JPS5911861B2 - Inspection method for glass joints - Google Patents

Inspection method for glass joints

Info

Publication number
JPS5911861B2
JPS5911861B2 JP50052514A JP5251475A JPS5911861B2 JP S5911861 B2 JPS5911861 B2 JP S5911861B2 JP 50052514 A JP50052514 A JP 50052514A JP 5251475 A JP5251475 A JP 5251475A JP S5911861 B2 JPS5911861 B2 JP S5911861B2
Authority
JP
Japan
Prior art keywords
glass
voltage
joined
current
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50052514A
Other languages
Japanese (ja)
Other versions
JPS51129281A (en
Inventor
栄三 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP50052514A priority Critical patent/JPS5911861B2/en
Publication of JPS51129281A publication Critical patent/JPS51129281A/en
Publication of JPS5911861B2 publication Critical patent/JPS5911861B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はガラス接合体の接合部の検査方法の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for inspecting joints of glass joints.

1対の被接合部材の接合予定部相互を重合し、この重合
された接合予定部を通電加熱中の溶融ガラスに浸漬して
引上げて上記被接合部材相互をガラス接合するいわゆる
ディップシール法や、軟質金属薄板の表裏両面にガラス
被覆したもので1対の被接合部材の接合予定面間に介在
させて重合し、圧接しながら加熱して上記被覆ガラスを
溶融させて上記被接合部材相互をガラス接合するための
ガラス接合用部材などの開発により、ガラス、セラミク
ス、金属など同質の被接合部材相互はもちろん異質の被
接合部材相互のガラス接合も容易になり、また、不銹鋼
やアルミニウムなど、従来金属ろうでは接合困難とされ
ていたものでもガラス接合が可能になり、益々応用範囲
が拡大されて来た。
A so-called dip sealing method in which the parts to be joined of a pair of members to be joined are mutually polymerized, and the polymerized parts to be joined are immersed in molten glass that is being heated with electricity and pulled up to glass-bond the members to be joined, A soft metal thin plate coated with glass on both the front and back surfaces is interposed between the surfaces to be joined of a pair of members to be joined, polymerized, and heated while being pressed together to melt the coated glass and bond the members to each other with glass. The development of glass bonding materials for bonding has made it easier to bond glass, ceramics, metals, and other similar materials, as well as dissimilar materials. It has become possible to join glass even with materials that were considered difficult to join with solder, and the range of applications has expanded.

しかし、このようにして得られたガラス接合体の接合の
良否を検出するには、従来接合部に荷重を加ぇてせん断
応力を測定したV)あるいは接合部を切断して切断面を
顕微鏡検査して気泡やガラスの欠けの有無を知る方法な
どが行われていた。しかし、これら従来の検査方法はい
ずれも破壊検査で全数検査は不可能で、したがつて製品
中に不良品が混入しやすいばかりか、荷重破壊試験では
試験データの偏差が大きく、抜取り個数を多くする必要
があV)労力と消用を多く必要とする欠点があつた。ま
た、接合体の接合の良否を検出する他の重要な項目とし
て接合体を熱湯と冷水とに交互に反復浸漬して異状の有
無を検査する反復熱衝撃試験がある。
However, in order to detect the quality of the bond in the glass bonded body obtained in this way, conventional methods have been to apply a load to the bonded part and measure the shear stress(V), or to cut the bonded part and examine the cut surface using a microscope. This method was used to determine whether there were air bubbles or chips in the glass. However, all of these conventional inspection methods are destructive tests, and 100% inspection is not possible. Therefore, not only are defective products easily mixed into the product, but also the deviation of test data is large in load-destructive tests, and a large number of samples are required. V) It has the disadvantage of requiring a lot of effort and use. In addition, another important item for detecting the quality of bonding of a bonded body is a repeated thermal shock test in which the bonded body is repeatedly immersed in hot water and cold water alternately and inspected for the presence or absence of abnormalities.

しかしこの試験も接合体の熱容量や熱伝導の良否などの
影響を受けやすく、データの偏差が大きいほか接合体が
発錆しやすいなどの不都合があり、さらに、この試験も
一種の破壊試験であるので、前述と同様全数検査が不可
能であるなどの欠点があつた。本発明はこのような従来
技術の欠点を除き、全数検査が可能で、良否を確実に判
定できるガラス接合体の検査方法を提供することを目的
とし、その要旨は、1対の導電性被接合部材をガラス接
合してなる接合体の上記被接合部材間に電圧を印加し、
この電圧とこの電圧によつて上記ガラス′接合部を通流
した電流との関係から上記ガラス接合部の接合状態およ
びまたはその強度の良否を判定することである。
However, this test is also susceptible to the heat capacity of the bonded body and the quality of heat conduction, and has disadvantages such as large deviations in data and the tendency for the bonded body to rust.Furthermore, this test is also a type of destructive test. Therefore, as mentioned above, there were drawbacks such as the impossibility of 100% inspection. The purpose of the present invention is to eliminate the drawbacks of the prior art and provide a method for inspecting a glass bonded body, which enables 100% inspection and reliably determines the quality of the glass bonded body. Applying a voltage between the joined members of the joined body formed by glass joining the members,
The purpose of this is to judge the bonding condition of the glass joint and/or its strength from the relationship between this voltage and the current flowing through the glass joint.

15以下、本考案の詳細を図示の実施例を参照して説明
する。
15, details of the present invention will be explained with reference to the illustrated embodiments.

1、2は端面相互を微小間隙を隔てて対向させた1対の
導電性被接合部材たとえば1対の金属管、3はこれら金
属管1,2間に介在して両者をガラス接合するガラス層
で、このガラス層3を含む上記端面近傍を接合部4と称
する。
Reference numerals 1 and 2 denote a pair of conductive members to be joined, such as a pair of metal tubes, whose end surfaces face each other with a minute gap in between; 3 a glass layer interposed between these metal tubes 1 and 2 to glass-bond them; The vicinity of the end face including this glass layer 3 is referred to as a joint portion 4.

5は上記1対の被接合部材1,2にそれぞれ出力側の各
端を接続する降圧トランス、6はこの降圧トランス5の
入力側に出力側を接続した降圧オートトランス、7はこ
のオートトランス6と交流電源8との間に介挿したスイ
ツチ、9は上記降圧トランス5と上記一方の被接合部材
2との間に介挿した電流計、10は上記降圧トランス5
の出力側の両端間に接続した電圧計である。
5 is a step-down transformer whose output side ends are connected to the pair of members 1 and 2 to be joined, 6 is a step-down autotransformer whose output side is connected to the input side of this step-down transformer 5, and 7 is this autotransformer 6. 9 is an ammeter inserted between the step-down transformer 5 and one of the members 2 to be joined; 10 is the switch inserted between the step-down transformer 5 and the AC power source 8;
This is a voltmeter connected across the output side of the .

いま、オートトランス6を調整してスイツチ7を閉成し
、両被接合部材1,2間に電圧vを印加する。
Now, the autotransformer 6 is adjusted, the switch 7 is closed, and a voltage v is applied between the two members 1 and 2 to be welded.

すると、接合部4には電圧Vによつて電流Iが通流する
。この電圧V}よび電流1は前述の電圧計10および電
流計9によつて測定される。この電流1は電圧Vおよび
ガラス層3の面積のほか、ガラス層3の厚さ、この層3
内に含まれる気泡、この層3の欠けの有無などによつて
定まる。そうして、ガラス層3の厚さは良好なガラス接
合を得るためにはできるだけ薄いことが必要で、数十μ
またはそれ以下が良いとされており1この程度の厚さで
は電気抵抗が0.1a4〜以下の小さな値を示めし、電
気を通し易くなる。そうして、接合部4のガラス層3の
厚さが薄くなるほど電気抵抗は小くなV1これに応じて
接合強度も増大する傾向を示すがガラス層3があまv薄
くなD過ぎてガラスの欠けが発生するようになると、電
気抵抗は逆に大きくな力、接合強度は逆に抵下する。し
たがつて、所定のガラス接合体においては、良好な接合
であるための電気抵抗値の範囲があり、これを予め実験
的に求めて訃き、前述のようにして電圧vと電流1との
関係を測定し、適当な範囲内にあるか否かを知れば、接
合強度はある程度判定できる。また、電圧Vを高めて行
くと、第2図示のグラフのように変化する。
Then, a current I flows through the junction 4 due to the voltage V. This voltage V} and current 1 are measured by the aforementioned voltmeter 10 and ammeter 9. This current 1 depends not only on the voltage V and the area of the glass layer 3, but also on the thickness of the glass layer 3, this layer 3
It is determined by the air bubbles contained therein, the presence or absence of chips in this layer 3, etc. The thickness of the glass layer 3 needs to be as thin as possible in order to obtain good glass bonding, and is several tens of microns thick.
It is said that a thickness of 1 or less is better, and a thickness of this order exhibits a small electrical resistance of 0.1a4 to 0.1a4 or less, making it easier to conduct electricity. As the thickness of the glass layer 3 of the joint part 4 becomes thinner, the electrical resistance decreases. When chipping occurs, the electrical resistance increases and the bonding strength decreases. Therefore, in a given glass bonded body, there is a range of electrical resistance values for good bonding, and this is determined experimentally in advance, and the voltage v and current 1 are calculated as described above. By measuring the relationship and knowing whether it is within an appropriate range, the bonding strength can be determined to a certain extent. Further, as the voltage V is increased, the voltage changes as shown in the graph shown in the second figure.

このグラフは横軸に電圧をVの単位でとV1縦軸に電流
!!:Aの単位でとつてある。そうして通常は曲線Aの
ように、電圧Vに応じて電流1も変化する。しかし、ガ
ラス層3内に気泡があつた9、厚さが均一でない場合に
は、曲線Bに示すように変則的な変化を示すので、電流
、電圧の関係を濶定して、このような欠陥の有無を判定
できる。一方、ガラス接合部4に電流を通流すれば、ジ
ユール熱で接合部4が加熱されるので、この発熱量が適
当になるよう予めオートトランス6を調節しておき、ス
イツチ7を閉成して通電すれば、接合部4の熱衝撃試験
を行うことができる。
In this graph, the horizontal axis shows voltage in units of V, and the vertical axis shows current! ! : Measured in units of A. Then, normally, as shown by curve A, current 1 also changes according to voltage V. However, if there are bubbles in the glass layer 3 or if the thickness is not uniform, irregular changes will occur as shown in curve B. The presence or absence of defects can be determined. On the other hand, if current is passed through the glass joint 4, the joint 4 will be heated by Joule heat, so adjust the autotransformer 6 in advance so that the amount of heat generated is appropriate, and close the switch 7. If current is applied to the bonded portion 4, a thermal shock test can be performed on the bonded portion 4.

これによると、接合部4の熱衝撃が適当に行われるので
、外部から加熱する従来の方法よりも測定値の偏差が小
く、また測定値の再現性を良くすることができるほか、
この熱衝撃試験で破損したものは電気抵抗が急増し、電
流計9の動きから容易に判定でき、確実に除去できるの
で、全数検査が可能になる。つぎに具体例について述べ
る。
According to this method, since the thermal shock of the joint part 4 is appropriately performed, the deviation of the measured values is smaller than that of the conventional method of heating from the outside, and the reproducibility of the measured values can be improved.
Those damaged in this thermal shock test have a rapid increase in electrical resistance, which can be easily determined from the movement of the ammeter 9, and can be reliably removed, making it possible to conduct a complete inspection. Next, a specific example will be described.

被接合部材1,2・・・・・・外径131t1L、内径
9T1LTILの軟鋼管ガラス層3・・・・・・PbO
−B2O3−SiO2系ガラス熱膨脹率112×10−
7/C.軟化温度354℃ まず、被接合部材1,2のそれぞれの接合予定端面を、
通電加熱中の粘度100ポイズ以下に溶融されたガラス
液に浸漬して引上げてガラス被覆する。
Parts to be joined 1, 2...Soft steel pipe glass layer 3...PbO with an outer diameter of 131t1L and an inner diameter of 9T1LTIL
-B2O3-SiO2 glass thermal expansion coefficient 112×10-
7/C. Softening temperature: 354°C First, the end faces of the members to be joined 1 and 2 to be joined are
It is immersed in a glass liquid melted to a viscosity of 100 poise or less during electrical heating and then pulled up to coat it with glass.

そののち、この被接合部材1,2の接合予定端面相互を
圧着しながら加熱してガラス接合する。このようにして
ガラス接合体50個を作9、第1図示のように組立てて
次の試験を行つた。まず、所望のせん断応力200kg
4i以上であることを試験するには印加電圧1Vで電流
15ないし30Aの範囲が適当であることを予め実験に
よつて確めた。つぎに、前記試験品に1Vの電圧を通流
して電流を測定したところ、次の結果を得た。
Thereafter, the end surfaces of the members to be joined 1 and 2 to be joined are heated while being pressed together to glass-join them. In this manner, 50 glass bonded bodies were made 9 and assembled as shown in Figure 1, and the following tests were conducted. First, the desired shear stress is 200 kg.
It was previously confirmed through experiments that a current range of 15 to 30 A at an applied voltage of 1 V is appropriate for testing whether the voltage is 4i or more. Next, when a voltage of 1V was passed through the test article and the current was measured, the following results were obtained.

電流が15ないし20Aの範囲内で 合格であつたもの 48個電流が1
5A未満で不合格であつたもの
2個つぎに、入力が40Wになるような電圧で
30秒間通電して熱衝撃を加え、接合部の破損の有無を
調べ次の結果を得た。
48 items passed the test with a current of 15 to 20A.
Those that failed with less than 5A
Next, a thermal shock was applied to the two pieces by applying a current at a voltage of 40 W for 30 seconds, and the presence or absence of damage at the joint was examined, and the following results were obtained.

電流試験で合格した48個中本試験 で合格したもの 44個電流試験
で合格した48個中本試験で破損したもの
4個電流試験で不合格であつた2個は全部
破損した。
48 items that passed the current test Items that passed the Nakamoto test 44 items that passed the current test 48 Items that were damaged during the Nakamoto test
The two that failed the four-piece current test were all damaged.

この熱衝撃試験で合格した44個についてせん断破壊応
力を求めたところ、いずれも970ないし280kg/
流2の範囲内にあVl2OOkT2以上を良品とする所
望値に合格していることが確認された。な訃、本試験を
適用する接合体の被接合部材は同種に限らず、たとえば
不銹鋼と銅、不銹鋼とアルミニウムなどの組合せでもよ
く、また、導電性があればアルミナと炭化チタンとの複
合体などでもよい。
When the shear fracture stress was determined for the 44 pieces that passed this thermal shock test, they all ranged from 970 to 280 kg/
It was confirmed that the value within the range of Flow 2 and above the desired value of Vl2OOkT2 is considered to be a good product. However, the parts to be joined to which this test is applied are not limited to the same type, and may be combinations of stainless steel and copper, stainless steel and aluminum, etc., or composites of alumina and titanium carbide, etc., as long as they are electrically conductive. But that's fine.

また、ガラスろうで直接接合できない不銹鋼と軟鋼との
組合せのように、熱膨脹率に大差のある被接合部材相互
の組合せの場合には、接合面間に銅やアルミニウムなど
の軟質金属の薄板を介してガラス接合すれば良好に接合
でき、このものも両接合面と軟質金属薄板との間にそれ
ぞれガラス層が介在しているので本発明試験方法を適用
できる。また、ガラス層の厚さが均一でない場合には、
電流がガラス層の薄い部分に集中して流れ、発熱が局部
的に差を生じるので、温度計を併用すると検査しやすい
In addition, in the case of a combination of parts to be joined that have large differences in coefficient of thermal expansion, such as a combination of stainless steel and mild steel that cannot be joined directly with glass solder, a thin plate of soft metal such as copper or aluminum may be used between the joining surfaces. Good bonding can be achieved by glass bonding using a method of glass bonding, and since a glass layer is interposed between both bonding surfaces and the soft metal thin plate, the test method of the present invention can also be applied to this case. Also, if the thickness of the glass layer is not uniform,
The current flows in a concentrated manner in the thin part of the glass layer, causing localized differences in heat generation, so inspection is easier if a thermometer is used in combination.

また、本発明試験方法に用いる電流は交流に限らず、直
流や高周波でもよい。
Further, the current used in the test method of the present invention is not limited to alternating current, but may be direct current or high frequency.

このように、本発明は1対の導電性被接合部材をガラス
接合してなる接合体の上記被接合部材間に電圧を印加し
、この電圧とこの電圧によつて上記ガラス接合部を通流
する電流との関係を良好にガラス接合された接合体に}
ける上記電圧と電流との関係と対比して、上記ガラス接
合部の接合状態}よびまたはその強度の良否を判定する
ので、全数検査が可能で、良否を確実に判定できるガラ
ス接合体の検査方法を提供できる。
As described above, the present invention applies a voltage between the members to be joined in a joined body formed by glass-bonding a pair of conductive members to be joined, and causes current to flow through the glass joint by this voltage. The glass bonded structure has a good relationship with the current.
A method for inspecting a glass bonded body that enables 100% inspection and reliably determines the quality of the glass bonded body, since the bonding condition of the glass bonded portion and/or its strength is determined by comparing the relationship between the voltage and current that are applied. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のガラス接合体の検査方法の一実施例の
略図的説明図、第2図は同じく印加する電圧とこの電圧
によつてガラス接合部に通流する電流との関係を示すグ
ラフである。 1,2・・・・・・被接合部材、3・・・・・・ガラス
層、4・・・・・・接合部。
Fig. 1 is a schematic explanatory diagram of an embodiment of the glass bonded body inspection method of the present invention, and Fig. 2 similarly shows the relationship between the applied voltage and the current flowing through the glass bonded part due to this voltage. It is a graph. 1, 2... Member to be joined, 3... Glass layer, 4... Joining portion.

Claims (1)

【特許請求の範囲】[Claims] 1 1対の導電性被接合部材をガラス接合してなる接合
体の上記被接合部材間に電圧を印加し、この電圧とこの
電圧によつて上記ガラス接合部を通流する電流との関係
を良好にガラス接合された接合体における上記電圧と電
流との関係と対比して、上記ガラス接合部の接合状態お
よびまたはその強度の良否を判定することを特徴とする
ガラス接合体の検査方法。
1. A voltage is applied between the members to be joined in a bonded body formed by glass-bonding a pair of conductive members to be joined, and the relationship between this voltage and the current flowing through the glass bonded portion due to this voltage is determined. A method for inspecting a glass bonded body, the method comprising: determining the quality of the bonding state and/or strength of the glass bonded portion by comparing the relationship between voltage and current in a bonded body that has been successfully glass bonded.
JP50052514A 1975-05-02 1975-05-02 Inspection method for glass joints Expired JPS5911861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50052514A JPS5911861B2 (en) 1975-05-02 1975-05-02 Inspection method for glass joints

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50052514A JPS5911861B2 (en) 1975-05-02 1975-05-02 Inspection method for glass joints

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5796880A Division JPS56132544A (en) 1980-05-02 1980-05-02 Inspecting method for glass bonded body

Publications (2)

Publication Number Publication Date
JPS51129281A JPS51129281A (en) 1976-11-10
JPS5911861B2 true JPS5911861B2 (en) 1984-03-19

Family

ID=12916833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50052514A Expired JPS5911861B2 (en) 1975-05-02 1975-05-02 Inspection method for glass joints

Country Status (1)

Country Link
JP (1) JPS5911861B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415746Y2 (en) * 1985-09-26 1992-04-08

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6758815B2 (en) * 2015-10-28 2020-09-23 三菱重工業株式会社 Joint evaluation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4316558Y1 (en) * 1968-03-09 1968-07-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4316558Y1 (en) * 1968-03-09 1968-07-09

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415746Y2 (en) * 1985-09-26 1992-04-08

Also Published As

Publication number Publication date
JPS51129281A (en) 1976-11-10

Similar Documents

Publication Publication Date Title
Hao et al. Developments in characterization of resistance spot welding of aluminum
Chang et al. Studies on the stress distribution and fatigue behavior of weld-bonded lap shear joints
JP2008145344A (en) Method of evaluating fine metal bonding portion
JP2011515222A (en) Friction stir welding using ultrasonic waves
Costa et al. Influence of post-welding heat-treatment on the monotonic and fatigue strength of 6082-T6 friction stir lap welds
Schliekelmann Non-destructive testing of adhesive bonded metal-to-metal joints 1
Zhou et al. Predicting the failure of ultrasonic spot welds by pull-out from sheet metal
JPS5911861B2 (en) Inspection method for glass joints
Cavaliere et al. Thermoelasticity and CCD analysis of crack propagation in AA6082 friction stir welded joints
Riggs et al. Experimental Validation of Damage Zone Models for Lap Shear Brazed Joints Using DIC
US3319043A (en) Method and means for workpiece joinder
JPS6349382A (en) Insert material for diffused joining
Gilchrist et al. Development of cohesive fatigue cracks in T-peel joints
JPH05508809A (en) Quality inspection method and equipment for spot welded joints
JP2000131254A (en) Nondestructive inspecting method for welded part
Jaiswal et al. Prediction of 3-dimensional heat treatment model during the friction stir spot welding of AA 6061
JPS61107146A (en) Measurement of heat conductivity
Korinko et al. Fabrication of Enhanced Pinch Weld Electrodes
CN114813972A (en) Nondestructive evaluation method and system for service life of in-service polyethylene pipeline electric melting joint
Hersh Correlation between boron/aluminum sheet quality and resistance weld quality and strength
Offterdinger et al. Temperature dependence of the ultrasonic transmission through electrical resistance heated imperfect metal–metal interfaces
Meola et al. Application of lock-in thermography in nondestructive evaluation of adhesively-bonded aluminum joints
SU1746248A1 (en) Method of estimating quality of butt joints of polyethylene tubes
Tillier et al. Electrofusion Welding Process Optimization Using a Coupled Numerical and Experimental Approach
Jones et al. Fundamentals of ultrasonic welding