JPS59119259A - Automatic ultrasonic flaw detector for tube wall - Google Patents

Automatic ultrasonic flaw detector for tube wall

Info

Publication number
JPS59119259A
JPS59119259A JP57233247A JP23324782A JPS59119259A JP S59119259 A JPS59119259 A JP S59119259A JP 57233247 A JP57233247 A JP 57233247A JP 23324782 A JP23324782 A JP 23324782A JP S59119259 A JPS59119259 A JP S59119259A
Authority
JP
Japan
Prior art keywords
calibration
ultrasonic
inspection device
inspection
test piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57233247A
Other languages
Japanese (ja)
Other versions
JPS6367138B2 (en
Inventor
Kazuteru Naruo
成尾 一輝
Kenichi Tanimoto
谷本 健一
Fujio Ishibashi
石橋 富士夫
Katsuhiko Furuya
克彦 古谷
Mikio Kuge
久下 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KURAUTO KUREEMAA KK
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
KJTD Co Ltd
Original Assignee
NIPPON KURAUTO KUREEMAA KK
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
KJTD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KURAUTO KUREEMAA KK, Doryokuro Kakunenryo Kaihatsu Jigyodan, Power Reactor and Nuclear Fuel Development Corp, KJTD Co Ltd filed Critical NIPPON KURAUTO KUREEMAA KK
Priority to JP57233247A priority Critical patent/JPS59119259A/en
Priority to CA000443822A priority patent/CA1204851A/en
Publication of JPS59119259A publication Critical patent/JPS59119259A/en
Publication of JPS6367138B2 publication Critical patent/JPS6367138B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/30Arrangements for calibrating or comparing, e.g. with standard objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To perform calibrating operation at an optional point of time by incorporating a test piece for calibration and directing an ultrasonic wave from a probe freely to a tube to be inspected or the test piece for calibration. CONSTITUTION:An ultrasonic flaw detector has the double structure of an external cylinder 6 and a cylindrical member 5 and is fixed in a pressure tube by a fixing mechanism 1. The cylindrical member 5 is axially movable and an inspecting device body 2 which is rotated by a rotation driving mechanism 4 is positioned at the upper part. The inspecting device body 2 is fitted with ultrasonic wave probes 15a and 15b, acoustic mirrors 3a and 3b, test pieces 18a and 18b for calibration, and a direction change driving mechanism which changes directions of the acoustic mirrors 3a and 3b. The probe 15a detects a circumferential flaw and the probe 15b detects an axial flaw. The test pieces 18a and 18b are made by cutting the same material with the tube 1 and artificial flaws 34 and 35 are cut. The direction change driving mechanism for the acoustic mirrors and a moving mechanism for the test pieces are operated remotely from a control panel 12 to switch an inspection and a calibration state instantaneously.

Description

【発明の詳細な説明】 本発明は、被検査管の内部に挿入されてその管壁の超音
波探傷を行なう装置に関し、更に詳しくは、較正機能を
内蔵した連続回転式自動超音波探傷装置に関するもので
ある。特に限定されるものではないが、本発明は、圧力
管型原子炉の圧力管のように長尺で人間が接近しがたい
ような管状体の壁面を自動的に検査する場合に好適な装
置である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus that is inserted into the inside of a tube to be inspected and performs ultrasonic flaw detection on the tube wall, and more particularly relates to a continuously rotating automatic ultrasonic flaw detection apparatus with a built-in calibration function. It is something. Although not particularly limited, the present invention is a device suitable for automatically inspecting the wall surface of a long tubular body that is difficult for humans to access, such as the pressure pipe of a pressure tube nuclear reactor. be.

以下、圧力管型原子炉の圧力管を検査する場合を例にと
って従来技術並びに本発明について説明する。他の原子
炉の場合と同〜、圧力管型原子炉においても定期的に供
用期間中検査を実tAする必要があるが、圧力管の周辺
は、放射線環境下であるので、検査時に人間が長時間接
近していることができない。このため、現在、圧力管の
超音波探傷検査を行なう場合は、遠隔自動操作型の検査
装置を用いて圧力管の内部から超音波探傷検査を行なっ
ている。
Hereinafter, the prior art and the present invention will be explained by taking as an example the case of inspecting a pressure tube of a pressure tube type nuclear reactor. As with other nuclear reactors, pressure tube reactors also require regular inspections during their service life, but the area around the pressure tubes is under a radiation environment, so humans are not required to perform inspections during inspections. Cannot stay close for long periods of time. For this reason, at present, when performing ultrasonic flaw detection inspection on pressure pipes, the ultrasonic flaw detection inspection is performed from inside the pressure pipe using a remote automatic operation type inspection device.

この様な超音波探傷検査において検査データの信頼性を
確保するためには、時々較正用試験片を用いて検査装置
の較正を行なう必要がある。
In order to ensure the reliability of inspection data in such ultrasonic flaw detection, it is necessary to calibrate the inspection device from time to time using a calibration test piece.

従来のこの種の検査装置では、較正機構を内蔵しておら
ず、それ故、較正のため長時間に亘り非常に手間のかか
る作業が必要であった。つまり、圧力管の中で使用した
装置は、放射性物質で汚染されるので、装置の取扱いは
検査員がゴム手袋やマスク等を着用して慎重に行なわな
ければならないからである。また従来の装置では、検査
の前に装置の較正を行ない、数十分かかつて装置を圧力
管内に取付けてから検査を行ない、更に数十分かかつて
装置を圧力管から取出すまで′JA置の較正が行なえな
いので、較正は検査の前後だ(プに限られ、較正を行な
う時間間隔が長くなるし、また、検査時と同じ放射線条
件下での較正を行なえないので、検査データの信頼性が
必ずしも充分とは言えないと言う欠点があつた。
Conventional inspection devices of this type do not have a built-in calibration mechanism, and therefore require very long and labor-intensive work for calibration. In other words, equipment used inside pressure pipes becomes contaminated with radioactive materials, so inspectors must handle the equipment carefully, wearing rubber gloves and masks. In addition, with conventional equipment, the equipment is calibrated before inspection, the equipment is installed in the pressure pipe for several tens of minutes, then the equipment is inspected, and the equipment is removed from the pressure pipe for several tens of minutes. Since calibration cannot be performed, calibration is performed before and after the inspection (limited to 30 seconds), which increases the time interval between calibrations, and because calibration cannot be performed under the same radiation conditions as during the inspection, the reliability of the inspection data may be affected. The drawback was that it was not always sufficient.

更に従来の自動超音波探傷vZ置では、探触子を一方向
に連続回転さぜると、探触子に接続されている超音波探
傷信号を伝送するだめのケーブルがねじれて切断されて
しまうので、やむを得ず反復回転を繰返して検査する構
造となっていた。このため検査装置の駆動速度は、ある
一定の速度以上には上げられず、圧力−のような長尺管
(約5tIl)の検査を行なう場合には長時間を要する
という欠点もあった。尚、検査時間を短縮するために、
多数の探触子を円周方向に並べて被検査管の全周を一度
に検査し、探触子は軸方向のみに移動するような装置も
あるが、その様な検査装置は、検査速度は速くなるが非
常に高価なものとなってしまい、実用的でない。
Furthermore, with conventional automatic ultrasonic flaw detection VZ systems, if the probe is continuously rotated in one direction, the cable connected to the probe that transmits the ultrasonic flaw detection signal will be twisted and cut. Therefore, the structure had to be inspected by repeated rotations. For this reason, the driving speed of the inspection device cannot be increased above a certain speed, and when inspecting a long tube (approximately 5 tIl) such as a pressure tube, it takes a long time. In addition, in order to shorten the inspection time,
There is also equipment that inspects the entire circumference of the pipe to be inspected at once by arranging a large number of probes in the circumferential direction, and the probes move only in the axial direction. Although it is faster, it is also very expensive and impractical.

本発明の目的は、上記のような従来技術の欠点を解消し
、較正作業が極めて容易であり、検査データの信頼性が
非常に高く、しかも検査に必要な時間を著しく短縮する
ことが出来る管壁の自動超音波探傷装置を提供すること
にある。
It is an object of the present invention to solve the above-mentioned drawbacks of the prior art, to provide a tube that allows for extremely easy calibration work, extremely high reliability of inspection data, and that can significantly shorten the time required for inspection. Our objective is to provide automatic ultrasonic wall flaw detection equipment.

上記のような目的を達成すべく案出された本発明は、検
査装置本体に較正用試験片を内蔵し、超音波探触子から
発側された超音波の向きを被検査管方向もしくは較正用
試験片方向に自由に切換えつる414造とすることによ
って、検査装置本体を被検査管内に装着した状態で、任
意の時点で較正作業を行なうことができ、nつ摺動接点
を用いて検査信号や電力等の伝送を行なうことによって
、超音波探触子を一方向に連続回転させて超音波探傷が
行なえるように工夫した管壁の自動超音波探傷装置であ
る。要約すると本発明は、較正Ia溝を内蔵している点
と、連続回転式に超音波探傷を行なえるようにした点に
特徴がある。
The present invention, devised to achieve the above objects, incorporates a test piece for calibration in the main body of the inspection device, and changes the direction of the ultrasonic waves emitted from the ultrasonic probe to the direction of the tube to be inspected or to the calibration test piece. By using a 414-piece structure that can be freely switched in the direction of the test piece, calibration work can be performed at any time with the inspection device main body installed inside the pipe to be inspected. This is an automatic ultrasonic flaw detection device for pipe walls that is designed to perform ultrasonic flaw detection by continuously rotating an ultrasonic probe in one direction by transmitting signals, power, etc. To summarize, the present invention is characterized in that it has a built-in calibration groove Ia and that ultrasonic flaw detection can be performed in a continuous rotation manner.

以下、図面に基づき本発明の一実施例について説明する
。第1図は、圧力管型原子炉の圧力管内に挿入した自動
超音波探傷装置の概略構造を示す説明図である。超音波
探傷装置は、圧力管型原子炉において、圧力管1から燃
料集合体を引き扱いた後、該圧力管1内に下方から挿入
して圧力管の探傷を行なうもので、外筒6と、その内側
に位置し密閉構造をなす筒状部材5との二重構造をなし
、シール材9を備えた固定機4I410によって圧力管
1の内部に固定されるようになっている。筒状部材5は
、それに組込まれているピニオン7と外筒6の内面に取
付けられているラック8との噛合いにより軸方向に移動
自在である。また、筒状部材5の上部にはそれと同軸状
に検査装置本体2が位置し、該検査装置本体2は筒状部
材5に対して回転自在に軸支され、且つ回転駆動機構4
によって周方向に回転可能となっている。結局、上記機
構の組合せにより、検査装置本体2は、圧力管1の内部
で軸方向に移動自在であると同時に周方向にも回転自在
である。これら検査装置の運動は、ケーブル11を介し
て接続された制御盤12で遠隔的に操作できるようにな
っており、それによって検査装置本体2の軸方向位置や
周方向の向きを自由に制御ぐき、圧力管1の検査を行な
うのである。尚、検査時には圧力管1の内部には原子炉
−次冷却水(軽水)が入っている。
Hereinafter, one embodiment of the present invention will be described based on the drawings. FIG. 1 is an explanatory diagram showing a schematic structure of an automatic ultrasonic flaw detection device inserted into a pressure tube of a pressure tube nuclear reactor. The ultrasonic flaw detection device is used in a pressure tube reactor to detect flaws in the pressure tube by handling the fuel assembly from the pressure tube 1 and then inserting it into the pressure tube 1 from below. , has a double structure with a cylindrical member 5 located inside thereof and forming a sealed structure, and is fixed inside the pressure pipe 1 by a fixing device 4I410 equipped with a sealing material 9. The cylindrical member 5 is movable in the axial direction by engagement between a pinion 7 incorporated therein and a rack 8 attached to the inner surface of the outer cylinder 6. Further, an inspection device main body 2 is located coaxially with the upper part of the cylindrical member 5, and the inspection device main body 2 is rotatably supported on the cylindrical member 5, and has a rotary drive mechanism 4.
It is rotatable in the circumferential direction. As a result, due to the combination of the above-mentioned mechanisms, the inspection device main body 2 is movable in the axial direction inside the pressure pipe 1 and is also rotatable in the circumferential direction. The movement of these inspection devices can be controlled remotely from a control panel 12 connected via a cable 11, which allows the axial position and circumferential direction of the inspection device body 2 to be freely controlled. , the pressure pipe 1 is inspected. Incidentally, at the time of inspection, reactor secondary cooling water (light water) is contained inside the pressure pipe 1.

さて、検査装置本体内部の構造は第2図に示すbr+ 
<である。この実施例は、超音波探触子及びそれと関連
する部材がそれぞれ二相組込まれた例である。検査装置
本体2はその下端に固着されている回転駆動軸31によ
って回転自在の構造をなし、該回転駆動軸31は減速機
32を介してモータ33に接続される。検査装置本体2
の内部には、中心軸に関し略180°対称的な位置に取
付けられ軸方向下向きに超音波を放射する超音波探触子
15a 、 151)と、その超音波を反射する反射面
を備えた音響ミラー3a 、 3bと、各音響ミラー3
a、3bの近傍に設()られる較正用試験片18a 、
 18bと、前記音響ミラー3a、3bの向きを変える
変向駆動機構とが取付けられている。ここで、超音波探
触子15aは、圧力管1の円周方向に発生した疵を検出
する為のもので、他方、超音波探触子15bは軸方向の
疵を検出する為のものである。これらの超音波探触子1
5a 、 15bと音響ミラー3a、3bとはそれぞれ
の中心軸が一致づるように配置される。
Now, the internal structure of the inspection device body is shown in Figure 2.
< is. This embodiment is an example in which an ultrasonic probe and its related members are each incorporated in two phases. The inspection device main body 2 has a rotatable structure with a rotary drive shaft 31 fixed to its lower end, and the rotary drive shaft 31 is connected to a motor 33 via a speed reducer 32. Inspection device body 2
Inside, there are ultrasonic probes 15a, 151) mounted at approximately 180° symmetrical positions with respect to the central axis and emitting ultrasonic waves downward in the axial direction, and an acoustic transducer equipped with a reflective surface that reflects the ultrasonic waves. Mirrors 3a, 3b and each acoustic mirror 3
A calibration test piece 18a installed near a and 3b,
18b, and a direction changing drive mechanism that changes the direction of the acoustic mirrors 3a, 3b. Here, the ultrasonic probe 15a is used to detect flaws occurring in the circumferential direction of the pressure pipe 1, while the ultrasonic probe 15b is used to detect flaws in the axial direction. be. These ultrasound probes 1
The acoustic mirrors 5a, 15b and the acoustic mirrors 3a, 3b are arranged so that their respective central axes are aligned.

音響ミラー3a、3bは、超音波探触子15a。Acoustic mirrors 3a and 3b are ultrasound probes 15a.

151)から発射される超音波が、圧力管の超音波探傷
に適した入射角度で入射しうるようにその反射面は適正
な角度に傾斜させて仕上られる。
151) so that the ultrasonic waves emitted from the pressure pipe can be incident at an angle of incidence suitable for ultrasonic flaw detection of pressure pipes, so that the reflecting surface is finished inclined at an appropriate angle.

また、較正用試験片18a 、 18bは、被検査体で
ある圧力管1と同一材料から切り出され、それぞれその
表面に人工疵34.35が刻設されている。実線で示さ
れているものは、較正用試験片18a 、 181)の
前側表面(圧力管の内表面に相当)に加工した人工疵で
、破線で示すものは後側表面(圧力管の外表面に相当)
に加工した人工疵を示している。超音波探傷の場合、同
じ大きさの疵でも圧力管の内面の疵と外面の疵では検出
感度が異なるので、どちら側の疵に対しても較正が行な
えるように前側表面と後側表面にそれぞれ較正用の人工
疵34.35を設けているのである。
Further, the calibration test pieces 18a and 18b are cut out from the same material as the pressure pipe 1, which is the object to be inspected, and have artificial flaws 34 and 35 carved on their surfaces, respectively. The solid line indicates an artificial flaw processed on the front surface (corresponding to the inner surface of the pressure tube) of the calibration test piece 18a, 181), and the broken line indicates an artificial flaw processed on the rear surface (corresponding to the outer surface of the pressure tube). )
This shows the artificial flaws that have been processed. In the case of ultrasonic flaw detection, even if the flaw is the same size, the detection sensitivity is different for flaws on the inner surface of the pressure pipe and flaws on the outer surface, so in order to perform calibration for flaws on either side, Artificial flaws 34 and 35 for calibration are provided in each case.

音響ミラーの変向駆動機構並びにそれと関連した較正用
試験片の移動機構は次の如くである。
The acoustic mirror direction changing drive mechanism and the associated calibration test piece moving mechanism are as follows.

より理解を容易ならしめるため、その部分を扱き出して
描いたのが第3図〜第5図である。各音響ミラー3a 
、3bが取付けられる歯車20a。
In order to make it easier to understand, Figures 3 to 5 depict this part. Each acoustic mirror 3a
, 3b are attached to the gear 20a.

20bは、中心に位置する大歯車21と噛合して回転自
在であり、該大歯車21はそれと一体となったカム19
を有し、ミラー駆動軸29及び減速機27を介してモー
タ26に接続されている。モータ26は検査装置本体2
に取付けられているので、モータ26を駆a(φことに
よって、ミラー駆動軸29、延いては音響ミラー3a、
3bを回転駆動することができる。歯車20a 、 2
0b及び大歯車21は、その外周の一部分のみに歯を有
し、相互の噛合いが外れた後は、それ以上大歯車21が
回転しても歯車20a。
20b is rotatable by meshing with a large gear 21 located at the center, and the large gear 21 has a cam 19 integrated therewith.
and is connected to the motor 26 via a mirror drive shaft 29 and a reduction gear 27. The motor 26 is the inspection device main body 2
By driving the motor 26 (φ), the mirror drive shaft 29, and by extension the acoustic mirror 3a,
3b can be rotationally driven. Gears 20a, 2
0b and the large gear 21 have teeth only on a part of their outer peripheries, and even if the large gear 21 rotates any further after they are disengaged from each other, the gear 20a remains closed.

20 bは回転ぜずに清って一定の方向を向いたままの
状態でとどまるような形状である。また、前記カム19
はその上面及び側面に第1のカム面及び第2のカム面を
有する構造である。較正用試験片18aは、バネ17a
で下方へ押圧され第1のカム面に当接し、それにならっ
て軸方向に移動可能である。これに対して、較正用試験
片18bは、バネ17bで中心方向に押圧され第2のカ
ム面に当接し、カム19の運動に応じて圧力管1の半径
方向に移動可能である。この様な構造にしておくと、制
御盤12からの遠隔操作によってモータ26を回転させ
るだけで、検査状態と較正状態との切換えが即座に行な
えるようになる。
20b has a shape that does not rotate and remains oriented in a fixed direction. In addition, the cam 19
has a first cam surface and a second cam surface on its top and side surfaces. The calibration test piece 18a is the spring 17a.
The first cam surface is pressed downward and comes into contact with the first cam surface, and can be moved in the axial direction accordingly. On the other hand, the calibration test piece 18b is pressed toward the center by the spring 17b, comes into contact with the second cam surface, and is movable in the radial direction of the pressure tube 1 in accordance with the movement of the cam 19. With this structure, simply by rotating the motor 26 by remote control from the control panel 12, it becomes possible to immediately switch between the inspection state and the calibration state.

超音波探触子1!ia 、 151)の信号伝送用ケー
ブル14a 、 14bやモータ26への電力伝送用ケ
ーブル13は、ミラー駆動軸29の内部を通って回転駆
動軸31の外周面に形成されている回転側摺動接点27
1と接続される。該回転側摺動接点24の外周にはそれ
を取囲むよう配置された環状の摺動接点本体23が位置
し、その内周面に形成した固定側摺動接点22に前記回
転側摺動接点24が接触づる。これらの摺動接点を介し
て多芯ケーブル25により外部の装置と接続されること
になる。従って、検査装置本体2が回転しても、各ケー
ブル13.14a 、 14bはねじれることなく、固
定側摺動接点22と回転側摺動接点24との接触により
、外部装置との電気的接続が達成されることになる。な
お、符号28.30は、内部を気密に保つためのシール
リングである。
Ultrasonic probe 1! ia, 151) signal transmission cables 14a, 14b and the power transmission cable 13 to the motor 26 pass through the interior of the mirror drive shaft 29 to a rotating side sliding contact formed on the outer circumferential surface of the rotation drive shaft 31. 27
Connected to 1. An annular sliding contact main body 23 is located on the outer periphery of the rotating sliding contact 24 and is arranged to surround it, and the rotating sliding contact is connected to the fixed sliding contact 22 formed on the inner peripheral surface of the rotating sliding contact 24. 24 makes contact. It will be connected to an external device via a multicore cable 25 via these sliding contacts. Therefore, even if the inspection device main body 2 rotates, each cable 13.14a, 14b does not twist, and the electrical connection with the external device is maintained through contact between the fixed side sliding contact 22 and the rotating side sliding contact 24. will be achieved. Note that numerals 28 and 30 are seal rings for keeping the inside airtight.

次に、本装置の動作について説明する。第2図に示す状
態は、音響ミラー3a、3t+の反射面が圧力管1の内
面に向けられ、圧力管1の検査を行なっている状態を示
したものである。この状態から装置の較正を行なうには
、ミラー駆動軸29を上方から見て反時計廻りにモータ
26で回転させればよい。カム19と較正用試験片18
aの動きを第6図に、歯車21と音響ミラー3a、3b
の動ぎを第7図に、カム19と較正用試験片18bの動
きを第8図にそれぞれ模式的に示す。ミラー駆動11i
Il129が回転すると、大歯車21も反時計廻りに回
転し、それに伴って該大歯車21と噛合している歯車2
0a 、 2011はそれぞれ時計廻りに回転すること
になる。従って各歯車20a 、 20bに載置固定さ
れている音響ミラー3a、3bも回転しく第7図A、B
参照〉、それらの反射面はそれぞれ対応する較正用試験
片18a 、 181)の人工疵34.35の方向を向
(。歯車20a 、 20bの構造は、前述の如く、歯
が全周には加工されておらず、音響ミラー3a、3bの
反射面が人工疵34.35の中心位置を向いた時点で、
歯車21がそれ以上回転しても音響ミラー3a 、3b
は回転しな(なるように歯を途中で切取った構造となっ
ているので、音響ミラー3a、3bの回転はその位置で
止まる(第7図C〜E参照)。また、モータ26を回転
させるとカム19の働きで較正用試験片18a 、 1
8bも動かされる。つまり、第6図に示すように、カム
19が回転するとその第1のカム面と接触している較正
用試験片は矢印にて示されているーように上向きに運動
する(同図り、E参照〉。また第8図に示すように、第
2のカム面に当接している較正用試験片18bは矢印方
向、つまり図面−ヒ右手方向に動かされることになる(
同図り、E参照)。これらの動作をまとめて説明すると
、第6図〜第8図において、較正動作が開始されると、
まず、A、Bに示すように大歯車21が回転して歯車2
0a 、 2Gbを回動し、その上に搭載されている音
響ミラー3a、3bを較正用試験片18a 、 18b
の方に向かせる。そして、そのまま大歯車21が回転し
てもCに示すように音響ミラー3a、3bは動かず、実
線で示す前側表面の人工疵による較正が行なわれる。更
に大歯車21が回転し、D。
Next, the operation of this device will be explained. The state shown in FIG. 2 is a state in which the reflective surfaces of the acoustic mirrors 3a, 3t+ are directed toward the inner surface of the pressure pipe 1, and the pressure pipe 1 is being inspected. To calibrate the device from this state, the mirror drive shaft 29 can be rotated counterclockwise by the motor 26 when viewed from above. Cam 19 and calibration test piece 18
Figure 6 shows the movement of gear 21 and acoustic mirrors 3a and 3b.
The movements of the cam 19 and the calibration test piece 18b are schematically shown in FIG. 7 and FIG. 8, respectively. Mirror drive 11i
When the Il 129 rotates, the large gear 21 also rotates counterclockwise, and the gear 2 meshing with the large gear 21 rotates accordingly.
0a and 2011 will each rotate clockwise. Therefore, the acoustic mirrors 3a and 3b mounted and fixed on the respective gears 20a and 20b also rotate.
(see), their reflective surfaces point in the direction of the artificial flaws 34 and 35 of the corresponding calibration test pieces 18a and 181) (as described above, the structure of the gears 20a and 20b is such that the teeth are machined on the entire circumference). When the reflective surfaces of the acoustic mirrors 3a and 3b face the center position of the artificial flaw 34.35,
Even if the gear 21 rotates further, the acoustic mirrors 3a, 3b
The teeth are cut in the middle so that the acoustic mirrors 3a and 3b stop rotating at that position (see Fig. 7 C to E). When the calibration test piece 18a, 1 is
8b is also moved. That is, as shown in FIG. 6, when the cam 19 rotates, the calibration test piece in contact with the first cam surface moves upward as shown by the arrow (see E in the same figure). 〉.Also, as shown in Fig. 8, the calibration test piece 18b in contact with the second cam surface is moved in the direction of the arrow, that is, in the right-hand direction in the drawing.
(See figure E). To explain these operations collectively, in FIGS. 6 to 8, when the calibration operation is started,
First, as shown in A and B, the large gear 21 rotates and the gear 2
0a and 2Gb, and the acoustic mirrors 3a and 3b mounted thereon are used as calibration test pieces 18a and 18b.
turn it towards. Even if the large gear 21 continues to rotate, the acoustic mirrors 3a and 3b do not move as shown in C, and calibration is performed using the artificial flaw on the front surface shown by the solid line. The large gear 21 further rotates, and D.

Eに示すようにカム19によって較正用試験片18a 
、 18bが動かされると、破線で示す後側表面の人工
疵による較正が行なわれる。このようにして音響ミラー
3a、3bの回転と、較正用試験片18a 、 18b
がそれぞれ軸方向或いは径方向に移動することとによっ
て、それらの前面或いは後面に刻設されている人工疵に
、超音波探触子15a 、 1!ibから発射された超
音波が当り、装置の較正を行なうことができるのである
。尚、ミラー駆動軸29は、システムの較正動作が終る
と停止するようになっており、較正が終了したならば、
以上の逆の動作を行なう二とにより、検査状態に戻すこ
とができるので、直ちに圧力管の超音波探傷を頁間する
ことが出来る。前述の如く、超音波探触子15a 、 
15bの信号伝送用ケーブル14a 、 141)及び
モータ26への電力伝送用ケーブル13は、ミラー駆動
軸29の内部を通って回転側摺動接点24に接続され、
その先は固定側摺動接点22に接続された多芯のケーブ
ル25でまとめて制御盤12に接続されるにうになって
いるので、検査装置本体2を一方向に連続回転させても
ケーブルをねじることなく、超音波信号やモータ用電力
を伝送することができる。それ故、高速で検査装置本体
2を一方向に連続回転させ、圧力管1の超音波探傷を行
なうことが出来るのである。
As shown in E, the calibration test piece 18a is
, 18b is moved, a calibration is performed due to the artificial flaw on the rear surface shown in dashed lines. In this way, the rotation of the acoustic mirrors 3a, 3b and the calibration test pieces 18a, 18b
The ultrasonic probes 15a, 1! move in the axial direction or radial direction, respectively, to the artificial flaws carved on the front or rear surfaces of the ultrasonic probes 15a, 1! The ultrasonic waves emitted from the ib hit the ib, allowing the device to be calibrated. The mirror drive shaft 29 is designed to stop when the calibration operation of the system is completed, and once the calibration is completed,
By performing the above-mentioned operations in reverse order, the inspection state can be returned to, so that the ultrasonic flaw detection of the pressure pipe can be performed immediately. As mentioned above, the ultrasonic probe 15a,
The signal transmission cables 14a, 141) of 15b and the power transmission cable 13 to the motor 26 pass through the interior of the mirror drive shaft 29 and are connected to the rotating side sliding contact 24.
The end of the cable is connected to the control panel 12 with a multi-core cable 25 connected to the sliding contact 22 on the fixed side, so even if the inspection device main body 2 is continuously rotated in one direction, the cable will not be connected. Ultrasonic signals and motor power can be transmitted without twisting. Therefore, ultrasonic flaw detection of the pressure pipe 1 can be performed by continuously rotating the inspection device main body 2 in one direction at high speed.

以上、本発明の好ましい一実施例について詳述したが、
本発明は係る構造のみに限定されるものでなく、様々な
変更が可能である。この実施例では、管の軸方向に発生
した疵を検出するための探触子と円周方向に発生した疵
を検出するための探触子の二組が設けられているが、検
査の目的によっては、〜絹だけでもよく、逆に三組以上
あってもよい。また、較正用試験片の前面と後面に人工
疵を設けてそれぞれの人工疵に対して較正を行なえるよ
うにしたため、かなり複雑なIN 41!を要したが、
被検査管の内表面に発生した疵だけをみつければよいと
か、逆に外表面だけの疵をみつければよいといったよう
な検査の目的によっては、どちらか一方の疵だけを較正
用試験片に刻設すればよく、そのときには機構的にもか
なり簡略化しうる。逆に較正をより一層厳密に行なうた
めに、種々の大ぎざの疵を較正用試験片に複数個加工す
る場合もあり、その様な場合には機構がかなり複雑化す
る場合もありうる。
A preferred embodiment of the present invention has been described in detail above.
The present invention is not limited to this structure, and various modifications are possible. In this example, two sets of probes are provided, one for detecting flaws occurring in the axial direction of the tube and the other for detecting flaws occurring in the circumferential direction. Depending on the situation, you may only need ~silk, or you may have three or more pairs. In addition, artificial flaws were provided on the front and rear surfaces of the calibration test piece so that calibration could be performed for each artificial flaw, making the IN 41! It took
Depending on the purpose of the inspection, such as finding only flaws on the inner surface of the pipe to be inspected, or conversely finding flaws only on the outer surface, it may be necessary to engrave only one of the flaws on the calibration test piece. In that case, the mechanism can be considerably simplified. On the other hand, in order to carry out calibration even more strictly, there are cases where a plurality of various large-sized flaws are formed on the calibration test piece, and in such a case, the mechanism may become quite complicated.

本発明は、上記のように構成した管壁の自動超音波探傷
装置であるので、次のような優れた効果を奏し得るもの
である。まず較正用試験片を超音波探触子の近くに内蔵
し、必要に応じていつでも較正を行なうことができる4
M造であるので、検査の直前或いは直後に較正が行なえ
るだけでなく、必要に応じて検査の途中でも較正を行な
うことができ検査データの信頼性が著しく向上するぽか
、較正作業が極めて簡略化され、放射性物質で装置が汚
染されてしまうような使用環境にあってはとりわけ有効
で、較正に要する時間を従来の装置を用いた場合の十分
の一以下に短縮でき、しがも故銅線の影響で装置システ
ムの特性が多少変化しても検査時と同じ条件下で較正を
行なうことができるので、検査データの信頼性は更に一
層向上することになる。また、超音波探触子を連続回転
させつつ検査を行なうことが可能であるので、従来のに
うな多チャンネルの探触子を備えた超音波探傷装置より
もはるかに安価な装置が得られ、反復回転式の超音波探
傷装置よりも検査速度を二倍以上速くすることができる
。以上のような種々の効果を総合すると、従来の検査装
置と比べて、検査データの信頼性が著しく高まると同時
に、検査所要時間が従来の装置の1/2以下ですむ高性
能の自動超音波探傷装置が得られるので、極めて有効な
ものと言える。
Since the present invention is an automatic ultrasonic flaw detection device for tube walls configured as described above, it can achieve the following excellent effects. First, a calibration test piece is built in near the ultrasonic probe, and calibration can be performed whenever necessary4.
Since it is made of M construction, it is possible to calibrate not only immediately before or after the inspection, but also during the inspection if necessary, which greatly improves the reliability of the inspection data, and the calibration work is extremely simple. It is particularly effective in environments where the equipment is contaminated with radioactive materials, reducing the time required for calibration to less than one-tenth of the time required using conventional equipment, and it is possible to reduce the time required for calibration using conventional equipment. Even if the characteristics of the device system change somewhat due to the influence of the line, calibration can be performed under the same conditions as during the inspection, so the reliability of the inspection data is further improved. In addition, since it is possible to perform inspection while continuously rotating the ultrasonic probe, it is possible to obtain a device that is much cheaper than conventional ultrasonic flaw detection equipment equipped with multi-channel probes. The inspection speed can be more than twice as fast as that of a repeating rotation type ultrasonic flaw detector. Combining the various effects mentioned above, the reliability of inspection data is significantly increased compared to conventional inspection equipment, and at the same time, the time required for inspection is less than half that of conventional inspection equipment. Since it provides a flaw detection device, it can be said to be extremely effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す説明図、第2図は検査
装置本体及びその駆動部の詳細を示TI説明図、第3図
は音響ミラー変向駆動機構の説明図、第4図はその平面
図、第5図は背面図、第6図、第7図、第8図はそれぞ
れその動作説明図である。 1・・・圧力管、2・・・検査装置本体、3a、3b・
・・音響ミラー、15a 、 15b・・・超音波探触
子、18a、 1811・・・較正用試験片、22・・
・固定側摺動接点、24・・・回転側摺動接点。 特許出願人   動力炉・核燃料開発事業団向    
 日本クラウドクレーマー 株式会社 第1図 第2図
Fig. 1 is an explanatory diagram showing one embodiment of the present invention, Fig. 2 is an TI explanatory diagram showing details of the inspection device main body and its drive section, Fig. 3 is an explanatory diagram of the acoustic mirror deflection drive mechanism, and Fig. 4 The figure is a plan view, FIG. 5 is a rear view, and FIGS. 6, 7, and 8 are explanatory diagrams of the operation. 1... Pressure pipe, 2... Inspection device main body, 3a, 3b.
...Acoustic mirror, 15a, 15b...Ultrasonic probe, 18a, 1811...Calibration test piece, 22...
- Fixed side sliding contact, 24...Rotating side sliding contact. Patent applicant: Power Reactor and Nuclear Fuel Development Corporation
Japan Cloud Claimer Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、被検査管の内部に挿入されてその軸方向に移動自在
である筒状部材と、該筒状部材に同軸状に軸支され、該
筒状部材中の回転駆動機構により被検査管の内部でその
周方向に回転自在である検査装置本体とを有する超音波
探傷装置であって、前記検査装置本体は、その内部に、
暇音波探触子と、該超音波探触子から発射される超音波
が反射面に当るように位置する回転自在の音響ミラーと
、較正用試験片と、前記音響ミラーの向きを変える変向
駆動機構とを備え、該変向駆動機構による音響ミラーの
回動によって反射超音波の向きを被検査管方向もしくは
較正用試験片方向に自由に切換えうる構造をなし、かつ
、前記筒状部材による検査装置本体の回転支承部分に、
検査装置本体と外部との電気的接続のための摺動接点を
設けて、該検査装置本体が一方向に連続回転しつつ超音
波探傷できるようにしたことを特徴とする管壁の自動超
音波探傷装置。
1. A cylindrical member that is inserted into the inside of the tube to be inspected and is movable in its axial direction; An ultrasonic flaw detection device having an inspection device main body that is rotatable in the circumferential direction inside the inspection device main body, the inspection device main body having a
a free-time acoustic probe, a rotatable acoustic mirror positioned so that the ultrasonic waves emitted from the ultrasonic probe hit a reflecting surface, a calibration test piece, and a direction change for changing the direction of the acoustic mirror. a drive mechanism, and has a structure in which the direction of the reflected ultrasonic waves can be freely switched in the direction of the tube to be inspected or in the direction of the calibration test piece by rotating the acoustic mirror by the direction changing drive mechanism; On the rotation support part of the inspection device main body,
An automatic ultrasonic wave detector for pipe walls characterized in that a sliding contact is provided for electrical connection between the inspection device body and the outside, so that ultrasonic flaw detection can be performed while the inspection device body rotates continuously in one direction. Flaw detection equipment.
JP57233247A 1982-12-25 1982-12-25 Automatic ultrasonic flaw detector for tube wall Granted JPS59119259A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57233247A JPS59119259A (en) 1982-12-25 1982-12-25 Automatic ultrasonic flaw detector for tube wall
CA000443822A CA1204851A (en) 1982-12-25 1983-12-20 Automatic ultrasonic flaw detector for tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57233247A JPS59119259A (en) 1982-12-25 1982-12-25 Automatic ultrasonic flaw detector for tube wall

Publications (2)

Publication Number Publication Date
JPS59119259A true JPS59119259A (en) 1984-07-10
JPS6367138B2 JPS6367138B2 (en) 1988-12-23

Family

ID=16952073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57233247A Granted JPS59119259A (en) 1982-12-25 1982-12-25 Automatic ultrasonic flaw detector for tube wall

Country Status (2)

Country Link
JP (1) JPS59119259A (en)
CA (1) CA1204851A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01305351A (en) * 1988-06-03 1989-12-08 Hitachi Ltd Inspecting apparatus
JPH0232252A (en) * 1988-07-22 1990-02-02 Power Reactor & Nuclear Fuel Dev Corp Ultrasonic flaw detecting device for inside of branch piping
RU2607258C1 (en) * 2015-08-11 2017-01-10 Публичное акционерное общество "Транснефть" (ПАО "Транснефть") Method of intratubal ultrasonic inspection
RU2690975C1 (en) * 2018-10-03 2019-06-07 Публичное акционерное общество "Транснефть" (ПАО "Транснефть") Method of determining signal from pipe wall according to power lines statistics pid cd data
CN112782284A (en) * 2020-12-31 2021-05-11 上海源正科技有限责任公司 Ultrasonic detection auxiliary device for narrow space
CN114295678A (en) * 2021-12-07 2022-04-08 北京卫星制造厂有限公司 Detection equipment for satellite bearing cylinder

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6126497B2 (en) * 2013-08-30 2017-05-10 川崎重工業株式会社 Ultrasonic flaw detector and method for operating ultrasonic flaw detector
CN106770662B (en) * 2017-02-16 2023-04-07 沈阳工业大学 Online flaw detection device for tower of wind generating set

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01305351A (en) * 1988-06-03 1989-12-08 Hitachi Ltd Inspecting apparatus
JPH0232252A (en) * 1988-07-22 1990-02-02 Power Reactor & Nuclear Fuel Dev Corp Ultrasonic flaw detecting device for inside of branch piping
RU2607258C1 (en) * 2015-08-11 2017-01-10 Публичное акционерное общество "Транснефть" (ПАО "Транснефть") Method of intratubal ultrasonic inspection
RU2690975C1 (en) * 2018-10-03 2019-06-07 Публичное акционерное общество "Транснефть" (ПАО "Транснефть") Method of determining signal from pipe wall according to power lines statistics pid cd data
CN112782284A (en) * 2020-12-31 2021-05-11 上海源正科技有限责任公司 Ultrasonic detection auxiliary device for narrow space
CN114295678A (en) * 2021-12-07 2022-04-08 北京卫星制造厂有限公司 Detection equipment for satellite bearing cylinder
CN114295678B (en) * 2021-12-07 2023-09-19 北京卫星制造厂有限公司 Detection equipment for satellite force bearing barrel

Also Published As

Publication number Publication date
CA1204851A (en) 1986-05-20
JPS6367138B2 (en) 1988-12-23

Similar Documents

Publication Publication Date Title
US4757716A (en) Boresonic inspection system
US4663727A (en) Ultrasonic inspection system
JPS638552A (en) Ultrasonic inspection device for rotor
JPS5920102B2 (en) Ultrasonic flaw detection equipment
CN104698088A (en) Method and device for TOFD (Time of Flight Diffraction) detection of pressure pipeline on basis of ultrasonic phased array
WO1997035188A1 (en) Lamb wave ultrasonic probe for crack detection and measurement in thin-walled tubing
JPS59119259A (en) Automatic ultrasonic flaw detector for tube wall
CN104749245A (en) Water-immersion ultrasonic detection method for small-pipe-diameter and large-wall-thickness pipeline equipment
JPS59119210A (en) Automatic measuring device for inner diameter of tube
KR20150057686A (en) Sea floor pipe line detector and detecting method thereof
JPS6251422B2 (en)
EP0485352B1 (en) Tube testing apparatus
GB2280507A (en) SCAN - Method and apparatus for ultrasonic testing of tubular products.
US4211118A (en) Ultrasonic fault detector
JPS61191960A (en) Ultrasonic inspection of tube or bar material
JPH0232252A (en) Ultrasonic flaw detecting device for inside of branch piping
JPH11183445A (en) Flaw detector
JPH0344245B2 (en)
JPH01132961A (en) Apparatus for inspecting inside of atomic reactor
JPH0377056A (en) Ultrasonic inspection device
Naruo et al. Development of Pressure-Tube Inspection Equipment and Experience in “FUGEN”(ATR)
JP2002090352A (en) Axial flaw detecting ultrasonic flaw detector
JPS59126946A (en) Ultrasonic probe to be inserted into pipe
JPS62148852A (en) Ultrasonic flaw detection sensor for circulary sectioned material
JPH01132960A (en) Ultrasonic wave flaw detector in atomic reactor