so the above correction is usually performed as (d=4 f-ε). Therefore, although ideally such a concentric system could be formed to realize the hybrid optical integrated device, it is actually preferable to form a confocal system as shown below. .

ゝ即チ、コンフォーカル・レンズ系を球レンズを用いて
構成した場合、第6図に示すように近軸光線領域におい
て、d=2f±εの範囲で光ビームは安定である。そし
て、各球レンズ間において、発散ビーム・収束ビームが
交互に生じることになる。従って、この場合、上記交互
に生じる発散ビーム・収束ビームと光源や光検出器との
結合を工夫することが必要となるが、その実現は比較的
容易である。これにも増して、このようなコンフォーカ
ル・レンズ系の開口数NAは0.25以上と大きく、開
口数NAが02程度の光ファイバとの光結合を容易に行
わしめることができる。その上、レンズ系の構成長さを
前述したコンセントリック系の約半分にして、そのコン
パクト化を図り得る。また、球レンズ間の間隔dは、(
ε(0,05・R)程度の誤差を許容できるので、ビー
ム形状すれが大きな問題となることもない。
That is, when a confocal lens system is constructed using a spherical lens, the light beam is stable in the paraxial ray region in the range of d=2f±ε, as shown in FIG. Divergent beams and convergent beams are alternately generated between each spherical lens. Therefore, in this case, it is necessary to devise a way to couple the above-mentioned alternately occurring diverging beams and converging beams with the light source and the photodetector, but this is relatively easy to realize. Moreover, the numerical aperture NA of such a confocal lens system is as large as 0.25 or more, and optical coupling with an optical fiber having a numerical aperture NA of about 0.2 can be easily performed. Furthermore, the length of the lens system can be reduced to approximately half that of the concentric system described above, thereby making it more compact. Also, the distance d between the spherical lenses is (
Since an error of about ε(0,05·R) can be tolerated, beam shape deviation does not pose a major problem.

従って、以」二のことを考慮すれば、第7図に示すよう
にFM数の球レンズ2を用いてコンフォーカルレンズ系
を構成して、各球レンズ2に設けられた反射膜3を用い
て光ビームの合波・分波・合流・分流等を行わせるよう
にすればよい。
Therefore, considering the following two points, it is possible to construct a confocal lens system using FM number of ball lenses 2 as shown in FIG. Multiplexing, demultiplexing, merging, branching, etc. of the light beams may be performed by using the optical system.

尚、第7図中2111−j:波長λlの半導体レーザ素
子、22は波長λ4の半導体レーザ素子、23゜24、
’25は直方体ブロックの側面にそれぞれ設けられた受
光素子を示している。そして受光素子23によって−E
記波長λ1の光がモニタされ、また受光素子24.25
にて波長λ2、λ3の光がそれてれ検出されるようにな
っている。
In addition, in FIG. 7, 2111-j is a semiconductor laser element with a wavelength λl, 22 is a semiconductor laser element with a wavelength λ4, 23°24,
'25 indicates light-receiving elements provided on each side of the rectangular parallelepiped block. Then, -E is detected by the light receiving element 23.
The light having the wavelength λ1 is monitored, and the light receiving elements 24 and 25
The lights with wavelengths λ2 and λ3 are detected with a deviation.

そして、これらの光回路素子を集積した装置基板は、例
えは第8図に示す如き半導体IC用チップと同JfAな
ノ4ッケージ26にマウントされ、光の入出力部となる
窓部に設けられた光コネクタ27を介して、光フアイバ
ケーブルに接続されるように構成される。
The device board on which these optical circuit elements are integrated is mounted in the same JfA package 26 as the semiconductor IC chip as shown in FIG. The optical connector 27 is configured to be connected to an optical fiber cable via an optical connector 27.

このように本発明は、非常にコン・母りトな形状で所要
機能を果すハイブリッド光集積装置を実現することがで
き、実用上絶大なる効果を奏する。
As described above, the present invention can realize a hybrid optical integrated device that performs the required functions with a very compact shape, and has great practical effects.

冑、本発明は上記実施例に限定されるものではない。例
えば装置に組込む球レンズの数やその反射膜の機能等は
仕様に応じて定めれはよいものであ、る。1だ分波や合
波を行うものとして回折格子等が考えられるが、寸法的
な制約がらすれば、訪電体多層膜を用いる方が圧致的に
有利であると云える。要するに本発明は、その要旨を逸
脱しない範囲で種々変形して実施することができ、その
応用技術範囲が極めて広い。
However, the present invention is not limited to the above embodiments. For example, the number of ball lenses to be incorporated into the device, the functions of their reflective films, etc. can be determined depending on the specifications. Although a diffraction grating or the like can be considered as a device for single-wave splitting or multiplexing, it can be said that it is more advantageous to use a multilayer film of the current-visitor body in view of dimensional constraints. In short, the present invention can be implemented with various modifications without departing from the gist thereof, and its application technology range is extremely wide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置の平面構成図、第2図(
a) 、 (b)は球レンズの構成を示す図、第3図は
球レンズの製造工程を・示す図、第4図乃至第6図はそ
れぞれ球レンズによって構成される光学系を示す図、第
7図はコンフォーカル・レンズ系を構成した本装置の要
部構成図、第8図は本装置の外観図である。 2(2m、2b〜2h)・・・球レンズ、3・・・反射
膜(半透過膜を含む)、5・・・半導体レーザ素子、7
a 、7b 、7c・・・光デテクタ。
FIG. 1 is a plan configuration diagram of an embodiment of the device of the present invention, and FIG. 2 (
a) and (b) are diagrams showing the configuration of the ball lens, Figure 3 is a diagram showing the manufacturing process of the ball lens, and Figures 4 to 6 are diagrams each showing the optical system constituted by the ball lens. FIG. 7 is a block diagram of the main parts of the present device which constitutes a confocal lens system, and FIG. 8 is an external view of the present device. 2 (2m, 2b to 2h)... Ball lens, 3... Reflective film (including semi-transparent film), 5... Semiconductor laser element, 7
a, 7b, 7c... optical detectors.

Claims (2)

【特許請求の範囲】[Claims] (1)  中心を通る平面に反射膜または半透過膜を形
成してなる球レンズを光回路素子とし7て用いたことを
特徴とするノ・イブリッド光集積装置。
(1) A no-brid optical integrated device characterized in that a ball lens formed by forming a reflective film or a semi-transparent film on a plane passing through the center is used as the optical circuit element 7.
(2)反射膜または半透過膜は誘電体多層膜からなるも
のである特許請求の範囲第1項記載のハイブリッド光集
積装置0
(2) The hybrid optical integrated device 0 according to claim 1, wherein the reflective film or the semi-transparent film is made of a dielectric multilayer film.
JP23281682A 1982-12-25 1982-12-25 Hybrid optical integrated device Pending JPS59119312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23281682A JPS59119312A (en) 1982-12-25 1982-12-25 Hybrid optical integrated device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23281682A JPS59119312A (en) 1982-12-25 1982-12-25 Hybrid optical integrated device

Publications (1)

Publication Number Publication Date
JPS59119312A true JPS59119312A (en) 1984-07-10

Family

ID=16945219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23281682A Pending JPS59119312A (en) 1982-12-25 1982-12-25 Hybrid optical integrated device

Country Status (1)

Country Link
JP (1) JPS59119312A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758063A (en) * 1986-05-20 1988-07-19 Konechny Jr Edward T Optical device and circuit board set
US4789214A (en) * 1987-09-21 1988-12-06 Tacan Corporation Micro-optical building block system and method of making same
WO1990001176A1 (en) * 1988-07-18 1990-02-08 Konechny Edward Thomas Jr Optical device and circuit board set
US5887565A (en) * 1997-01-17 1999-03-30 Suzuki Motor Corporation Lubricating oil passage structure for engine
WO2020174222A1 (en) * 2019-02-27 2020-09-03 Colordyne Limited Apparatus for emitting or detecting two beams of light along a common axis

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758063A (en) * 1986-05-20 1988-07-19 Konechny Jr Edward T Optical device and circuit board set
US4789214A (en) * 1987-09-21 1988-12-06 Tacan Corporation Micro-optical building block system and method of making same
WO1990001176A1 (en) * 1988-07-18 1990-02-08 Konechny Edward Thomas Jr Optical device and circuit board set
US5887565A (en) * 1997-01-17 1999-03-30 Suzuki Motor Corporation Lubricating oil passage structure for engine
WO2020174222A1 (en) * 2019-02-27 2020-09-03 Colordyne Limited Apparatus for emitting or detecting two beams of light along a common axis
GB2595189A (en) * 2019-02-27 2021-11-17 Colordyne Ltd Apparatus for emitting or detecting two beams of light along a common axis
GB2595189B (en) * 2019-02-27 2023-06-14 Colordyne Ltd Apparatus for emitting or detecting two beams of light along a common axis

Similar Documents

Publication Publication Date Title
CN109983381B (en) Method for producing an optical system and optical system
EP1237019B1 (en) Optical coupling between optical wiring substrates
EP0309102B1 (en) Micro-optical building block system and method of making same
US5479540A (en) Passively aligned bi-directional optoelectronic transceiver module assembly
US5119448A (en) Modular micro-optical systems and method of making such systems
US6267515B1 (en) Optical coupling module and manufacturing method of the same
US5627923A (en) Three-dimensional opto-electric integrated circuit using optical wiring
JPH0378720A (en) Confocal laser scanning microscope
WO2002057814A2 (en) Diffraction grating-based wavelength selection unit
JPH04212110A (en) Electronic and optical module of optical fiber
KR20050074583A (en) Optical component for free-space optical propagation between waveguides
JPS61113009A (en) Optical multiplexer/demultiplexer
JP2002107580A (en) Optical device
US20010051021A1 (en) Phase mask consisting of an array of multiple diffractive elements for simultaneous accurate fabrication of large arrays of optical couplers and method for making same
US8531769B2 (en) Dispersion element, spectral device, and wavelength selective switch
JPS59119312A (en) Hybrid optical integrated device
WO2019244554A1 (en) Planar lightwave circuit and optical device
US6332051B1 (en) Beam splitting ball lens, method for its manufacture, and apparatus for its packaging
EP0463779A1 (en) Fibre optic waveguide beam splitter
US20050238284A1 (en) Optical multiplexer/demultiplexer, optical device, and optical transmission system
CN115413326A (en) Optical coupling and mode selective splitting or superimposing of optical fields
JP2002357731A (en) Chip for optical waveguide device, method for manufacturing the chip and optical waveguide device
JP6566022B2 (en) Integrated prism and integrated prism construction method
JP2002258084A (en) Light-wave circuit module and method of manufacturing the same
JP2005249966A (en) Optical member, its manufacturing method, and optical module